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Abstract

In this paper, we study the problem of fine-grained
air quality inference that predicts the air qual-
ity level of any location from air quality read-
ings of nearby monitoring stations. We point
out the importance of explicitly modeling both
static and dynamic spatial correlations, and con-
sequently propose a novel multi-channel attention
model (MCAM) that models static and dynamic
spatial correlations as separate channels. The static
channel combines the beauty of attention mech-
anisms and graph-based spatial modeling via an
adapted bilateral filtering technique, which consid-
ers not only locations’ Euclidean distances but also
their similarity of geo-context features. The dy-
namic channel learns stations’ time-dependent spa-
tial influence on a target location at each time step
via long short-term memory (LSTM) networks and
attention mechanisms. In addition, we introduce
two novel ideas, atmospheric dispersion theories
and the hysteretic nature of air pollutant dispersion,
to better model the dynamic spatial correlation. We
also devise a multi-channel graph convolutional fu-
sion network to effectively fuse the graph outputs,
along with other features, from both channels. Our
extensive experiments on real-world benchmark
datasets demonstrate that MCAM significantly out-
performs the state-of-the-art solutions.

1 Introduction

With the fast pace of industrialization and urbanization, air
pollution has become a major public concern. To reduce the
harmful effects of air pollution, accurately predicting air qual-
ity is of great importance for both governments and the pub-
lic. The capability of providing fine-grained air quality in-
ference is especially critical to, for example, guide people to
make proper plans to avoid adverse effects on health through
the air they breathe [Zheng er al., 2013; Chen et al., 2016;
Cheng et al., 2018]. Yet, precisely predicting fine-grained
air quality is technically challenging. Unlike the traditional
air quality prediction problem that aims to predict future air
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quality of a monitoring station, the goal of fine-grained air
quality prediction is to infer the air pollution level of any lo-
cation from air quality readings of nearby monitoring stations
in the same time period. By definition, it introduces a unique
challenge—there is no ground truth available for a location
without a monitoring station. In addressing this challenge,
properly modeling the spatial correlations between a target
location and its nearby stations is of paramount importance.

Despite the substantial efforts developed to model spatial
correlations for air quality prediction [Arystanbekova, 2004;
Zheng et al., 2013; Jutzeler et al., 2014; Guizilini and Ramos,
2015; Hsieh er al., 2015; Li et al., 2017; Wilson et al., 2018;
Cheng et al., 2018; Liang er al., 2018; Luo et al., 2019],
they have not adequately considered a key fact that spatial
correlations inherently have both static and dynamic aspects.
In this paper, we propose a novel multi-channel attention
model (MCAM), which explicitly models the static and dy-
namic aspects as separate channels. To model the static spa-
tial correlation, we combine the beauty of attention mecha-
nisms and graph-based spatial modeling, where the weights
of the edges in a graph are generated by an attention mech-
anism inspired by bilateral filtering, a technique widely used
in image processing. Since a graph formed by locations is
of a non-Euclidean structure, bilateral filtering cannot be di-
rectly applied. Thus we adapt it to a graph structure while
accommodating both locations’ Euclidean distances and their
similarity in terms of geo-context features.

To capture the dynamic spatial correlation, we model the
temporal evolutions of the target location and its nearby mon-
itoring stations by long short-term memory (LSTM) networks
and learn their time-dependent spatial correlations at each
time step in the form of a graph. We also introduce two
novel ideas to fully account for the dynamics of spatial cor-
relations: we leverage well-established atmospheric disper-
sion theories [Arystanbekova, 2004; Rakowska et al., 2014]
to form dispersion-driven dynamic features and acknowledge
the inherent hysteretic nature of the air pollutant dispersion
process (i.e., the air quality of the target location at time ¢
is also affected by the air pollutant concentrations in nearby
stations at time ¢ — 1). These two novel notions are simultane-
ously considered in an attention mechanism to calculate the
impact of a monitoring station on the target location at a time
step. Finally, we present a multi-channel graph convolutional
fusion network to effectively fuse the graphs from the static
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and dynamic channels, along with other non-graph features.
Our technical contributions are summarized as follows.

* We propose to explicitly model both static and dynamic
spatial correlations to better fine-grained air quality predic-
tion, and put forward a novel multi-channel attention model
(MCAM) with static and dynamic channels.

* To model static spatial correlations, we combine attention
mechanisms and graph-based spatial modeling by adapting
the bilateral filtering technique. To model dynamic spa-
tial correlations, we leverage LSTM networks and attention
mechanisms to measure nearby stations’ spatial influence
on a target location at each time step. In particular, we in-
troduce two new ideas, atmospheric features backed up by
atmospheric dispersion theories and the hysteretic nature of
air pollutant dispersion.

* We design a multi-channel graph convolutional fusion net-
work to effectively fuse the graph outputs of the static and
dynamic channels, along with other non-graph features.

* We perform a comprehensive empirical evaluation of
MCAM on two benchmark datasets and demonstrate that it
substantially outperforms the state-of-the-art competitors.

2 Related Work

Early research on air quality prediction focuses on physical
models. These models (e.g., Gaussian Plume model [Arys-
tanbekova, 2004] and Street Canyon model [Rakowska er al.,
2014]) are normally built on domain knowledge with a rigor-
ous mathematical foundation. Such knowledge-driven phys-
ical models well formulate the most important factors, such
as meteorological conditions, emissions, and release parame-
ters, but are not able to fully leverage multi-source heteroge-
neous data that becomes prevalent in the era of big data.

As a result, data-driven models have gained increasing at-
tention recently. Hsieh et al. [Hsieh er al., 2015] design
a multi-layer weighted connected graph structure to model
both spatial and temporal correlations. Zhao et al. [Zhao et
al., 2017] consider temporal prediction and spatial interpola-
tion as a multi-task learning problem. Zheng et al. [Zheng
et al., 2015] propose a hybrid prediction model, in which a
multi-layer perceptron (MLP) is used to learn from spatial
features. Yi et al. [Yi et al., 2018] present DeepAir, which
consists of a spatial transformation component and a deep dis-
tributed fusion network. Liang et al. [Liang et al., 2018] de-
velop a multi-level attention-based encoder-decoder network
with an external factor fusion module. Zhang er al. [Zhang
et al., 2019] propose a multi-group encoder-decoder network
(MGED-Net) that has multiple encoders, each encoding a fea-
ture group. Luo ef al. [Luo et al., 2019] design an ensem-
ble model consisting of a LightGBM, a spatio-temporal gated
deep neural network (DNN) and an encoder-decoder network.
All these solutions focus on predicting the future air quality
of a monitoring station, which is different from our problem.

Despite its practical usefulness, fine-grained air qual-
ity prediction has not been extensively studied. Zheng et
al. [Zheng et al., 2013] put forward a semi-supervised learn-
ing approach based on a co-training framework. Chen et
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al. [Chen er al., 2016] improve [Zheng et al., 2013] by select-
ing k nearest neighboring stations, instead of randomly se-
lected stations, to model spatial correlations. ADAIN [Cheng
et al., 2018] represents the state of the art of fine-grained air
quality prediction. Its key idea is to introduce an attention
mechanism to learn the contributions of different monitoring
stations to a target location’s air quality. However, it does not
adequately model the dynamic aspect of spatial correlations
or effectively fuse the static and dynamic aspects.

3 Problem Formulation

With the increasing availability of urban big data, it has been
a common practice to utilize multi-source heterogeneous data
for air quality inference. Similarly, we also consider the
problem of fine-grained air quality prediction based on multi-
source heterogeneous data, as briefed below.

Air quality data. It contains hourly readings of multiple
pollutants (e.g., PM2.5, PM10, O3, NO,, etc.) from each air
quality monitoring station s; € S, where S is the entire set of
stations. We denote all stations’ air quality data by M.

Weather data. It contains multiple weather attributes, such
as temperature, humidity, wind speed and wind direction. For
any location (with/without a monitoring station), we can gen-
erate its weather data based on its latitude and longitude. We
denote the weather data by V.

Geospatial topology data. We consider the geospatial
topology of all stations, which is denoted by 7. It contains
the latitude and longitude of each station, and thus allows to
calculate the distance and direction (i.e., bearing) between a
target location and a monitoring station. Note that this type
of data does not change over time.

Geo-context data. The geo-context data of location [ in-
cludes information about road networks and point of inter-
ests (POIs) extracted from [’s affecting area (i.e., the area sur-
rounding ). We denote the geo-context data by C. Similarly,
geo-context data does not change over time.

Now we are ready to formally define the problem of fine-
grained air quality inference.

Problem Definition. Given a target location ! without a
monitoring station, a time window 7', all monitoring stations’
air quality data M = { M}, weatherdata W = {W*'}I_|
of [ and all stations, geospatial topology data 7, and geo-
context data C, the goal is to predict the air pollutant level of
location [ at each time step during the time period 7. That is,
we aim to learn a prediction function f such that

{Q;}?zl = f(M7W7T7C7 6)7 (1)

where © denotes the set of parameters of f to learn.

4 Proposed Method

In this section, we first provide an overview of our multi-
channel attention model (MCAM) and then elaborate its three
key components.
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Figure 1: The overall architecture of MCAM (best viewed in color)

4.1 An Overview of MCAM

To model both static and dynamic spatial correlations, we first
divide the features from multiple heterogeneous data sources
into two categories.

Static geographic features. This set of features is derived
from the geospatial topology and geo-context data of a target
location and monitoring stations. We denote the static geo-
graphic features of all monitoring stations by X.

Dynamic spatial features. This set of features includes
weather features and air quality features of a target location
and monitoring stations. We denote weather features of target
location [ by 1,,, those of monitoring stations by X, and air
quality features of monitoring stations by A,,,. Note that in
our problem target locations do not have air quality readings.

With the sets of static and dynamic features, we design a
multi-channel attention model (MCAM), which consists of
three major components, as illustrated in Figure 1. The first
component is a static graph channel that learns the static
spatial correlation from static geographic features. Unlike
existing methods that either directly feed neighboring sta-
tions’ static geographic features into DNNSs or leverage atten-
tion mechanisms based on only Euclidean distance, the static
graph channel combines the advantages of both an attention
mechanism and graph-based modeling. Inspired by its use in
image inpainting, bilateral filtering is used to better model the
static spatial correlation by considering both the Euclidean
distance and the similarity of geographic features between a
target location and a station. The second component is a dy-
namic graph channel that captures the temporal evolutions of
dynamic spatial features. We use LSTM networks to model
the temporal evolutions of each monitoring station using both
air quality data and weather data and the target location us-
ing only weather data. An attention mechanism is adopted
to measure the extent of influence of a monitoring station on
the target location at each time step. Two novel notions are
introduced to more accurately measure the influence. The
last component is the multi-channel graph convolutional fu-
sion module that elegantly combines the graph and non-graph

outputs from the two channels to make the final prediction.

4.2 Static Graph Channel Construction

We explicitly model the spatial influence of monitoring sta-
tions on a target location using a graph. Formally, given a
target location [ and a set of monitoring stations S, the out-
put of the static graph channel is a weighted directed graph
G = Vi, &), where V; = SU{l} and (s;,1) € & indicates
the static spatial influence of s; € S on [. Intuitively, model-
ing the static spatial influence of nearby monitoring stations
on a target location without any air quality readings is similar
to recovering a missing region in an image from its nearby
pixels, where bilateral filters are a well-established solution.
The general idea of bilateral filters is to replace the intensity
of a pixel with a weighted average of intensity values from
nearby pixels. A nice property is that the weights depend on
not only Euclidean distances of pixels, but also other factors
(e.g., radiometric differences). In image processing, the out-
put of a classical bilateral filter [Tomasi and Manduchi, 1998]
on a target pixel z, denoted by BF(x), is defined as follows:

BF(z) = k™' (x) [7, [7 F(€)c(€,2)s(f(€). f(x))dE, (2)

where ¢ is a nearby pixel, k~!(x) is a normalization factor
that ensures that pixel weights sum to 1.0, f(-) is an image
function, ¢(¢, x) is the geometric distance between £ and x,
and s(f(£), f(x)) is the photometric similarity between £ and
x (e.g., the similarity of color intensity). More specifically,

o= (-3 (462",

where d(, x) is the Euclidean distance between & and z, and
o4 1s a bilateral filtering parameter.

(7€), 7)) = exp (—; (A ) ) —

3)

Or

where §(f(&), f(x)) is the similarity of the intensity values
of £ and z, and o, is another bilateral filtering parameter.
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Since our goal is to learn different stations’ static spatial in-
fluence on the target location, we employ an attention mecha-
nism to quantify different stations’ importance degree on the
target location [. Here we design an adapted bilateral filtering
score function for the attention mechanism as follows:

e =en (S () ) (4 (52)).

where d(s;,[) is the Euclidean distance between s; and [,
p(s;,1) is the Pearson correlation coefficient of the static geo-
graphic features of s; and [, and the bilateral filtering param-
eters o4 and o, are trainable parameters. Then the weight of
€(s:,0)
2s5e8 €s5.0)
adjacency matrix A® of the static spatial graph G; for target
location /. This graph does not change over time and will be
used at each time step to fuse with the corresponding dynamic
spatial graph to predict the air quality at location .

edge (s;,1) is . All edge weights in G; form the

4.3 Dynamic Graph Channel Construction

To capture the dynamic spatial correlation, we propose to
model the temporal evolutions of dynamic spatial features
and their interplay at each time step. Similarly, we would
like to learn a weighted directed graph for target location [ at
time ¢, denoted by G/ = (S U {l}, £}), where the weight of
an edge (s;,1) € &} gives the dynamic spatial influence of
station s; on [ at time . We use LSTM networks [Hochreiter
and Schmidhuber, 1997] to model the temporal evolutions.
An LSTM maps an input sequence to an output sequence by
an input gate unit, an output gate unit, a forget gate unit, and
a more complex memory cell using the following equations:

f'=o(Wy[h' ! 2" + by)
it = O’(Wi[htil,zt] + bz)

Ct = tanh(We[ht1, 2] + b,)

t t t—1 -1 ~t (6)
C'=f*«C"+i"xC
o' = o(W,[h' 1 2" 4+ b,)

ht = o' x tanh(C"),

where x! and h! are the input data and the corresponding hid-
den state at time ¢. f?, i* and o’ are the activation vectors
of the forget gate, input gate and output gate, respectively.
W € R"*? and b € R” are the weight matrices and bias pa-
rameters that need to be learned from the training data, where
d and h are the input dimension and the number of hidden
units, respectively. Note that we build an LSTM for each sta-
tion and the target location. The input to a station’s LSTM at
time ¢, i.e., z¢, is the concatenation of its air quality features
and weather features, while the input to the target location’s
LSTM at time ¢ only contains weather features as there is no
air quality readings at the location. The initial inputs for mon-
itoring stations and the target location are X, || X, and 1,, (see
Section 4.1), respectively, where || means concatenation.
However, the hidden state h¢ of an LSTM only captures
the temporal dependency of a station or the target location,
and cannot directly reveal dynamic spatial correlations be-
tween them. Here we again employ attention mechanisms to
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learn the dynamic spatial correlation at each time step. How-
ever, designing the score function for dynamic spatial corre-
lation needs special attention. We, for the first time, propose
to use atmospheric dispersion theories to guide the design of
the score function of the attention mechanism, and introduce
two new notions, the atmospheric dispersion conditions and
the hysteretic nature of air pollutant dispersion (i.e., the air
quality of the target location is also affected by the air quality
of stations in the previous time step as the dispersion process
takes time). We first present the entire score function below,
followed by its explanation:

eﬁsi,l) = Wd(T(VVh(h/}5 || FC(h
Wa(ut t

Si vsi

(7
angles, 1y)) + ba,

where o (-) is the ReLU activation function, the weight matri-
ces W;, and W, vectors wy and by are learnable model pa-
rameters. The weight matrices W}, and W, help to balance
the contributions of the hysteresis term and the atmospheric
term. The effect of the hysteretic nature of a station s; on [ at
time ¢ is modeled by the hysteresis term FC(h% ,hi~1). We
use a simple fully connected neural network to learn the de-
pendency between station s;’s hidden states ht, and hi1
time ¢ and time £ — 1, respectlvely The impact of atmospherlc
dlspersmn conditions is modeled by the atmospheric term
ul || vl | angle(s, b: The horizontal wind velocity u’_, ver-
tical wmd velocity v¢ and the downwind relative angle be-
tween s; and [ are the most important atmospheric factors for
air pollutant dispersion identified in well-established atmo-
spheric dispersion models [Arystanbekova, 2004; Rakowska
et al.,2014]. We combine all these features to learn the spatial
influence of station s; on [ via a linear layer. With the above

score function, we can calculate the weight of an edge (s;,1)
t

e
il . .
as (871 The parameters of the attention mechanism

ZS]‘ €S e(sj 3]
are shared across all time steps. Similarly, all edge weights in
G/ form its adjacency matrix A’ for [ at time .

4.4 Multi-Channel Graph Convolutional Fusion
Network

With the adjacency matrices A® and A! learned from the
static and dynamic channels, we fuse them along with other
features to predict the target location [’s air quality at time ¢
via a multi-channel graph convolutional fusion network, as
illustrated in Figure 1. Mathematically, the multi-channel
graph convolutional fusion network is defined as follows:

9 = Wy (0 (A*FC (X)) W?) || o (A'FC (H', H!TY) W) + by, (8)

where g} is I’s predicted air quality value at time ¢, o(-) is
the ReLU activation function, and W and b are trainable
parameters. A*F'C (X)) W* fuses the graph and non-graph
features from the static channel. Here X is the monitor-
ing stations’ static geographic features. A fully connected
neural network is used to generate the embedding of A,
and then A® weights different dimensions in the embedding.
‘W? is a feature transformation matrix to learn. Similarly,
A'FC (H!, H!~') W fuses the features from the dynamic

channel. H! and #!~! denote all monitoring stations’ hidden
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PM2.5 PM10 NO,
MAE RMSE MAE RMSE MAE RMSE
KNN 10.58/3.90 18.24/5.77 | 22.86/5.85 36.14/8.45 | 17.81/17.48 22.93/21.97
LI 10.66/3.33  19.30/5.11 | 21.08/5.37 33.74/7.89 | 17.29/20.03  21.99/25.45
ADAIN | 8.28/2.02  15.06/3.11 | 14.88/2.73 24.55/4.62 | 6.91/6.11 9.84/8.40

MCAM | 6.83/1.78

12.57/2.81 | 13.61/2.66

22.61/4.45 | 5.79/5.94 8.27/8.40

Table 1: Performance comparison of different models on both Beijing and London datasets (in the form of Beijing/London)

states at time ¢ and time ¢ — 1, respectively. The fully con-
nected neural network can also be considered as an embed-
ding layer, whose output is weighted by A¢. W is another
learnable feature transformation matrix. Finally, the features
from the static and dynamic channels are concatenated and
fused by a linear layer.

4.5 Model Learning

Since the fine-grained air quality inference problem is a re-
gression problem, we consider the widely used loss function
for regression tasks, namely the mean squared error (MSE).
Formally, the objective function £ we optimize is:

11T )
t t
EZMTZZ(yi_f(Xp@)) ) )
i=1 t=1
where M is the number of training instances, 7' is the predic-
tion time window, x§ is a training instance at time ¢, and ©
is the set of trainable parameters in the MCAM model. Since
y! is not available for a target location without a monitoring
station, a common practice is to use some monitoring stations
as target locations in training [Cheng er al., 2018].

5 Experiments

In this section, we empirically demonstrate the superior per-
formance of MCAM on two benchmark real-word datasets.

5.1 Datasets and Metrics

For a fair comparison, we utilize the Beijing dataset, the only
dataset used in the state-of-the-art solution [Cheng et al.,
2018]. In addition, we use another London dataset to draw
more convincing conclusions. Both datasets are widely used
in extensive literature. We elaborate these two datasets below.

Air quality data. We collect air quality data, including air
quality index (AQI), PM2.5, PM10, O3, NO2, CO, SO», from
all 35 ground-based air quality monitoring stations in Bei-
jing! and PM2.5, PM10, and NO, from all 13 ground-based
monitoring stations in London?.

Meteorological data. For the Beijing dataset, we consider
grid-based weather data from the Global Data Assimilation
System (GDAS)? [Zhang et al., 2019]. Similar to [Zhang et
al., 2019], we select five weather attributes: temperature, hu-
midity, wind speed, and wind directions (including wind-u

"http://beijingair.sinaapp.com

Zhttps://github.com/for-competition/KDD_CUP_2018

3https://www.ncde.noaa.gov/data-access/model-data/model-
datasets/global-data-assimilation-system-gdas

and wind-v in GDAS) and conduct a temporal linear interpo-
lation to convert the 3-hourly raw data to hourly data. For
the London dataset, its meteorological data has been prepro-
cessed and is publically available?.

POIs. Similar to [Zheng et al., 2013], we consider 12 types
of POIs from Amap of Beijing and London*, and compute the
number of POIs in each category within the affecting region
of a station or a target location as a feature.

Road networks. We download the road network data of
Beijing and London from OpenStreetMap (OSM)°. There are
five types of roads, and we calculate the number of each type
of roads as a feature.

We process air quality data and meteorological data of Bei-
jing from 01/01/2016 to 01/31/2018 and those of London
from 01/01/2017 to 03/31/2018. The portions of training, val-
idation, and test data are split by the ratio 8:1:1. The time
window T is set to 12. Identical to [Cheng ef al., 2018], we
aim to predict the PM2.5, PM10 and NO- values of a target
location without monitoring stations at each time step dur-
ing the time window. Since we only have ground truth for
the locations with monitoring stations, similar to [Cheng et
al., 2018], we randomly choose 3 out of the 35 monitoring
stations in Beijing and 3 out of the 13 monitoring stations
in London to be target locations. For each target location,
we only use the remaining stations’ air quality data to train a
model so as to avoid data leakage.

We use two widely used evaluation metrics, mean absolute
error (MAE) and root mean squared error (RMSE), to mea-
sure the performance of different prediction models.

5.2 Models
We compare MCAM with three representative competitors.

* k nearest neighbors (KNN) uses the average air pollutant
value of the k closest monitoring stations as the prediction
result. Identical to [Cheng er al., 2018], we set k = 3.

¢ Linear interpolation (LI) is a classical method that calcu-
lates a weighted average of PM2.5, PM10, or NO5 values
of the monitoring stations [Cheng et al., 2018].

e ADAIN [Cheng et al., 2018] is the state-of-the-art method
for fine-grained air quality prediction. We use the same
hyperparameter setting reported in [Cheng er al., 2018].

We also summarize the hyperparameter setting of MCAM.
We use 300 hidden units in an LSTM cell, and optimize the

“https://Ibs.amap.com/api/webservice/download
Shttps://www.openstreetmap.org/
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PM2.5 PM10 NO2
MAE RMSE MAE RMSE MAE RMSE
Distance | 7.70/2.08 13.72/3.34 | 15.33/3.26 25.01/5.35 | 6.76/6.79  9.61/9.42

BF | 6.83/1.78

12.57/2.81 | 13.61/2.66 22.61/4.45 | 5.79/5.94 8.27/8.40

Table 2: Effect of the bilateral-filtering-based attention mechanism

PM2.5 PM10 NO,
MAE RMSE MAE RMSE MAE RMSE
MCAM-h | 8.12/2.11 14.91/3.39 | 14.79/3.32  25.10/5.08 | 7.29/6.51 10.34/8.85
MCAM-a | 8.26/1.97 15.05/3.12 | 14.27/291 23.85/4.87 | 5.99/6.35  8.67/9.09
MCAM-sc | 7.46/2.11 13.15/3.39 | 14.35/3.15 24.07/5.16 | 6.56/6.44  9.43/9.09
MCAM-dc | 21.14/6.51 35.85/11.30 | 30.87/9.06 49.83/13.77 | 8.92/18.04 12.47/22.90
MCAM | 6.83/1.78  12.57/2.81 | 13.61/2.66 22.61/4.45 | 5.79/5.94  8.27/8.40

Table 3: Effects of other key components in MCAM

objective function using the Adam optimizer with learning
rate 0.01. All fully connected neural networks have a single
hidden layer with 200 neurons. We initialize all the model
parameters from the uniform distribution between —0.1 and
0.1, and implement the model in PyTorch.

5.3 Experimental Results

Performance comparison. We report the main experimen-
tal results in Table 1. It can be seen that MCAM obtains
the best performance in all settings on both datasets. Simple
models, such as KNN and LI, are not able to achieve mean-
ingful accuracy, validating the technical challenge of fine-
grained air quality inference. Compared to the state-of-the-
art model ADAIN, MCAM'’s performance improvements are
up to 17.5% in terms of MAE and 16.5% in terms of RMSE
on the Beijing dataset, and up to 11.8% in terms of MAE and
9.7% in terms of RMSE on the London dataset. We believe
that this is due to a more comprehensive modeling of dynamic
spatial correlations and a more effective fusion between static
and dynamic correlations. The improvements on the London
dataset are smaller because the monitoring stations are within
a smaller region, making it relatively easier to predict.

Effect of bilateral-filtering-based attention. We design
an adapted bilateral filtering technique as the basis for inte-
grating multiple factors in the attention mechanism. To prove
its effectiveness, we consider an alternative that employs a
distance-based attention mechanism. We denote the bilateral-
filtering-based attention mechanism by BF and the alternative
by Distance. The results are presented in Table 2. As can be
observed, BF achieves consistently better performance in all
settings. On the Beijing dataset, in which the monitoring sta-
tions are far apart, considering both Euclidean distances and
the similarity of geographic features is more rewarding.

Effects of other key components. In the last set of exper-
iments, we demonstrate the benefits of the two graph chan-
nels, hysteresis item and the atmospheric item. We construct
a variant without the hysteresis item (MCAM-h), a variant
without the atmospheric item (MCAM-a), a variant without
the static graph channel (MCAM-sc), and a variant without
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the dynamic graph channel (MCAM-dc). The experimental
results are given in Table 3. It can be observed that both terms
can bring performance improvements. On the Beijing dataset,
which represents a more challenging task, the improvements
are more obvious. Although the benefit of having the static
graph channel is clear, it is a bit surprising to see that the two
terms are even more important than the static graph channel.
Arguably, the dynamic graph channel is the most important
component of MCAM. This result is well aligned with our
motivation that fully modeling dynamic spatial correlations
is key to fine-grained air quality inference.

6 Conclusion

In this paper, we studied the practical problem of fine-grained
air quality inference. In view of existing studies’ insuffi-
cient attention on dynamic spatial correlation, we proposed
the novel MCAM model that explicitly models static and
dynamic spatial correlations between a target location and
monitoring stations as two separate channels. In the static
graph channel, we designed a bilateral filtering-based atten-
tion layer to capture the static spatial correlation as a graph;
in the dynamic graph channel, we proposed to use LTSM net-
works to model the temporal evolutions of monitoring sta-
tions and a target location. The hysteresis term and the at-
mospheric term were introduced to better measure the spatial
correlation at each time step. A multi-channel graph convolu-
tional fusion network was also devised to fuse the graph and
non-graph features from both channels. Our comprehensive
experimental results validate MCAM’s superiority.
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