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Abstract
The sum-product network (SPN) has been extended
to model sequence data with the recurrent SPN
(RSPN), and to decision-making problems with sum-
product-max networks (SPMN). In this paper, we
build on the concepts introduced by these exten-
sions and present state-based recurrent SPMNs (S-
RSPMNs) as a generalization of SPMNs to sequen-
tial decision-making problems where the state may
not be perfectly observed. As with recurrent SPNs,
S-RSPMNs utilize a repeatable template network to
model sequences of arbitrary lengths. We present an
algorithm for learning compact template structures
by identifying unique belief states and the transitions
between them through a state matching process that
utilizes augmented data. In our knowledge, this
is the first data-driven approach that learns graphi-
cal models for planning under partial observability,
which can be solved efficiently. S-RSPMNs retain
the linear solution complexity of SPMNs, and we
demonstrate significant improvements in compact-
ness of representation and the run time of structure
learning and inference in sequential domains.

1 Introduction
Bayesian networks (BN) and their extensions, influence dia-
grams (ID) [Howard and Matheson, 1984], are frameworks for
modeling probabilistic dependencies within multivariate distri-
butions over various problem classes. These models are tradi-
tionally handcrafted and inference over even small networks is
generally intractable. Arithmetic circuits (AC) [Huang et al.,
2006], which can be compiled from BNs offer better certainty
over the complexity of inference by using a computation-
oriented tree structure to model the inference problem. Most
inference in ACs is linear in the size of the network, a signifi-
cant improvement over the exponential inference complexity
of BNs. Later, sum-product networks (SPN) [Poon and Domin-
gos, 2011] were developed as a way to efficiently learn similar
structures (linearly reducible to each other) directly from data.

Just as IDs generalize BNs, decision circuits (DC) [Bhat-
tacharjya and Shachter, 2012] and their SPN-based analog,
sum-product-max networks (SPMN) [Melibari et al., 2016a],
extend the AC and SPN frameworks, respectively, to model

probabilistic decision-making domains, allowing for inference
and calculation of maximum expected utility over these do-
mains in time linear in the size of the network. Melibari et
al. [2016a] shows that SPMNs are efficiently reducible to
DCs in time that is linear in the size of the SPMN. Likewise,
recurrent SPNs (RSPN) [Melibari et al., 2016b] generalize
SPNs in the same way that dynamic BNs extend BNs, provid-
ing a framework for learning graphical models for sequential
domains. Most inference in RSPNs is linear in the size of the
network, but by exploiting the recurrent structure of sequential
domains through a repeated template network, RSPNs dramat-
ically reduce the structure size required to model sequential
data, thus improving inference speed. However, no dynamic
extension of DCs to sequential contexts has been presented.

We present the (belief) state-based recurrent SPMN (S-
RSPMN) which exploits the recurrent structure in sequential
decision-making (planning) problems. S-RSPMNs draw inspi-
ration from the recurrent template that RSPNs add to SPNs to
provide an analogous generalization of SPMNs, with a focus
on partially-observed contexts. An S-RSPMN template can be
viewed as a collection of interlinked SPMN structures, whose
links can be followed to repeat the structure and model se-
quences of arbitrary lengths. We adapt the invariance property
of RSPN’s templates to ensure that an S-RSPMN is valid.

To guide the learning of the template’s substructures and
generate links between them, we utilize a data augmentation
and state matching process, which serves to identify distinct be-
lief states within the problem domain and their transitions. The
substructures of an S-RSPMN are learned similarly to learning
an SPMN. We test the performance of the learning algorithm
by learning S-RSPMNs on a testbed of several sequential
decision-making domains from OpenAI’s Gym [Brockman et
al., 2016] and RDDLSim [Sanner, 2010], demonstrating that
they result in nearly optimal policy values for each. We also
demonstrate competitive performance of policies learned by
S-RSPMNs against a recent neural network approach, batch-
constrained Q-learning [Fujimoto et al., 2019b], on the testbed.
S-RSPMNs are thus a novel model-based representation for
decision-theoretic planning in environments possibly partially
observed, and which can be learned directly from offline data.

2 Background on SPMNs
SPNs [Poon and Domingos, 2011] are generative probabilistic
graphical models, which can be learned directly from data.
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Their simple structure, along with some validity constraints,
means that probabilities for given evidence can be correctly
computed in time linear in the size of the network for most
types of queries (an exception are marginal MAP queries).

An SPN represents a joint probability distribution over its
variables X1, X2, . . . , Xn. It is a rooted directed acyclic graph
(DAG) whose leaves are the distributions of the random vari-
ables and whose internal nodes are sums and products. Each
outgoing edge from a sum node has a non-negative weight.
The value of a product node is the product of the values of its
children while the sum node’s value is the weighted sum of
its children’s values. The value of a SPN is the value of its
root which can be represented as a network polynomial [Dar-
wiche, 2003]. The SPN is valid iff the normalized polynomial
represents the joint distribution of the variables and produces
the correct marginals. The scope of a node is the union of
scopes of its children. A leaf node’s scope is the set of random
variables whose distribution it holds.

The validity of an SPN is sufficiently ensured if it adheres
to the following constraints on the scopes of various nodes.

Definition 1 (Sum-complete). An SPN is sum-complete iff
each children of the same sum node have an identical scope.

Definition 2 (Decomposable). An SPN is decomposable iff no
variable appears in more than one child of a product node.

These properties permit the following theorem.

Theorem 1 (SPN validity [Poon and Domingos, 2011]). An
SPN is valid if it is sum-complete and decomposable.

However, Melibari et al. [2016b] show that these models
scale poorly when applied to sequential domains. As the
number of variables increases with the number of steps in the
sequence, the learned SPN exhibits an exponential increase in
structure size, learning time, and inference time.

SPMNs [Melibari et al., 2016a] extend SPNs by adding
max and utility nodes, analogously to the extension of BNs to
IDs. By adding these node types, along with some additional
validity constraints, SPMNs enable modeling of probabilistic
decision-making problems and computing the policy in time
linear in the size of the network.

Definition 3 (SPMN). An SPMN over random variables
X1, . . . , Xn, decision variables D1, . . . , Dm, and utility func-
tions U1, . . . , Uk is a rooted DAG. Its leaves are either dis-
tributions of the random variables or utility nodes that hold
constant values. An internal node of an SPMN is either a
sum, product, or max node. Each max node corresponds to
one of the decision variables and each outgoing edge from
a max node is labeled with one of the possible values of the
corresponding decision variable. Value of a max node i is
maxjεChildren(i)vj , where Children(i) is the set of children
of i, and vj is the value of the subgraph rooted at child j. The
sum and product nodes are defined as in the SPN.

A valid SPMN is one whose evaluation results in the same
maximum expected utility (MEU) as that obtained via applica-
tion of the Sum-Max-Sum rule [Koller and Friedman, 2009].
This is ensured by the addition of the following sufficiency
constraints [Melibari et al., 2016a].

Definition 4 (Max-completeness). An SPMN is max-complete
iff all children of the same max node have the same scope,
where the scope is as defined previously.

Definition 5 (Max-uniqueness). An SPMN is max-unique iff
each max node that corresponds to a decision variable D
appears at most once in every path from root to leaves.

Theorem 2 (SPMN validity [Melibari et al., 2016a]). An
SPMN is valid if it is sum-complete, decomposable, max-
complete, and max-unique.

An important concept related to SPMNs is that of the par-
tial order of the variables. A partial order, denoted by P≺,
is an ordered list of information sets and decision variables.
Information sets are subsets of the random variables of the
problem domain. Partial orders take the form I0 ≺D1 ≺ I1 ≺
D2 ≺ . . . ≺Dm ≺ Im, where the variables of an information
set Ii−1 are observed before decision variable Di, and the
variables of Ii are observed only after the decision at Di is
made. This is a partial ordering over the variables because the
ordering of the variables in any information set is unspecified.

The partial order is respected while learning the structure
of an SPMN in that the variables of information set Ii−1 are
outside the scope of the decision node corresponding to deci-
sion variable Di (coming earlier in the structure), whereas all
variables Ii, Ii+1, . . ., are within its scope.

MEU calculation in an SPMN is performed by propagating
the values of each utility node along side the probabilities.
First, the leaf nodes consistent with the given evidence are
set to 1 and the rest to zero. Then the structure is evaluated
bottom-up, where the operators at each node are applied to the
values of the children. In this way, the expected value at each
node is determined, with the overall MEU collected at the root.
To determine the optimal decision values given the evidence,
the network can then be traversed top-down, selecting the
decisions corresponding to the child with greatest expected
utility at each decision node.

This complexity of the evaluation is thus linear with the
number of nodes in the network. However as with SPNs, the
number of nodes in the structure may grow exponentially with
the number of variables, rendering SPMNs largely intractable
in many sequential decision-making domains.

3 State-Based Recurrent SPMNs
A straightforward generalization of RSPNs to decision-making
problems thereby yielding recurrent SPMNs exists [Tatavarti
et al., 2021], but this targets contexts whose state is per-
fectly observed. In contrast, we aim to introduce a model
for partially-observable environments where the data consists
of noisy observations (not values of state variables), which
complicates the generalization.

The planning data for learning S-RSPMNs consists of
a finite temporal sequence of values of observation, deci-
sion, and utility variables. Formally, consider a partially-
observed decision-making problem where the state of the en-
vironment is informed by n observation variables, Ω1, Ω2,
. . ., Ωn; decisions by a combination of m decision variables,
D1, D2, . . ., Dm; and a single utility variable U . A can-
didate data record of at most T steps is then a sequence of
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T tuples of the form 〈(I0, d1, I1, d2, . . . , Im−1, dm, Im, u)0,
(I0, d1, I1, d2, . . . , Im−1, dm, Im, u)1, . . ., (I0, d1, I1, d2,
. . . , Im−1, dm, Im, u)T−1)〉. Here, I0, I1, . . . , Im are infor-
mation sets, as mentioned in Section 2, but where Ii−1,
1 ≤ i ≤ m consists of values of the observation variables
in the information set of Di. Additionally, u in each tuple
is the value of utility variable U given the realizations of the
hidden state variables and observed decisions in that tuple.
Next, we define the template, a key component of S-RSPMNs.

Definition 6 (S-RSPMN template). A template network for
a slice of n observation variables at time t is a DAG with k
roots and k + l + n leaf nodes, where k > 0, l > 0. The n
leaf nodes hold the distributions over observation variables,
Ωt1,Ω

t
2, . . . ,Ω

t
n or hold constant values as utility nodes. The

remaining k and l leaves consist of two types of distinguished
nodes, respectively denoted as S1 and S2. Each of the k roots
is a product node which has exactly one S1 node as a direct
child and contains at least one S2 node in its scope. The
interior nodes of the template consist of sum, product, and
max nodes and the edges have their usual semantics.

The template network can be viewed as a collection of
interlinked SPMN substructures, each of which we refer to
as a state estimation branch. Each such branch is rooted at
a product node and corresponds to a distinct belief region
in the problem with its S1 node containing a collection of
integer labels. Each S2 leaf node in the template links to the
state branch whose S1 node contains its label. These links
represent the transition from one belief region to another at
the conclusion of a step of the sequence.

Next, we introduce the top and bottom networks, which al-
low the S-RSPMN to yield a rooted SPMN when the templates
are repeated as many times as the length of the sequence data.

Definition 7 (Top network). A top network is a rooted DAG
whose root is a sum node with k leaves as children. Leaves of
this network are interface nodes, each of which will be merged
with a distinct root of the template. Each edge (i, j) emanating
from the root sum node has a non-negative weight wij . A
bijective mapping g determines which root of the template
corresponds to an interface node of the top network.

Definition 8 (Bottom network). A bottom network mod-
eling the last time slice of n observation variables,
〈Ω1,Ω2, . . . ,Ωn〉T , is similar to the template network with k
roots but k + n leaf nodes. No S2 nodes are present.

To model sequential decision-making data of length T , we
construct an S-RSPMN by learning the top and template net-
works. Then, T − 1 instances of the template network are
stacked on the bottom network, and capped with a top net-
work. To stack instances of the template network, each S2

node is replaced with the root node of the template’s state
estimation branch whose S1 node contains its value. The top
network is then merged with this structure by replacing its
interface nodes with the corresponding roots as mapped by g.

The validity of an S-RSPMN over any number of steps can
be established by repeating the template, as described above,
to the desired number of steps and verifying the conditions
given in Defs. 1, 2, 4, and 5 for each node. However, we may
define a property to allow establishing the validity without un-

rolling the network. This property is inspired by the template
invariance property of RSPNs [Melibari et al., 2016b].

Definition 9 (Template soundness). The template network
presented in Def. 6 is sound iff (a) the scope of the structure
replacing each S2 node excludes St1, Ωt1, ..., Ωtn, and is identi-
cal to the scope of each other such structure, (b) all product
nodes in the template network are decomposable, (c) all sum
nodes in the template are complete, and (d) all max nodes in
the template are both max-complete and max-unique.

This property is helpful in proving the validity of a network
in that the roots of a sound template satisfy the conditions
of soundness when they are used to replace the S2 nodes
of another copy of the same template network modeling the
previous step of the sequence. Theorem 3 shows that this
property can be used to establish the validity of an S-RSPMN
modeling an arbitrary number of steps.

Theorem 3 (S-RSPMN validity). If the (a) top network is sum-
complete and bottom network is sum- and max-complete, max-
unique, and decomposable, (b) scope of each state branch in
the bottom network is identical to the scope of every other such
branch, and (c) S2 nodes can be replaced with corresponding
state branches in such a way that the template network is
sound, then the corresponding S-RSPMN is valid.

The proof, given in the technical appendix included in the
supplement, is established by induction on the sequence length
and observing that the conditions (a-c) always yield an un-
rolled SPMN that is valid.

4 Learning S-RSPMN from Data
Sequential decision-making problems can be modeled using
SPMNs without recurrence by simply blocking the entire se-
quence of tuples in a record as one data input and applying the
LearnSPMN algorithm of Melibari et al [2016b]. However, as
our experiments demonstrate, this approach often results in
very large structures whose size is exponential in the number
of variables, and also exponential in the number of time steps
of a sequence. This proves intractable for longer sequences.
Furthermore, the SPMNs once learned are unable to model
any newer sequences whose length is greater than the longest
sequences in the training data.

Consequently, there is strong motivation for an algorithm
that automatically learns the structure of an S-RSPMN tem-
plate and top networks, such that the structure satisfies the
property of soundness given in Def. 9. Overall, our method
for learning the S-RSPMN structure iteratively applies Learn-
SPMN over small numbers of steps to learn multiple SPMN
substructures. These are linked together through a matching
process to form a recursive structure.

To help illustrate the process, we introduce a simple sequen-
tial decision-making problem, the repeated marbles game. It
starts with a bag containing 2 marbles, one white and the other
black, unknown to the agent. The agent can chose to either
draw a marble randomly or to reset the problem to the initial
state. The problem is also automatically reset to the initial
state once both marbles are drawn. Drawing the white marble
results in +1 utility, whereas drawing the black marble results
in -1 utility, so the optimal play is to draw until the white
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Figure 1: An SPMN learned for the first two time steps of the repeated
marbles game. The S1 leaf with the SID value of 0 is highlighted in
blue. Labels 0 and 1 on the edges emanating from a draw decision
node denote the choices of reset and draw a marble, respectively.

marble is found and then reset the problem, resulting in an
average of +0.5 utility per 2 steps of the problem. The state
is represented by a single variable, X , that corresponds to
which marble is left in the bag. The drawn marble is observed
perfectly thereby yielding a single observation variable Ω. A
single decision variable draw involves choosing one of two
actions: draw a marble or reset.

Algorithm 1 gives the main procedure, LEARNS-RSPMN,
for learning the S-RSPMN template. As we may expect,
LEARNS-RSPMN takes the set D of records each contain-
ing a sequence of tuples and a partial order over the domain
variables P≺. Additionally, two learning parameters need to
be pre-specified: (i) the horizon, h, which is the number of
time steps considered in each application of the underlying
LearnSPMN. Increasing h allows us to model longer-term de-
pendencies but doing so will also increase the run time of the
algorithm. (ii) The correlation threshold cthresh is used in the
matching process to determine whether a correlation between
an existing substructure and variable values is not sufficiently
significant thereby necessitating a new substructure.

The algorithm begins by augmenting each data record
(lines 1-4). It prepends an additional variable to the par-
tial order of each step of a sequence, labeled as S1. The
variable takes a state identifier (SID) as its value. Specifi-
cally, each augmented tuple in the data record takes the form
(S1, I0, d1, I1, d2, . . . , Im−1, dm, Im, u)t. SID for the S1 in
the initial time-step tuple of each record is 0, signifying the
initial region. The S1 values for each subsequent step is set
based on an evaluation of the network over its preceding step
in a process described later.

Next, we learn the first substructure by applying Learn-
SPMN to the tuples of the first h time steps of each data
record (line 5). This learns a state estimation branch for the
initial state of the sequence, SID 0. As S1 is first in the partial
order and takes only one value in the data, it is always a child
of a root product node. We illustate the state estimation branch
with SID 0 for the repeated marbles game in Fig. 1.

Algorithm 1: LEARNS-RSPMN
Input: Data set: D = 〈τ0, τ1, . . . , τT−1〉e where

e = 1, 2, . . . , E
Partial order over all variables for two steps: P≺,
Horizon: h . number of steps used in structure learning
and branch matching
Correlation threshold: cthresh

Output: learned S-RSPMN
1 Prepend a column for SID, Se,t

1 , to each tuple τ t in each
episode e of D with NULL value

2 Prepend a new information set containing only SID to each time
step of P≺

3 Set SID for the initial tuple τ0e of each episode e, Se,0
1 ← 0

4 numSIDs← 1, SIDtoBranch← new map
5 SPMN0← LEARNSPMN(D0:h−1, P≺)
6 SPMN0, numSIDs← REPLACEBRANCHES(SPMN0, P≺,

numSIDs)
7 SIDtoBranch[0]← SPMN0

8 S-RSPMN← new root sum node with SPMN0 as its child . top
network

9 do
10 D, maxDataSID← UPDATEDATACOUNTS(D,

SIDtoBranch, numSIDs)
11 matched← False
12 for branch in the children of S-RSPMN do
13 if BRANCHMATCH(D, branch, maxDataSID, h,

cthresh) then
14 add maxDataSID to the list of SIDs in the S1 node

of branch
15 SIDtoBranch[maxDataSID]← branch
16 matched← True
17 exit for loop

18 if not matched then
19 newBranchData← 〈τ t, . . . , τ t+h−1〉e for each tuple

τ t and episode e in D where Se,t
1 = maxTuplesSID

20 SPMNs← LEARNSPMN(newBranchData, P≺)
21 SPMNs, numSIDs← REPLACEBRANCHES(SPMNs,

P≺, numSIDs)
22 S-RSPMN← add SPMNs as a new child of the root

sum node of S-RSPMN
23 update weights of the root sum node of S-RSPMN
24 SIDtoBranch[maxDataSID]← newBranch

25 while maxDataSID is not NULL
26 return S-RSPMN

While this SPMN models data over multiple time steps,
recall that the template focuses on one time step only. We
include the additional h - 1 steps in the learning (rather than
focusing on the data at time step 0 only) to model the subse-
quent transitions, which ensures sufficient branching in the
structure as we see in Fig. 1. Taking a step toward creating
the template, the additional structure is then pruned away and
replaced by S2 nodes (line 6). These nodes replace the first
occurrence of a variable from the next time step (often the
decision variable as in the example). Each new S2 is assigned
a value that is incremented by 1, starting at 1. Algorithm 2
REPLACEBRANCHES included in the supplement gives the
procedure of replacing the branches rooted at such variables
with S2 nodes. This creates a simpler structure, as we illustrate
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Figure 2: The state estimation branch of Fig. 1 with leaf S2 nodes
replacing the subgraphs whose scopes include variables from time
step 1 onwards.

in Fig. 2 for the marbles game.
This first substructure is added as a child to a new sum

node which serves as the root of the template network. The
resulting structure is sufficient to model only the first state
of the problem. In order to model additional states and the
transitions between them, we use the newly created S2 nodes
to augment the next step tuple of data with SID values. Each
S2 node represents a state transition, and its corresponding
SID value will serve to tell us to which state estimation branch
it connects.

For each sequence, we determine the SID value of its next
step by finding the S2 node reached by the current step. To-
ward this, we obtain the S2 node that yields the maximum
likelihood for the state estimation branch for the current time-
step tuple. We obtain this by assigning a value of 1 to each S2

node in turn and assigning other S2 nodes a value of 0. Then,
calculate the likelihood for the data in the current tuple, say
time step 0, and select the S2 node that was assigned 1, which
yielded the largest likelihood. This is analogous to selecting
the S2 node yielding the most probable explanation (line 8 of
Algorithm 3 UPDATEDATACOUNTS included in the supple-
ment). This S2 node’s value is then assigned as the SID value
of S1 in the next time-step tuple in that record. We do this for
each record in the data set.

On assigning the SID for the next step of each record,
LEARNS-RSPMN attempts to match the next-step data tuples
containing the new SID values to existing state estimation
branches in lines 12-13 of the algorithm. This is done by
combining data tagged with the new SID value with the data
tagged by SID values contained in a branch, then detecting
correlations within that combined data (Algorithm 4 BRANCH-
MATCH in the supplement). If SID in this combined dataset is
correlated with any other variable (excluding decisions), then
we move on to the next branch. If for a given branch, the SID
is not correlated with the other variables, then the belief state
represented by this SID is indistinguishable from the state

Figure 3: Final S-RSPMN structure learned for the repeated marbles
game. Red dotted line between S1, S2 node pair indicates that the S1

node contains the value of the linked S2 SID. The S-RSPMN consists
of the template network with three state estimation branches, whose
roots are the product nodes in the second layer from the top. The top
network connects the root sum node with the three product nodes.
Weights on the edges correspond to the relative frequency with which
belief states in each region are encountered in the data.

modeled by that branch, making it a match.
If a match is found, we add the SID value to the set of SIDs

held by the S1 node of the matching branch (lines 14-15 of
Algorithm 1). This indicates that the belief region represented
by the matched state estimation branch covers the belief rep-
resented by the data sequence. If no match is found (lines
18-24), then the SID may represent a new belief state. In that
case, we learn a new SPMN substructure. First, the learning
data is comprised of the tuple at time step t that did not match,
tuples at step t from other records whose S1 value is identical
to the SID, and the tuples of the next h − 1 steps in each
data record (or until the last time step if it is reached prior to
h). We apply LearnSPMN to this data subset to obtain a new
state estimation branch. As before, we replace the subgraphs
whose scopes fall outside the set of variables at time step t
with new S2 nodes. The resulting SPMN substructure is added
as a new child of the root sum node of the template network.
Weights on the edges are equal and correspond to a uniform
distribution.

The matching process is performed for the next tuple in each
data record. If a new SPMN substructure is learned, S2 nodes
corresponding to the most probable explanation are found and
the matching process is repeated as we move across all the
time steps of the data. Figure 3 shows a complete, fully-linked
S-RSPMN for the repeated marbles game with three state-
estimation branches each corresponding to a distinct belief
region – for the states where both marbles are in the bag and
the black or white marble only remains in the bag.

SIDs of most likely S2 nodes based on the last time-step
tuple cannot be assigned forward to the next S1 node as there
is no further tuple of data. Nevertheless, we must assign them
to some S1 node(s) to model the transition in the belief state.
Our approach is to add the S2 node’s value to the set of SIDs
held in the S1 nodes of all the state-estimation branches in the
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Data set |X|, |Ω|, |D| #Episodes T #Columns

Repeated marbles (1, 1, 1) 5K 6 18
Tiger problem (1, 1, 1) 100K 7 21
NChaina (1, 1, 1) 100K 10 30
Frozen lakea (1, 1, 1) 100K 10 30
Skill teachingb (12, 4, 4) 500K 10 90
Elevatorsb (13, 5, 4) 500K 10 100
Crossing trafficb (18, 3, 4) 500K 10 80
Navigationb (15, 4, 4) 500K 10 90

Table 1: Data sets with superscript a are simulations of Gym domains
and those with superscript b are simulations of RDDLSim domains.
|X|, |Ω|, |D| gives the numbers of state, observation, and decision
variables in the domain, T is the sequence length, and |Columns|
is the total number of columns in each data record, which includes
observation, decision, and utility values for each step.

template. This is analogous to modeling the transition to a
distribution of next belief regions.

5 MEU Evaluation
A brute force approach to MEU evaluation in an S-RSPMN
would be to unroll the structure to the desired planning horizon
by recursively replacing the S2 nodes with their matching
branch – this is the branch whose S1 node contains the S2

node’s SID value. However, we can dramatically speed up
the MEU evaluation by exploiting the recurrent properties of
the network with dynamic programming. Beginning at the
last time step (horizon 1), we prune the template to yield the
bottom network (Def. 8). The MEU for each state-estimation
branch is then the highest EU at the product nodes that form the
roots of the branches in the bottom network, using a bottom-up
pass through each branch. We may associate these MEUs with
the identifying S1 nodes of the branches.

To calculate the value of a state-estimation branch for two
steps of unconditioned evaluation, we iterate through each
possible decision path in the branch and add the weighted sum
over the S2 nodes reachable in that path to the single step
value of the path. The value of an S2 node here is equal to
the single-step value of the state-estimation branch to which
it is linked. This value was computed as mentioned in the
previous paragraph. For each branch, we then take the largest
combined value from among its possible decision paths as
the MEU value for that branch for a horizon of two. This
procedure is repeated, using the branch values for two steps
to obtain the values for a horizon of three, and so on, to the
specified T . By memoizing the MEU values for each branch
and time step, we can quickly determine the unconditioned
MEU up to any T . This effectively reduces the run time
complexity from O(bT ) to O(lbm) where b is the worst-case
branching factor of the network, and the remaining parameters
are as defined in Section 2.

6 Experiments
The LEARNS-RSPMN algorithm has been implemented in
the SPFlow library [Molina et al., 2019] and is available on
GitHub at https://github.com/minimum-LaytonC/SPFlow/tree/

S-RSPMN SPMN
Domain T #Episodes Learn time #nodes Learn time #nodes

Repeated 3 .1K 1.77s 39 2.61s 85
marble 4 1K 2.44s 39 6.19s 274

5 1K 2.53s 39 17.24s 615
6 5K 6.67s 39 56.94s 1,710

Tiger 3 10K 25s 147 22s 250
4 100K 147s 229 174s 1,673
5 100K 212s 213 684s 8,027
6 100K 240s 237 2153s* 28,408
7 100K 230s 221 5402s* 75,046

Table 2: A comparison of S-RSPMNs and SPMNs based on the
learning times and structure sizes for increasing sequence lengths on
the repeated marble and Tiger problems. Notice that the SPMN sizes
are an order of magnitude more than the sizes of the S-RSPMN. *
denotes that the learned MEU is not optimal.

rspmn rdc rmeufix under the Apache license. We evaluate its
performance on a new testbed of sequential decision-making
data sets that adhere to the schema given in Section 3 and
where the state is partially observed.

As there are very few existing data sets on simulations of
discrete partially observable decision-making domains, we
developed a new testbed of eight data sets on decision-making
problems, listed in Table 1 and available at https://github.com/
minimum-LaytonC/SRSPMN dataset generators. In addition
to the repeated marbles game, we also include simulations
of the Tiger problem, a well-known POMDP domain [Kael-
bling et al., 1998]. Two of the remaining data sets are sim-
ulations of the NChain and Frozen lake domains, which are
fully-observable problems (where observation variables are
synonymous with state variables) sourced from OpenAI’s
Gym [Brockman et al., 2016]. The remaining four data sets
(Crossing traffic, Elevators, Skill teaching, and Navigation)
are simulations of larger RDDLSim POMDP domains [San-
ner, 2010], which are partially observable. Each data set is
generated by using a random policy which interacts with the
environment and collecting the 〈action, observation, reward〉
generated at each step. Each episode is run until either the goal
state or some other terminal state is reached, after which some
of the domains automatically restart. Each episode generates
a data record.

The advantages of S-RSPMNs over SPMNs in sequential
domains can be seen clearly in their comparative performance
on the toy repeated marbles and Tiger problems. Table 2 shows
the learning times and structure sizes over several different
sequence lengths T and numbers of episodes. We selected
the number of episodes for each sequence length that is suffi-
cient for both models to obtain MEU values that are optimal
with some exceptions. The size of the S-RSPMN does not
significantly change with increase in sequence length as the
template structure learned is sufficient to model any number
of steps. Observe that its learning time is effectively linear
in the size of the data set. Contrast this with the exponential
increase in learning time and structure sizes of the SPMNs
with sequence lengths. While we may not see this level of
improvement for other problems (many problems will have

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2531

https://github.com/minimum-LaytonC/SPFlow/tree/rspmn_rdc_rmeufix
https://github.com/minimum-LaytonC/SPFlow/tree/rspmn_rdc_rmeufix
https://github.com/minimum-LaytonC/SRSPMN_dataset_generators
https://github.com/minimum-LaytonC/SRSPMN_dataset_generators


S-RSPMN BCQ
Domain Optimal EU MEU Mean total reward Learn time(s) #nodes 〈h, cthresh〉 Mean total reward Learn time(s)

NChain 25.8 25.86 24.54 ± 0.26 111 106 〈2, 0.3〉 15.228 ± 0 32,196
Frozen lake 0.823 0.816 0.742 ± 0 4,081 649 〈3, 0.3〉 0.0 ± 0 37,878

Skill teaching 5.953 -6.136 5.198 ± 0.98 17,020 1,447 〈3, 0.26〉 -6.329 ± 0 34,247
Elevators -14.44 -1.953 -19.103 ± 0.22 4,941 1,324 〈3, 0.24〉 -18.953 ± 0.85 36,620
Crossing traffic -3.909 -3.28 -5.635 ± 0.29 2,489 203 〈4, 0.22〉 -19.882 ± 0 38,548
Navigation -7.713 -5.809 -8.025 ± 0 7,519 563 〈3, 0.30〉 -8.025 ± 0 36,059

Table 3: S-RSPMN and BCQ performances on the Gym and RDDLSim domains. Learning time for BCQ is the time taken to run a million
iterations. All other BCQ parameters such as the number of samples and loopback values were set to default. Learning an S-RSPMN requires
setting two parameters: horizon h, correlation threshold cthresh. Both S-RSPMN and BCQ models for all domains except Navigation were run
for 100 steps (to obtain near-converged values) whereas the Navigation models were evaluated over 10 steps. All models were learned on a PC
with Intel Xeon ES-2603, RHEL7, 16GB RAM.

a larger space of belief regions that yield distinct behaviors),
these simple problems serve to demonstrate the advantages of
a recurrent model in terms of both time and compactness of
representation. Indeed, we were unable to generate SPMNs
for even small time steps for some of the other relatively larger
domains with structure learning taking many hours before
ultimately failing due to excessive memory requirements.

S-RSPMNs are related in principle to batch (or off-policy)
reinforcement learning methods [Lin, 1992; Ernst et al., 2005;
Lange et al., 2012]. Both these types of methods seek to derive
an optimal policy from a given set of prior experiences though
S-RSPMNs learn a model while the latter tend to be model
free. Therefore, as a baseline, we compare with a recent off-
policy reinforcement learning technique constrained to learn
from a batch of data, a discrete implementation of the batch-
constrained deep Q-Learning (BCQ) [Fujimoto et al., 2019a;
Fujimoto et al., 2019b] applied to the testbed. Table 3 reports
on the performances of the learned S-RSPMN and BCQ for the
Gym and RDDLSim data sets. The optimal EU for the Gym
domains is provided by converged deep Q-networks while the
symbolic Perseus solver [Hoey et al., 1999] provides the same
for the RDDLSim domains. Clearly, a key question to ask is:
how good are the policies learned by S-RSPMN and BCQ?
We simulated the policies obtained from the learned models
and report the mean ± standard deviation of the total reward
across 10 runs of 100 episodes each. Table 3 shows that the
mean rewards from S-RSPMNs are close to the optimal EU
for all the domains, and the difference between the two is
significantly less than or similar to that of the mean rewards
from BCQ (the sole exception is Elevators). Simultaneously,
learning times for S-RSPMNs are often an order of magnitude
less than those of BCQ.

However, the learned S-RSPMNs yielded MEUs that did
not always align with the rewards from policy simulation! This
is evident for the partially-observed RDDLSim domains and
indicates that an accurate model of the environment was not
learned in these cases, possibly due to the absence of the state
variables from the data. But, the MEUs were indeed computed
quickly taking just 0.005s and 0.007s for the NChain and
Frozen lake models, respectively.

7 Conclusion
Decision-theoretic planning has relied on accurately specify-
ing the model and (optimal) planning remains intractable for
all but the simplest problems. This paper seeks to address both
these challenges by infusing data-driven machine learning into
planning with a fundamental focus on tractability. Whereas
the default approach for bringing efficiency to planning is
approximations that trade off quality, our approach learns
fitted problem representations that are guaranteed to solve effi-
ciently. Task simulation data, which is seldom directly used
for automated planning, can now be collected and used. A
concomitant risk to this potentially high payoff is that the size
of S-RSPMNs is unbounded. Furthermore, S-RSPMNs offer
clear semantics for decision making in contrast to neural nets.
A direction of future work is to develop anytime techniques
for learning the networks, which offer flexible control over the
size of the network while yielding structures with improving
likelihoods and MEUs.
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