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Abstract

We propose a novel, complete algorithm for the
verification and analysis of feed-forward, ReLU-
based neural networks. The algorithm, based on
symbolic interval propagation, introduces a new
method for determining split-nodes which evalu-
ates the indirect effect that splitting has on the re-
laxations of successor nodes. We combine this with
a new efficient linear-programming encoding of the
splitting constraints to further improve the algo-
rithm’s performance. The resulting implementa-
tion, DEEPSPLIT, achieved speedups of around 1-
2 orders of magnitude and 21-34% fewer timeouts
when compared to the current SoA toolkits.

1 Introduction

Al-based, safety-critical applications, including autonomous
driving, require reliable systems that are amenable to analysis
leading to their certification. At present even the most com-
plex neural classifiers suffer from misclassification rates that
render the technology potentially unsafe. It therefore remains
of importance to develop methods to formally verify the cor-
rectness of neural networks and identify unwanted features.

The area of formal verification of neural networks [Liu et
al., 2019] is concerned with the development of methods to
ascertain whether a neural model is correct with respect to
a given specification. For example, in image classification,
we might need to establish whether for a given image a clas-
sifier is robust with respect to noise [Szegedy er al., 2014]
or geometric perturbations [Kouvaros and Lomuscio, 2018;
Balunovic et al., 2019]. In closed-loop systems with neural
controllers, it is of interest to establish whether the system
may violate some safety constraints expressed as temporal
specifications [Akintunde et al., 2018; Akintunde et al., 2019;
Tran et al., 2020b; Akintunde et al., 2020].

Given their noteworthy application domains, particular
attention has been devoted to verifying high-dimensional,
ReLU-based, feed-forward neural networks; this is also the
aim of this paper. While a number of increasingly scalable
methods have been proposed recently, the present state-of-
the-art (SoA) cannot yet address the models used in practice.
The key contribution in this paper is to define a procedure,
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within a symbolic interval propagation framework, for decid-
ing which nodes to split based on the direct and indirect effect
that the splitting has on the relaxations in subsequent nodes
in the network. As we show, this leads to 1-2 orders of mag-
nitude speedup over current SoA verifiers.

Related Work

Verification methods for neural networks can be divided into
complete and incomplete methods. Complete methods are
theoretically guaranteed to provide an answer to any verifica-
tion query; incomplete methods may not reach a conclusion
on a query but may be more scalable when a solution can be
found. Both streams of work are considered important as they
can complement each other.

Complete approaches can be further divided into Mixed In-
teger Linear Programming (MILP), reachable set and relax-
ation based approaches. MILP based approaches encode the
verification problem into MILP solvers [Lomuscio and Ma-
ganti, 2017; Akintunde et al., 2018; Anderson et al., 2020;
Botoeva et al., 2020; Singh et al., 2019b; Tjeng et al.,
2019]. Reachable-set based approaches [Tran et al., 2020a;
Tran et al., 2020b; Bak et al., 2020] verify properties by
propagating exact symbolic representations of the reachable
states through the network and reasoning over the resulting
output states. Relaxation based methods [Henriksen and Lo-
muscio, 2020; Katz et al., 2019; Rubies-Royo et al., 2019;
Wang et al., 2018a; Bunel er al., 2020; Singh et al., 2019al
compute a linear relaxation of the network and iteratively
refine it by splitting ReLU nodes and branching; an ef-
ficient relaxation can be obtained with Symbolic Interval
Propagation (SIP) [Wang er al., 2018b; Wang et al., 2018a;
Singh et al., 2019c; Singh et al., 2018; Henriksen and Lo-
muscio, 2020]. The work presented here also adopts the SIP-
based approach, but differs from the SoA in that it (i) employs
a novel procedure for splitting which is based on dependen-
cies between ReLU relaxations, (ii) utilises a new succinct
LP-encoding of the split-constraints and (iii) combines two
different SIP algorithms to improve the linear relaxation. This
results in significant speedups, as we report below.

[Lu and Kumar, 2020; Bak, 2020] also consider proce-
dures for branching decisions. [Lu and Kumar, 2020] uses
a graph-neural network for deciding on branching nodes; this
approach was only shown to be able to verify relatively small
networks with < 7000 ReLU nodes. In contrast we use inter-
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mediate results from the SIP phase, leading to a more scalable
approach. The procedure in [Bak, 2020] starts from a non-
relaxed network and gradually increases the nodes to relax;
in contrast, we start with a relaxed network and gradually de-
crease the abstraction through branching. In our experiments
this results in a more scalable approach.

Node-dependency analysis is also present in [Botoeva et
al., 2020; Rubies-Royo et al., 2019]. However, [Botoeva et
al., 2020] determines binary relations between nodes, while
we estimate fractional dependencies between the nodes’ re-
laxations. Dependencies are considered in [Rubies-Royo et
al., 2019] via the solution of a linear program encoding all
the network’s ReLUs; in common with other SIP-based ap-
proaches, we avoid encoding individual ReLUs for efficiency.

Incomplete verification algorithms [Singh et al., 2019c¢;
Singh et al., 2018; Wang et al., 2018b] differ from complete
approaches in that they reason over a relaxed, or abstract net-
work and do not implement a refinement strategy which guar-
antees that all overestimation is removed in a finite number
of steps and are therefore not directly comparable to com-
plete approaches. However, we show later that SOA complete
approaches significantly outperformed a SoA incomplete ap-
proach on several benchmarks.

2 Preliminaries

In this section we introduce feed-forward neural networks,
symbolic interval propagation and some related concepts.

We assume a Feed-Forward Neural Network (FFNN) to be
composed of an input layer, one or more hidden layers and an
output layer [Goodfellow et al., 2016]. Each layer consists of
multiple nodes and hidden layers are governed by non-linear
activation functions ¢ : R — R. We here consider networks
with the ReLU (z) = max(0, z) activation function only. A
layer’s output is calculated by applying the layer’s activation
function element-wise to its input vector where the input vec-
tor is an affine transformation of the output from previous
layers. So, a network with n input nodes and m output nodes
is associated with a function f : R™ — R™ where f is the
composition of the layer-by-layer transformations.

In this paper we consider verification problems defined by
box constraints on the network’s input and linear constraints
on the output as defined in Definition 1. While much of the
current body of work on neural network verification does not
explicitly define the verification problem, the problem pre-
sented here is in line with the main focus of the field.

Definition 1. A verification problem is a tuple {f,in, Yout)
where f : R™ — R™ is a FFNN with ReLU activation func-
tions for all hidden nodes, V), = /\Zl:0 I, < xp, < uy is the
input constraint, Your = N\;(V; @] ;f() +b;; < 0) is the
output constraint, l,,ur,b; ; € Rand a; ; € R™. If oy is
satisfied for all x that satisfy 1.y, then we say that the f is
safe for the given constraints; otherwise, f is unsafe. An x
that satisfies 1, and violates 1), is a counterexample.

Verification problems are challenging to solve due to non-
linear activation functions. A scalable approach to solve ver-
ification problems involves considering a linear relaxation of
the FFNN [Wang et al., 2018b; Wang et al., 2018a]. The re-
laxed FFNN can be obtained by combining Symbolic Interval
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Propagation (SIP) with two-constraint linear relaxations of
the activation functions. In the rest of this paper we follow the
presentation of two-constraint linear relaxations from [Hen-
riksen and Lomuscio, 2020] summarised below.

Definition 2 (Two-constraint relaxation). Let z;, 2z, € R be
concrete lower and upper bounds on the input of an activa-
tion function o : [z;,z,] — R, where [z, z,] C R denotes
the closed real interval between z; and z,. A two-constraint
linear relaxation is a tuple (ry, ry,), where vy : |21, z,] = Ris
a lower bounding linear function such that r(z) < o(z) and
Tu @ (21, 20] — R is an upper bounding linear function such
that r,(z) > o(z) for all z € [z, z,).

For ReLU functions where the input is bounded by lower
and upper bounds z;, z,, € R, the upper relaxation is nor-
mally defined by ry(2) = ;% (2 — ) [Wang et al., 2018a;
Singh er al., 2019¢]. The formulation of the lower relaxation
depends on the SIP algorithm used. Some approaches use

2y

r(z) = < 2 [Wang et al., 2018al; others minimise the

overestimation area by considering r;(z) = 0 iff z, < ||
and r;(z) = z otherwise [Singh et al., 2019c].

Relaxations are used in conjunction with SIP to calculate
bounds on the network’s output. Relevant to this work are
two distinct SIP algorithms: Error-based Symbolic Interval
Propagation (ESIP) [Wang et al., 2018a; Henriksen and Lo-
muscio, 2020] and the algorithm here referred to as Reversed
Symbolic Interval Propagation (RSIP) [Singh ef al., 2019c].

The ESIP algorithm propagates bounding equations and
concrete errors layer-by-layer through the network. Activa-
tion functions are handled by propagating the terms through
the lower relaxation and adding a new concrete error ini-
tialised as € = max, ¢[., z,)(7u(2) — 11(2)) for each node;
these errors are then propagated through the network with
the equations. 1In the following €.}z ~denotes the error
from a node in layer /; and position n; at a node in layer
lo and position ny where Iy < Iy; however, we some-
times use the simplified notation €” to mean the error from
a node n when this does not cause confusion. For a node
in layer l5 and position ny with equation ¢/2 (x), the con-

l2 Zlg

crete lower and upper bounds z.? ;.22 ., (denoted as
Yns,low and Yy, 4p at the output layer) are calculated as
5122,l0w = minm qi?z (CL') + Zﬁ:é Zmlelnl]’-,l%g <0 6illff%z and
zl2 ., = maxg g2 (z) + Zﬁf:é Zmlf%’fﬁz -0 et

Different from ESIP, the RSIP algorithm calculates bound-
ing equations by substituting variables layer-by-layer back-
wards through the network. For non-linear activation func-
tions, the upper symbolic bounds are back-propagated by ap-
plying the upper relaxation on positive coefficients and lower
relaxation for negative coefficients. Correspondingly, lower
bounds are calculated by applying the lower relaxation to pos-
itive and upper relaxations to negative coefficients. RSIP of-
ten produces more succinct bounds than ESIP; however, in
the next section we show that intermediate calculations from
ESIP are particularly well suited to analyse the network.

The bounds from the symbolic interval propagation can be
used to calculate bounds for the linear equations in the veri-
fication problem’s output constraint ¥, [Singh er al., 2018;

z
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Singh et al., 2019c]. Complete verification approaches [Wang
et al., 2018b; Wang et al., 2018a; Henriksen and Lomuscio,
2020] combine SIP with a branch and bound phase and lin-
ear programming to constrain the ReLU nodes’ input to > 0
and < 0 in separate branches to achieve completeness. Since
the bounds produced by both SIP algorithms are exact when-
ever all ReLU nodes operate in one of their linear domains,
the verification problem can be solved by exploring at most
2N branches where N is the number of ReLU nodes in the
network. In Section 4 we show how ESIP and RSIP can be
combined into an efficient verification algorithm.

Due to the branch and bounds phases’ exponential com-
plexity, it is infeasible to branch on all ReL.U nodes even for
small networks. So, splitting the correct nodes is essential
for an efficient implementation. In the next section we pro-
pose a novel method for identifying good splitting candidates
thereby resulting in a an efficient verification procedure.

3 Splitting Score Functions

A key aspect differentiating all symbolic interval propagation
methods lies in the choice of nodes to be split. Technically,
splitting a ReLU node is realised by creating two separate
branches in the resolution tree: in the first the node’s input is
constrained to negative values, in the second to positive ones.
In the ESIP algorithm this operation has three distinct effects.

* Direct effect. The error cascading from the split node
becomes 0 in both branches, thus improving the bounds
of successor nodes.

¢ Indirect effect. Since the bounds for all nodes succeed-
ing the split node improve, the corresponding linear re-
laxations are also improved which, in turn, tightens the
bounds in all layers after those nodes.

* Propagation effect. After the split, the equations and
errors are propagated through the ReLU function instead
of the lower relaxation at the split node.

While the categorisation above is novel to this paper, the
direct effect has previously been used to determine splitting
candidates [Henriksen and Lomuscio, 2020] and the gradient-
based methods from [Wang er al., 2018b; Wang et al., 2018al
are closely related to the direct and propagation effects. How-
ever, neither of the methods account for the indirect effect.

In the following we propose a novel method that estimates
the effect a split has on the SIP-bounds relevant to the veri-
fication problem. The method considers both the direct and
indirect effects, but not propagation effects as empirical ev-
idence obtained suggests that they do not have a significant
impact in ReLU networks.

The effect of splitting a node is estimated with a score func-
tion s : N — R where N is the set of all hidden nodes in the
FFNN. This score function is composed of the direct score
Sqgir © IN — R and the indirect score S;pgir : N — R, so
S = Sqir + Sindir- These functions are formalised below, but
first we introduce some necessary notation and concepts.

In the rest of this section let (f, t;n, Yout) be the verifica-
tion problem as defined in Definition 1 where f : R® — R™
is an FFNN with [ layers. Moreover, let €!-2 denote the
ESIP error from a node in layer /; and position 77 at a node in
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layer l> and position n,. Finally, let ¥y, 10w, Yn,up be the con-
crete lower and upper bounds for output node n as calculated
by ESIP, 80 Y 10w < f(@)n < Yn,up for all @ satisfying ;,,
where f(x), € R is the n-th output of the neural network.

With this in mind, we now introduce a upper bound for
the linear equations in ,,; and motivate the score func-
tions. Let a7 f(x) + b < 0 be a linear constraint in ¥y,
and notice that for all « satisfying 1);,, the equation g,, =
Zn|(an>0) Yn, upln + Zn\(an<0) Yn,lowAn +bis an upper
bound for a7 f(x) + b. Thus g, < 01is a sufficient condition
for aT f(x) + b < 0 for all « satisfying 1);,,. The score func-
tion here proposed aims to identify splitting candidates that
minimise the bound g,,, by minimising y,, ., if a,, > 0 and
maximising Yy jow if @, < 0 for all n.

To estimate the direct effect, recall from Section 2 that neg-
ative errors are added to Yy, jo,, and positive errors to ¥, p
and that the error from a node hilll in layer [y and position 71
is removed after splitting the node. So, a good estimate of
the reduction of g,,, due to the direct effect from splitting hﬁgl

is given by Sair (A1) = 3, ign(el;!,)=sign(an) Cnin@n-
where [ is the network’s output layer.

The score function 3g;(h!! ) therefore estimates how
much closer we are to proving that a single linear constraint
aTf(x) + b < 0 is satisfied for all « satisfying v;,, af-
ter the split. However, the output constraint ,,; as de-
fined in Definition 1, is generally a conjunction of disjunc-
tions of linear constraints. To estimate the cumulative effect,
we sum the coefficients in each individual linear constraint

al . f(x)+b;; <0int)yyu,soa= Z” a; j and:

%7
l Z Il »
sdir(hnll) - 6;17na71 (1)
n|(sign(eiy ') =sign(an))

Section 4 covers the details of which constraints are used at
different stages of the algorithm. Notice that the score func-
tion above computes the same value as that in [Henriksen and
Lomuscio, 2020] in the case of local robustness for classifi-
cation networks, but generalises it and covers all verification
problems conforming to Definition 1. An example of such
a problem can be found in the commonly used ACAS Xu
benchmarks, where the task is to verify that an output node
is never minimal; this is not supported in [Henriksen and Lo-
muscio, 20201, but does indeed conform to Definition 1.

In order to estimate the indirect effect, first notice that
nodes in the last hidden layer [ — 1 do not have an indi-
rect effect as there are no intermediate layers between layer
[ — 1 and the output layer, so we take the score function to be
s(h!Y) = sqir(hL,!). However, indirect effects are present
for layers preceding [ — 1.

Recall that s(h! ") estimates how much g, is reduced by

removing the error from node hﬁjzl. Thus, if splitting node

hl; % removes an al;, %! € [0, 1] fraction of the error from

-1 -2y _ 1—-2,01—1 o (pl—1Y ;
hiy s then Singir(hyy ?) = D2, ap %= ts(hy, t) is a good

estimate of the indirect effects from splitting hﬁ;f.

We now estimate o, %/=1. Since the node hl, ;! is gov-
erned by the ReLU activation function, the error is completely

removed if the lower bound zil_ll is larger than 0, or if the
2,t0W
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upper bound zn2 up Smaller than 0. Similar to the direct score

function, we estimate that splitting node hl’2 reduces the up-
per bound of node hl! by el 21 if € 21-1 > 0 (respec-

ni, ’ng ni,n2
tively, increases lower bound if e in;l < 0). This leads us

Al=2-1 _ - 2021 1-2,1—1
to the estimation oznl o nlm /zn2 up if € 5> 0

Al=20-1 _ 1-21-1
otherwise & = €y m /zn2 low- Generalising this

ni,n2

reasoning to arbitrary layers /; and lo with [; < [2, we have
Iyl 11,1

1l2 >Oandelz/zn2low

A = ¢lile l1,l2
QOning = n17n2/z77/2 up. if €ni.na n1,n2

otherwise; which results in the following score function:

Z D alit s(hl2)

la=l1+1 ns @
) = a0 s 0

The score function as presented above can also be used to
estimate the effects of splitting input nodes. Input nodes
do not have an error, thus sdir(hgl) = 0; however, they
do have an indirect effect that can be estimated with a

small modification to al!2 . Calculating the lower and

upper bounds at node hﬁfz requires minimising and max-

imising the linear equation ¢2 (x), respectively (See Sec-
tion 2). So, if ¢/2 ., is the coefficient for @, in ¢2 (),
then it is reasonable to assume that by splitting x,, at

(max(z,,) + min(z,, ))/2 the input interval of node A2 is

Szndlr

reduced by ¢f2, ,,, (max(z,, ) —min(x,, ))/2 in each branch.

Thus, we use the estimate 402, = ¢z | (max(x,,) —
!

mln(m’ﬂl))/Z( 77,2 up nzg,low)‘

In the next section we present an algorithm that uses the
functions here described to improve the scalability of the ver-
ification problem.

4 Verification Algorithm

We now present a verification algorithm that extends previous
symbolic interval propagation-based approaches [Wang et al.,
2018a; Henriksen and Lomuscio, 2020] by introducing three
novel contributions. Firstly, the method considers both direct
and indirect effects of a split in order to locate the most influ-
ential split candidates. Secondly, when compared to the cur-
rent SoA encoding for the adaptive splitting paradigm [Hen-
riksen and Lomuscio, 2020], splits are encoded in a way that
reduces the search space for counterexamples. Thirdly, we
combine the relaxation from RSIP and ESIP to produce a
precise relaxation that is also suitable for the novel splitting
score-function and split-encoding.

The procedure is outlined in Algorithm 1. It takes as in-
put an FFENN f, input constraints );,, and output constraints
Yoyt ; the output is the result of the verification problem. The
main loop consists of three phases.

The symbolic interval propagation phase (lines 5 to 6) of
the algorithm uses RSIP and ESIP (see Section 2) to calculate
a linear relaxation for each term f; ;(x) = a] (@) +b;;in
the output coPstraint Yout = N\;(V; aj;f(x ) +b;; < 0).
Notice that f; ; : R®™ — R is an affine transformation of
f(x) so f” is an FENN in itself, and that the output con-
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Algorithm 1 Verification Algorithm

1: f,%in, Yout < FENN, inputConstraint, outputConstraint

2: queue < [Branch(splitConstraints=None, bounds=None)]

3: while (not queue.isEmpty) do

4 foundCandidateCex, branch <— False, queue.pop()

5 rsip <~ RSIP(f, ¥in, branch)

6:  esip < ESIP(f, 1y, branch, rsip.bounds)

7 for each clause 97, in ¥oy: do

8 candidateCex <— LPSolver(esip, rsip, ¥in, ¥2 ;> Yspiit)

9: if (candidateCex is not None) then

10: foundCandidateCex = True

11: cex + LocalSearch(candidateCex, f,1in)

12: if (cex is not None) then return (UNSAFE, cex)

13:  if (foundCandidateCex) then

14: splitNode <— argmax(splitScore(f, Yin, Yout, €sip)))
15: queue.add(Branch(branch, splitNode > 0, esip.bounds))
16: queue.add(Branch(branch, splitNode < 0, esip.bounds))

17: return SAFE

straint of the verification problem can be written as ¥, =
Ni(V; fij(x) <0).

For each FFNN f” the algorithm first runs RSIP, and
then ESIP augmented with the bounds from RSIP. During
ESIP, calculated bounds are compared with the bounds from
RSIP on the fly and the tightest bounds are used to relax the
ReLU nodes, resulting in a better relaxation than what can be
achieved by ESIP alone.

Recall that RSIP produces linear bounds y, > (z), ; and
yin?(®)ig such that yinF(@)iy < fig(@) < yisP(@)iy
for all x satisfying 1,,¢. In contrast, ESIP produces a linear
equation ¢(x); ; and concrete errors €;; at the output node,

such that ¢(@)i,j + 32, (cr <o) €0 fw(@ q(x)i; +
Zn|(e ,>0) € for all © satlsfymg out. Note that we here

take €;'; to mean the errors at the output node of network fi g
where n is an enumeration of all ReLU nodes in the network.

The search phase (lines 7—12) uses an LP-satisfiability call
and a gradient descent-based local search in an attempt to lo-
cate a counterexample as first introduced in [Henriksen and
Lomuscio, 2020]; however, our work differs in that we intro-
duce a generalised version supporting any output constraint
Yout, NOt just local robustness for classification problems.

A counterexample is an input x satisfying 1;,, that violates

at least one of the clauses ¢, from ,,; or, equivalently,
satisfies —15,,, = (A fi,j(x) = 0). Since f; ;(x) is not
linear, the relaxations from the previous phase are used to
encode necessary conditions for —? ..
The satisfiability call is performed for each clause

but  With the constraints  {A;y5P(x);; > 0,

out

Ny (x,0)i; = 0, Yin, Yspiit, (0 € [0,1])w}.
Here, y’"s”’( )i,j is the upper bound produced by RSIP,
Yspi1i¢ are the split constraints covered later in this section,
and y**?(x,0); ; = q(x) + Y, 0™€}'; is a novel encoding
of the ESIP bound introducing new auxiliary variables
0" € [0,1]. Indeed, maxg y; ; P (2, ') produces the same up-
per bound as in [Henriksen and Lomuscio, 2020]; however,
we clarify below that o can be further constrained during
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splitting thus resulting in tighter bounds.

If the calls are unsatisfiable for all clauses, then the net-
work is safe by Theorem 1. However, if an assignment x? is
found for at least one clause v ,, then this assignment is a
potential counterexample. The candidate ° is tested by eval-
uating f(z?); if the result does not satisfy 1,,¢, then ' is a
valid counterexample and the network is unsafe; otherwise,
the algorithm proceeds to the local search.

The local search phase (lines 11 to 12) performs a gradient
descent with the loss function L(z) = —> . a] f(x) for

each potential counterexample 2’ and corresponding clause

it = V;al,f(x)+b;; < 0. The gradient descent ini-
tialises at ° = x* and after each step the resulting =" is
clipped to the input box 5 and checked to see whether it is a
valid counterexample. If a counterexample is found, then the
network is unsafe under the given constraints; otherwise, the
branch and bound phase is initiated.

The branch and bound phase (lines 13 to 16) starts by de-
termining the next split with the method described in Sec-
tion 3. A ReLU-split is performed by constraining the split
node’s input to < 0 and > 0 in a lower and upper branch, re-
spectively. During ESIP and RSIP the ReLLU constraints are
handled trivially by only considering the corresponding lin-
ear parts of the ReLU; however, enforcing constraints in the
LP-solver is somewhat more involved.

In the LP-solver, splitting a ReLU node with ESIP-errors
€" and equation ¢(x) is handled by adding the constraint
(2(x,0) = q(x)+>_, 0"€") < 0in the lower branch (upper
branch > 0, respectively) where 6™ € [0, 1] are the auxiliary
variables introduced in the search-phase. This is in contrast
to previous algorithms that either split hierarchically from the
first layer [Wang et al., 2018al, so split nodes have no errors,
or use a worst-case bound (2(x) = q(x) + 3., |cnsg€") <

0 [Henriksen and Lomuscio, 2020]. The encoding here pre-
sented is always at least as succinct as the one in the latter
reference, but it is usually smaller as the o variables encapsu-
late dependencies between the constraints.

Splitting an input node x; is performed by adjusting
the split node’s lower and upper bounds to (min(xg) +
max(x))/2 in 1y, in the upper and lower branch, respec-
tively. To ensure that the algorithm eventually splits all Re-
LUs, and thus is complete from Theorem 1, we only consider
input nodes for splitting at branching-depths up to d € N
where d is an adjustable hyper-parameter.

After adding the new branch constraints, the main loop
restarts with a few optimisations. Any clause 1!, that was
proven not to have a counterexample in the previous branch
cannot admit a counterexample in the new, stronger con-
strained branch and is disregarded. Moreover, the bounds of
ESIP and RSIP only change for layers after the layer contain-
ing the split node and are thus only recalculated for those lay-
ers. Finally, we perform a low-cost relaxation utilising only
ESIP in the first branch; RSIP is applied in later branches.

We complete this section by showing that Algorithm 1, as
presented, is sound and complete.

Theorem 1 (Soundness and Completeness). Let
(fyin, Your) be a verification problem as defined in
Definition 1. Algorithm 1 returns “unsafe” iff there exists an
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x satisfying V;y, that violates oy It returns “safe” iff Yous
is satisfied for all x satisfying ;n

Proof sketch. This result follows from the fact that (i) the lin-
ear program is sound in the sense that all counterexamples
are satisfiable solutions to the program and (ii) the algorithm
is guaranteed to terminate after splitting all ReLU nodes and
exploring the corresponding branches.

5 Implementation and Experimental Results

We implemented the algorithm proposed in Section 4 in a
Python toolkit DEEPSPLIT [Henriksen and Lomuscio, 2021].
For benchmarking we used three MNIST fully-connected,
two CIFAR10 convolutional and two MNIST convolutional
networks from the Verification of Neural Networks Competi-
tion (VNN-COMP) [VNN20, 2020]. The convolutional nets
were originally published in [Balunovic and Vechev, 2020]),
while the FC nets were introduced in the VNN-COMP.

The performance of DEEPSPLIT was evaluated against all
CPU-based toolkits that finished in the top 3 in at least one of
the categories (VERINET [Henriksen and Lomuscio, 2020],
VENUS [Botoeva er al., 2020], NNENUM [BAK, 2020],
ERAN [Singh er al., 2018; Singh e al., 2019c]), as well as the
MARABOU toolkit [Katz et al., 2019]. The remaining SIP-
based toolkits were not used as [Henriksen and Lomuscio,
2020] outperformed [Wang et al., 2018a] and [Wang et al.,
2018a] outperformed [Wang et al., 2018b] in experiments.

For all toolkits, we used the latest release of the implemen-
tations and ran them with the same settings as in the VNN-
COMP for all toolkits with the exception of MARABOU and
ERAN. MARABOU did not compete in VNN-COMP and we
were unable to find the actual codebase that was used for
ERAN in VNN-COMP; thus, we used the default settings for
both. All toolkits are complete, except ERAN, which was
used both in its complete and incomplete setting. However,
note that incomplete and complete algorithms are not directly
comparable, as discussed in the introduction. For the largest
CIFAR10 network we reduced the ERAN incomplete LP and
MILP timeouts per call to 1 second and the k-ReL.U nodes to
2 due to runtimes of more than one hour per query.

While the results here are mostly in line with the VNN-
COMP, note that each toolkit was run under different hard-
ware in VNN-COMP, often with different results; in con-
trast, we here use the same experimental setup for all toolk-
its. Moreover, according to [VNN20, 2020], ERAN was aug-
mented for the VNN-COMP with a PGD attack; this was not
considered here for the reason above. Also, we limited the
benchmarks to CPU-based toolkits. Because of this, we did
not benchmark OVAL as it makes considerable use of GPUs.

The verification problem in all benchmarks concerns estab-
lishing whether the classification remains correct for all input
perturbations within some /,-ball. We used the same inputs
and perturbation radii as in the VNN-COMP (0.02 and 0.05
for the MNIST FC networks and 0.1, 0.3, 2/255 and 8/255
for the two MNIST and CIFAR10 convolutional networks, re-
spectively). For the FC networks we also used an additional
intermediate perturbation radius of 0.03, which had a more
balanced number of safe and unsafe cases. All benchmarks
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Figure 1: MNIST-FC NNs: cases solved as a function of time.

used a 1800 second timeout and were performed on a work-
station with an Intel Core 19-10920X 3.5 GHz 12-core CPU,
128 GB Ram and Fedora 31 with Linux kernel 5.4.20.

Speedups reported below are calculated as follows: For
toolkits A and B with n 4 and np successfully verified cases,
the speedup of toolkit Ais tz /t2 ifna < npandtsy /t5
otherwise; here ¢4 " tB . s the total amount of time toolkit A
and B used to verify their n 4 fastest verified cases. Thus we
compare the cases where each toolkit performed the best.

In the following, we present the results of the experiments.

Fully-connected networks (Figure 1). Compared to the
two most performing toolkits, DEEPSPLIT achieved speedups
of 90 and 157 times (VERINET, NNENUM) and had 21% and
41% fewer timeouts (NNENUM, ERAN-COMPLETE). DEEP-
SPLIT was also the most performing considering safe and un-
safe cases in isolation; DEEPSPLIT verified 109 safe and 68
unsafe cases, while the second most performing toolkits ver-
ified 107 safe (NNENUM) and 66 unsafe cases (VERINET).

Convolutional networks (Figure 2). Compared to the two
most performing toolkits, DEEPSPLIT achieved speedups of
7.4 and 12.3 times (NNENUM, VERINET) and had 34% and
35% fewer timeouts (ERAN-COMPLETE, NNENUM). ERAN-
COMPLETE verified 251 safe cases while allowing long run-
times, whereas DEEPSPLIT only found 240 cases; however,
ERAN-COMPLETE was among the slowest toolkits in general
and only identified 3 unsafe cases, while DEEPSPLIT found
42. VERINET performed well on unsafe cases, also verifying
42; however, it only identified 188 safe-cases.

Ablation tests (Table 1). To determine the impact of the
individual novel techniques proposed in this paper, we per-
formed ablation experiments on the two-layer MNIST net-
work. The results are reported in Table 1 for the following
settings from top to bottom row: (i) all techniques enabled
(ii) indirect score disabled (iii) RSIP disabled, only ESIP was
used, (iv) worst-case encoding of split-constraints were used
in the LP-Solver as discussed in Section 4. Each contribution
resulted in significant overall gains. This is due to the fact that
each method contributed to significantly reducing the number
of branches that had to be explored during verification.
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Figure 2: Convolutional NNs: cases solved as a function of time.

MNIST 256x2 N t(s) t/tau Branches
All 75 31.6 1 8643
Direct effect 75 429.9 13.6 174040
No RSIP 72 55683 176.2 1470569
Worst-case LP-encoding 75 184.73 5.85 82966

Table 1: Ablation. Columns report the number of cases solved, time
used, speedup and mean number of branches explored, respectively.

6 Conclusions

SoA methods for the verification of neural networks at
present do not scale to the network sizes that are commonly
used in applications such as computer vision.

In this paper we proposed a complete symbolic interval
propagation-based verification algorithm which extends pre-
vious approaches with several contributions. We introduced
a novel technique to determine promising split candidates,
succinct LP-encodings of the split-constraints and a relax-
ation technique combining two methods for symbolic inter-
val propagation. The experiments demonstrate that these im-
provements lead to a speedup of 1-2 orders of magnitude over
the current SoA for most networks.

In future work we plan to investigate how similar tech-
niques can be used to improve the performance for networks
with Sigmoid and Tanh activation functions.
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