
Asynchronous Active Learning with Distributed Label Querying∗

Sheng-Jun Huang , Chen-Chen Zong , Kun-Peng Ning and Hai-Bo Ye
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics

Collaborative Innovation Center of Novel Software Technology and Industrialization
MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, 211106, China

{huangsj, chencz, ningkp, yhb}@nuaa.edu.cn

Abstract
Active learning tries to learn an effective model
with lowest labeling cost. Most existing active
learning methods work in a synchronous way,
which implies that the label querying can be per-
formed only after the model updating in each it-
eration. While training models is usually time-
consuming, it may lead to serious latency between
two queries, especially in the crowdsourcing envi-
ronments where there are many online annotators
working simultaneously. This will significantly de-
crease the labeling efficiency and strongly limit the
application of active learning in real tasks. To
overcome this challenge, we propose a multi-server
multi-worker framework for asynchronous active
learning in the distributed environment. By main-
taining two shared pools of candidate queries and
labeled data respectively, the servers, the workers
and the annotators efficiently corporate with each
other without synchronization. Moreover, diverse
sampling strategies from distributed workers are in-
corporated to select the most useful instances for
model improving. Both theoretical analysis and ex-
perimental study validate the effectiveness of the
proposed approach.

1 Introduction
Supervised learning usually requires a large set of labeled
data to train the prediction model. As the learning algorithms
become more and more complicated, the required size of
training set gets larger and larger. Meanwhile, labeling data
examples is rather expensive, because the annotation process
is usually time-consuming and needs high expertise in some
difficult tasks [Settles, 2009; Huang et al., 2010]. It is thus a
significant challenge to learn with insufficient labeled data.

Active learning is a primary approach to overcome this
challenge. It iteratively selects the most useful examples from
the unlabeled dataset to query their labels from the oracle

∗This work was supported by the National Key R&D Program
of China (2020AAA0107000), NSFC (62076128) and the Funda-
mental Research Funds for the Central Universities (NE2019104).
Sheng-Jun Huang and Hai-Bo Ye are the corresponding authors.

[Settles, 2009]. After adding the newly labeled data into the
training set, the model can be updated to achieve better per-
formance. The key task in active learning is how to accurately
estimate the potential utility of an example on improving the
performance, such that the model can be well trained with
minimal queries. In the last decades, active learning has been
extensively studied with many advanced methods proposed.

While existing active learning methods achieved great suc-
cess in selecting the most useful instances, they commonly
work in a synchronous way. Specifically, in each iteration
of active learning, there are three steps performed in order.
Firstly, the model is trained based on the currently labeled
data. Then, the most useful examples are selected based on
the trained model. At last, the labels of the selected instances
are queried from the annotators. Each of the three steps de-
pends on the previous step, which implies that they can not
be performed asynchronously.

In real applications, there are usually many annotators
working together to assign labels for the selected unlabeled
instances. Especially in crowdsourcing environments, there
are a huge number of online users providing the labeling ser-
vice simultaneously. On the other hand, the model training
and the instance selection are typically computationally in-
tensive, which implies that it will take a long time to produce
the candidate instances for labeling in each iteration. As a
result, the annotators will have to wait for the next unlabeled
example for a long time after each annotation. This will se-
riously hurt the user experience of annotators, decrease the
annotation efficiency, and strongly limit the application of ac-
tive learning. A more practical mechanism should allow an-
notators to continuously labeling data no waiting for model
training and query selection.

In this paper, we propose a novel approach AAL for Asyn-
chronous Active Learning. Specifically, the proposed ap-
proach works in a distributed environment with multiple
servers and workers. The servers are responsible for train-
ing prediction models, while the workers focus on the active
selection of the most useful instances. For each worker, it
retrieves the most updated model from the servers, and se-
lects the candidate queries from its own unlabeled data, in-
dependently to the other workers. The selected instances
are then fed into a query pool shared by all workers. At
the same time, all annotators retrieve the instances from the
query pool and send them into the labeled pool after label-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2570



ing, which are further sent to servers for updating the models.
In this way, the servers, the workers and the annotators work
asynchronously, while the information is efficiently commu-
nicated across them via the two shared data pools. On one
hand, the proposed approach eliminates the waiting of anno-
tators by avoiding the synchronization between the three steps
of active learning, and thus improves the labeling efficiency;
on the other hand, under the multi-server multi-worker frame-
work, the effectiveness of active selection is preserved by
increasing the frequency of model updating and incorporat-
ing diverse sampling strategies. We perform experiments on
multiple datasets with different classification models. Results
demonstrate that the proposed approach can achieve compa-
rable performance with synchronous methods while signifi-
cantly improve the labeling efficiency.

The rest of this paper is organized as follows. We review
related work in Section 2 and introduce the proposed method
in Section 3. Section 4 reports the experiments, followed by
the conclusion in Section 5.

2 Related Work
Active learning has received great research interests as a pri-
mary approach for learning with limited labeled data. The
most important branch of research along this topic focuses on
designing effective strategies to make sure that the selected
instances can improve the model performance most [Fu et
al., 2013]. Among these approaches, some of them prefer
to sample informative instances to reduce the model uncer-
tainty [Lewis and Gale, 1994; Seung et al., 1992; You et al.,
2014], while some others prefer to select representative in-
stances to match the data distribution [Geman et al., 1992;
Roy and McCallum, 2001]. There are also some studies
trying to combine informativeness and representativeness to
achieve better performance [Settles and Craven, 2008; Huang
et al., 2010; Huang and Zhou, 2013]. Recently, there are a
few attempts to learn the sampling strategy from data, instead
of manually designing the selection criteria [Shao et al., 2019;
Yan et al., 2020].

As the crowdsourcing becomes a popular setting in many
real applications [Li et al., 2021], active learning with multi-
ple annotators has attracted more and more interests recently
[Rodrigues et al., 2014; Yan et al., 2011]. Some studies
try to select the most cost-effective annotators for the can-
didate queries, while some others focus on obtaining the
ground-truth label from multiple noisy annotations [Zhao et
al., 2011]. While previous studies have noticed the impor-
tance of active learning in the crowdsourcing environment,
they typically work in a synchronous way, and thus can be
hardly applied to real tasks due to the serious latency between
queries. Some attempts have been made to deal with this
problem. Particularly, Authors in [Chakraborty, 2018] pro-
posed a distributed active learning method for image recog-
nition. This method formulates active sample selection as
an optimization problem and uses submodular optimization
techniques to solve the problem in a distributed setup. How-
ever, it only separates the query process from the training
process and alternates with the update of the unlabeled video
data, and cannot avoid the query latency because of the syn-

chronization between model training and label querying.
Asynchronous mechanisms have been successfully incor-

porated in many machine learning scenarios [Baytas et al.,
2016; Mnih et al., 2016; Terenin et al., 2015]. In [Baytas
et al., 2016], an asynchronous distributed coordinate update
method is adopted to perform full updates on multi-task learn-
ing model vectors. In [Mnih et al., 2016], the author proposes
a conceptually simple and lightweight framework for deep re-
inforcement learning that uses asynchronous gradient descent
for optimization of deep neural network controllers. The
method in [Terenin et al., 2015] implements asynchronous
gibbs sampling by ignoring sequential requirements.

Distributed learning is an advanced technology which usu-
ally works along with asynchronous learning [Sohn et al.,
2020]. However, these techniques are designed for some spe-
cific learning tasks, and cannot be directly applied to over-
come the challenges in active learning.

3 The Proposed Approach
3.1 The Framework
In traditional active learning, the algorithm iteratively selects
the most useful instances from the unlabeled pool to query
their labels. In each iteration, there are in general three steps:

• Model training: the algorithm trains the prediction
model by utilizing the currently labeled data.

• Instance selection: the sampling strategy selects the
most useful instances based on a specific criterion.

• Label querying: the annotators assign class labels to the
selected instances and add them into the labeled set.

This process repeats until enough labeled data queried. While
existing active learning methods work in a synchronous way,
these three steps depend on each other, and must be per-
formed in order in each iteration. Obviously, in the syn-
chronous learning setting, the selected instances reflect the
demands of the latest model, and thus will contribute mostly
to the model improving. On the other hand, the model is
updated in time once the labeled set is enriched. However,
synchronous active learning may suffer from serious latency
between queries in real applications.

Nowadays, most data labeling tasks are completed online
in a crowdsourcing environment. For example, in image clas-
sification tasks, to collect a large set of training data, the un-
labeled images are firstly collected, and usually stored in a
distributed system. At the same time, there could be thou-
sands of online annotators to label the images simultaneously.
In such case, there will be obvious shortcomings for syn-
chronous active learning methods. Firstly, the model train-
ing of deep neural networks could be computationally costly,
and thus will lead to a long time for selecting the candidate
queries after each annotation. As a result, most annotators
will have to wait for a long time to receive the next image
after each annotation. This will seriously affect the user ex-
perience of annotators and significantly decrease the labeling
efficiency. Moreover, the synchronous active learning meth-
ods try to select the best instances globally from the whole

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2571



dataset, and thus need to scan all of the examples on the dis-
tributed system. This process will further decrease the effi-
ciency of the label querying.

Query pool

Labeled data pool

unlabeled
data

Worker …

ServerServer Server… …

annotator

model

Model 
training

Instance
selection

Label 
querying

unlabeled
data

Worker

unlabeled
data

Worker

unlabeled
data

Worker

modelmodel

…

…

annotatorannotator annotator
…

Figure 1: The framework of the proposed approach.

To overcome the above shortcomings, we propose a new
approach for asynchronous active learning (AAL for short).
The framework is summarized in Figure 1. This frame-
work also consists of the three components of model train-
ing, instance selection and label querying, but allows them to
work asynchronously without waiting each other. In the AAL
framework, we maintain three data pools L,D and S. Specif-
ically, L = {(x1, y1), · · · , (xnl

, ynl
)} is the set of nl labeled

examples. D = D1∪· · ·∪Dk denotes the set of all unlabeled
examples, which is a union of k disjoint subsets distributed on
k workers respectively. S is the set of selected instances to be
queried. There are a set of m servers in the system for model
training and k workers for instance selection.

In the model training component, each server tries to inde-
pendently learn a prediction model from the latest labeled set
L. Formally, for the i-th server, we have

gi = A(L), (1)

where A denotes the algorithm for learning the prediction
model, and gi is the trained model. Note that the algorithm
A varies among servers, i.e., different servers may employ
different algorithms. In this paper, we fix A for all servers
for simplicity. During the learning phase, all the servers si-
multaneously update the models. For a specific server, once
its training is finished, it examines the labeled set L, and will
launch another round of model updating if L receives some
newly labeled data compared to the previous iteration.

In the instance selection component, each worker also
works independently to the others, and tries to select the

most useful instances from its own unlabeled data. Firstly,
it retrieves the latest updated model from {g1, g2, · · · , gm},
which is denoted by g∗. As the labeled data is increasing,
it can be expected that newer model is better than the old
ones. Note that the workers directly retrieve the latest updated
model from the servers for active selection, and does not re-
strict that g∗ has utilized all the currently labeled instances. In
such a way, the workers do not need to wait the model train-
ing when performing instance selection. After that, an active
sampling strategy is employed to select the most useful batch
of instances from its own unlabeled dataset:

Sj = Sj(g∗, Dj), (2)

where Sj is the active sampling algorithm of the j-th worker,
which takes g∗ and Dj as the inputs and outputs the selected
instance set Sj . Similarly, different workers may use different
active sampling strategies for diverse selection. From Figure
1, it can be observed that the candidate query set S is shared
by all workers. In other words, all the workers perform active
selection to jointly produce the query set. Formally, we have

S = S1 ∪ S2 ∪ · · · ∪ Sk. (3)

At last, in the label querying component, the annotators
randomly pick instances from the query set S, and add them
into the labeled set L after labeling. It is easy to observe that
if we maintain enough workers in the system, then it can be
guaranteed that the query set S will be never empty, which
means that all the annotators can work continuously without
latency between queries.

In summary, the three components work in an asyn-
chronous way, and communicate with each other efficiently
via the two shared data pools. With the proposed AAL frame-
work, the labeling efficiency can be significantly improved by
avoiding the synchronization among the internal steps of ac-
tive learning.

3.2 Multi-Server Multi-Worker Implementation
The asynchronous mechanism significantly improves the ef-
ficiency of active learning. But meanwhile, it brings the risk
of decreasing the cost-effectiveness of labeling. In the pro-
posed AAL framework, the workers retrieve the latest up-
dated model from the servers, and employ it to actively select
the instance for label querying. However, it is not guaranteed
that the latest updated model has utilized all of the labeled
data without synchronization between the servers and work-
ers. Subsequently, the selected instances may be not the most
useful for improving the performance when they are used to
update the model.

To achieve both efficiency and effectiveness, on one hand,
we propose to employ different sampling strategies for mul-
tiple workers to enhance diversity of the active selection;
and on the other hand, the model updating frequency is in-
creased to fully utilize the newly labeled data based on mul-
tiple servers. Next, we will introduce these two strategies in
detail respectively.

Combining different selection criteria for active sampling
has been validated to be effective in some previous studies
[Demir and Bruzzone, 2014; Wang and Kwong, 2014]. Dif-
ferent selection criteria estimate the potential utility of an

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2572



instance from different aspects. By incorporating them to-
gether, it is expected to identify the most useful instances
more accurately. Intuitively, simultaneously considering dif-
ferent criteria may enhance the diversity of labeled exam-
ples and reduce the redundant information, and thus may lead
to better performance. In the proposed asynchronous active
learning framework, we have multiple workers to perform
active selection independently, which provides a straightfor-
ward way to enhance the sampling diversity. First of all, the
unlabeled data is distributed on multiple workers, which nat-
urally divides the dataset into different groups. In real appli-
cations, the data may be collected in different batches with
different distributions. In such cases, independently selec-
tion from each worker will obtain balanced information from
different distributions. In our experiments, we simply divide
the unlabeled data into subsets with random partition. One
may employ clustering methods to achieve better partitions.
In addition, we further enhance the diversity by using dif-
ferent selection strategies in different workers. Specifically,
three commonly used strategies, i.e., entropy based sampling
[Holub et al., 2008], least confidence sampling [Li and Sethi,
2006] and margin based sampling [Balcan et al., 2007] are
employed in our experiments. It is worthy to note that in
our experiments, we focus on examining the effectiveness of
the asynchronous mechanism instead of the sampling strat-
egy. We thus choose to use the classical strategies because
they have been validated to achieve robust performance in
many tasks. One may also employ other advanced strategies
in our framework, which may lead to better performance.

Next we discuss the multi-server implementation for in-
creasing the model updating frequency. In synchronous ac-
tive learning, the model is timely updated once a new labeled
example comes. It ensures that the model can fully utilize
all the supervised information and subsequently the selected
instances reflect the demands of the current model. Unfor-
tunately, this property does not remain in the asynchronous
active learning setting. Instead, we try to update the models
more frequently based on the multi-server mechanism, and
thus to exploit the labeled data as timely as possible. Imag-
ine a scenario with three servers, and the time cost of model
training is three times of that for querying a label. For the
single server case, the first 4 queries are based on the model
of version 0. After that, the model is updated after every 3
queries. In contrast, for the multi-server case with 3 servers,
the first 4 queries also share the model of version 0, while the
following queries always receive a new model. Obviously,
the multi-server setting leads to a much higher frequency for
model updating, and thus can select the instances for labeling
more effectively.

The complete pseudo code of AAL execution process can
be found in the supplementary file.

3.3 Theoretical Analysis
In this subsection, we derive an upper bound for the ex-
pected risk of the classification model trained with the sam-
ples queried with the proposed AAL approach. We denote by
f the ground-truth labeling function, andH a set of hypothe-
ses, where each hypothesis h ∈ H is a mapping function
from the instance space to the label space. Firstly, we follow

[Redko et al., 2017] to give the following definition.
Definition 1. Given a convex loss function `, the expected
risk of the hypothesis h with regard to the data distributionD
is defined as the probability that h disagrees with the labeling
function f :

εD(h, f) = Ex∼D[`(h(x), f(x))]. (4)

For convenience, we use a simplified denotation εD(h) =
εD(h, f). We denote by D the generation distribution of the
whole data andQ the distribution of data queried by our algo-
rithm. Following the results in [Redko et al., 2017], we have
Lemma 1 to estimate the expected risk of the hypothesis h.
Lemma 1. Assume that the loss function ` is convex, symmet-
ric, bounded, obeys the triangular equality and 1-Lipschtiz.
Then the expected risk εD(h) can be bounded by:

εD(h) ≤ εQ(h) +W1(D,Q) + λ. (5)

where λ = εD(h
∗) + εQ(h∗), h∗ is the optimal hypothesis

leads to minimal value of the summation error overD andQ.
The proof of Lemma 1 can be found in the supplemen-

tary file. From Lemma 1, we know that the expected risk of
h over distribution D is upper bounded by the expected risk
over the distribution Q of queried data, the Wasserstein dis-
tance W1(D,Q) between the two distributions and λ. In our
setting, the queried data consists of examples selected from
workers with different sampling strategies. Formally, we no-
tate it as follows:

Q = Q1 ∨Q2 ∨ ... ∨Qk (6)

whereQi denotes the distribution of data sampled by the i-th
worker. Then we can further get the following theorem.

Theorem 1. Let Q̂,Q∗ be the distributions of data selected
by the worst and the best query strategies among all workers,
respectively. The expected risk εD(h) can be bounded by:

εD(h) ≤λ+ εQ(h) + Ex∼D`(h(x), h
∗(x))− Ex∼Q`(h(x), h

∗(x))

≤λ̂+ εQ̂(h) +W1(D,Q∗)

where λ̂ = εD(h
∗) + εQ̂(h

∗), and h∗ is the hypothesis leads
to the minimal value of εD(h) + εQ̂(h).

The proof of Theorem 1 can be found in the supplemen-
tary file. Intuitively, based on Theorem 1, if we approximate
the distance between the two distributions as εQ̂(h)− εD̂(h),
then it can be easily concluded that the expected risk of the
final model will be upper bounded by the one trained with
the worst sampling strategy among all workers. This implies
that if we launch decent sampling strategies on each worker,
it can be expected that the asynchronous active learning will
improve the model effectively.

4 Experiments
4.1 Settings
The experiments are performed on three data sets: Cifar-10,
Cifar-100 and mini-ImageNet. mini-ImageNet is a subset of
the ImageNet dataset. It samples 600 images from each of
100 classes to form a set with 60,000 images. We randomly

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2573



Method Entropy Least Confident Margin AAL
#Servers 1 2 4 1 2 4 1 2 4 1 2 4

Dataset
Cifar-10 0.819 0.832 0.841 0.817 0.833 0.845 0.818 0.834 0.844 0.818 0.833 0.843

Cifar-100 0.353 0.362 0.369 0.356 0.370 0.383 0.349 0.357 0.365 0.357 0.365 0.371

ImageNet 0.386 0.399 0.408 0.388 0.397 0.406 0.379 0.389 0.399 0.394 0.403 0.410

Table 1: The average performance of different methods with different numbers of servers.

0 5000 10000 15000 20000
 number of queries 

0.65

0.70

0.75

0.80

0.85

 s
co

re
 (a

cc
ur

ac
y)

 

Random
LeastConfident
Entropy
Margin
AAL

(a) Cifar-10 with batch size of 5000

0 5000 10000 15000
 number of queries 

0.40

0.45

0.50

0.55

 s
co

re
 (a

cc
ur

ac
y)

 

Random
LeastConfident
Entropy
Margin
AAL

(b) Cifar-100 with batch size of 5000

0 5000 10000 15000
 number of queries 

0.25

0.30

0.35

0.40

0.45

 s
co

re
 (a

cc
ur

ac
y)

 

Random
LeastConfident
Entropy
Margin
AAL

(c) mini-ImageNet with batch size of 5000

Figure 2: Performance comparison of different methods with a single server.

0.2 0.4 0.6 0.8
 Accuracy of synchronous method 

0.2

0.4

0.6

0.8

 A
cc

ur
ac

y 
of

 a
sy

nc
hr

on
ou

s 
m

et
ho

d 

Cifar-10 (1000)
Cifar-10 (2500)
Cifar-10 (5000)
Cifar-100 (1000)
Cifar-100 (2500)
Cifar-100 (5000)
ImageNet (1000)
ImageNet (2500)
ImageNet (5000)

(a) Entropy based sampling

0.2 0.4 0.6 0.8
 Accuracy of synchronous method 

0.2

0.4

0.6

0.8

 A
cc

ur
ac

y 
of

 a
sy

nc
hr

on
ou

s 
m

et
ho

d 

Cifar-10 (1000)
Cifar-10 (2500)
Cifar-10 (5000)
Cifar-100 (1000)
Cifar-100 (2500)
Cifar-100 (5000)
ImageNet (1000)
ImageNet (2500)
ImageNet (5000)

(b) Least confidence sampling

0.2 0.4 0.6 0.8
 Accuracy of synchronous method 

0.2

0.4

0.6

0.8

 A
cc

ur
ac

y 
of

 a
sy

nc
hr

on
ou

s 
m

et
ho

d 

Cifar-10 (1000)
Cifar-10 (2500)
Cifar-10 (5000)
Cifar-100 (1000)
Cifar-100 (2500)
Cifar-100 (5000)
ImageNet (1000)
ImageNet (2500)
ImageNet (5000)

(c) Margin based sampling

Figure 3: Performance comparison between synchronous and asynchronous mechanisms with different sampling strategies.

1000 2500 5000 10000
 Query batch size 

0

200

400

600

800

1000

1200

 A
ve

ra
ge

 q
ue

ry
 ti

m
e 

in
 s

ec
on

ds
 

Asynchronous AL
Synchronous AL

(a) Cifar-10

1000 2500 5000 10000
 Query batch size 

0

1000

2000

3000

 A
ve

ra
ge

 q
ue

ry
 ti

m
e 

in
 s

ec
on

ds
 

Asynchronous AL
Synchronous AL

(b) Cifar-100

1000 2500 5000 10000
 Query batch size 

0

2000

4000

6000

8000

 A
ve

ra
ge

 q
ue

ry
 ti

m
e 

in
 s

ec
on

ds
 

Asynchronous AL
Synchronous AL

(c) Mini-ImageNet

Figure 4: Comparison of average query time between synchronous and asynchronous methods on different datasets.

sample 50,000 images as the training set and the rest 10,000
images as test set. The images are resized into 84× 84.

Unlike most active learning studies that focus on design-
ing new selection criteria, the key contribution of this work
is to reduce query latency with the asynchronous framework.
We thus employ some classical and robust selection criteria

to validate the effectiveness of the asynchronous querying
mechanism. Therefore, in the experiments, we compare with
the following sampling strategies:

• Random sampling: it selects instances at random.
• Entropy base sampling: it selects the instances with

largest entropy of the predictions [Holub et al., 2008].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2574



• Least Confidence sampling: it selects the instances with
the lowest prediction confidence [Li and Sethi, 2006].

• Margin based sampling: it selects the instances with
minimal margins [Balcan et al., 2007].

• AAL: the proposed approach. It employs the entropy,
least confidence and margin methods on different work-
ers to select the instances.

For the compared baseline methods, we also implement
the asynchronous version with the proposed framework. It is
worthy to note that we focus on validating the effectiveness of
the proposed asynchronous mechanism, but not the selection
criterion itself. So we choose to implement the commonly
used strategies. We launch 10 workers in all experiments,
and their sampling strategies are randomly assigned with en-
tropy, least confidence and margin based methods. VGG-16
is employed as the classification model for all experiments.
In the following subsections, the experiments are performed
in the single-server and multi-server settings, respectively.

4.2 Results with Single Server
We first examine the effectiveness of the asynchronous mech-
anism with a single-server setting. For each dataset, we
examine the results with the query batch size varies from
{1000, 2500, 5000}. A larger or smaller query batch size is
allowed, here is just to facilitate experimentation. Figure 2
presents the comparison results of different methods when
batchsize is 5000. The remaining experimental results can
be found in the supplementary file. Each subfigure plots the
accuracy curves.

First of all, we observe that the random sampling losses
its edge to other active sampling methods on all datasets,
which is as expected. The performances of baseline meth-
ods, i.e., Entropy, Least confidence and Margin, are generally
mixed. A specific method may achieve better performance
on some datasets while worse performance on others. The
proposed AAL method achieves decent performance in most
cases. It is comparable to the best one among the baselines.
Noticing that our method does not requires the synchroniza-
tion between model training and label querying, these results
validate that the proposed asynchronous mechanism can still
achieve effective performance.

We further perform experiments to compare the syn-
chronous and asynchronous active learning more intuitively.
For the active sampling strategies, entropy sampling, least
confidence sampling and margin sampling, we implement
two versions for each of them, one in a synchronous way and
the other in an asynchronous way as proposed in our AAL
framework. Then on each of 3 datasets, we run both the 2
versions to record their performance with 3 different batch
sizes. So after the experiments, we have in all 2× 3× 3 = 18
performance records for each sampling strategy. Based on
these records, we show the scatter plots in Figure 3, each sub-
figure corresponds to a sampling strategy. The horizontal axis
represents the accuracy of synchronous method while the ver-
tical axis represents the accuracy achieved by asynchronous
method. A marker point above the diagonal line indicates
that the asynchronous method achieves better performance
than the synchronous method on the corresponding dataset

and with the specific batch size. From the figures we can ob-
serve that all the points are closely distributed along the diag-
onal line, indicating that the synchronous and asynchronous
methods achieve comparable performance. This phenomenon
validates that although the proposed AAL framework relax
the synchronization, it still can performs competitively with
the synchronous method.

At last, we examine the key advantage of the asynchronous
active learning approach, i.e., whether the proposed method
can reduce the query latency by avoiding the synchroniza-
tion among the different components. In Figure 4, we present
the average time between two queries for both synchronous
and asynchronous methods on different datasets. It can be
observed that the proposed asynchronous active learning ap-
proach is much more efficient than the synchronous method
in all cases. The time cost of synchronous method increases
significantly when the query batch size gets larger. In con-
trast, the time cost of the proposed AAL method remains low
for large batch sizes.

4.3 Results with Multiple Servers
In this subsection, we further examine the effectiveness of the
multi-server setting. As discussed previously, by using multi-
ple servers to simultaneously training the prediction models,
the frequency of model updating could be increased. And
thus it is expected that the selected instances could be more
useful for improving the model. We perform the experiments
with 1, 2 and 4 servers for all of the four active learning strate-
gies, respectively. Note that the entropy, least confidence and
margin method are all implemented in the asynchronous way
with the proposed framework. Due to space limitation, the
performance curves of 4 methods on 3 datasets with different
numbers of servers are plotted in the supplementary file.

Here we calculated the average accuracy over the whole
performance curves for each case, and summarized the results
in Table 1. It can be observed that the performances are con-
sistently improved by using more servers for all cases. These
results validate that by utilizing multiple servers to update the
models more frequently, the active selection is more effective
as it captures the demands of models more timely.

5 Conclusion
In this paper, we propose a novel framework with multi-
server multi-worker structure for asynchronous active learn-
ing. On one hand, the servers independently training the pre-
diction models with a increasing update frequency; on the
other hand, the workers perform active selection from their
own unlabeled data with diverse sampling strategies. By
maintaining two shared pools of candidate queries and la-
beled data, the three internal components of active learning,
i.e., model training, instance selection and label querying, can
work efficiently without synchronization with each other, and
thus avoid the serious query latency of existing active learning
methods. Both theoretical analysis and extensive experiments
demonstrate that the proposed approach can achieve both ef-
fectiveness and efficiency. In the future, we plan to incorpo-
rate more advanced sampling strategies in the AAL frame-
work, and examine the performance of the proposed asyn-
chronous mechanism with more workers on larger datasets.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2575



References
[Balcan et al., 2007] Maria-Florina Balcan, Andrei Broder,

and Tong Zhang. Margin based active learning. In Inter-
national Conference on Computational Learning Theory,
pages 35–50. Springer, 2007.

[Baytas et al., 2016] Inci M Baytas, Ming Yan, Anil K Jain,
and Jiayu Zhou. Asynchronous multi-task learning. In
2016 IEEE 16th International Conference on Data Mining
(ICDM), pages 11–20. IEEE, 2016.

[Chakraborty, 2018] Shayok Chakraborty. Distributed ac-
tive learning for image recognition. In 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV),
pages 1833–1841. IEEE, 2018.

[Demir and Bruzzone, 2014] Beguem Demir and Lorenzo
Bruzzone. A multiple criteria active learning method
for support vector regression. Pattern recognition,
47(7):2558–2567, 2014.

[Fu et al., 2013] Yifan Fu, Xingquan Zhu, and Bin Li. A sur-
vey on instance selection for active learning. Knowledge
and information systems, 35(2):249–283, 2013.

[Geman et al., 1992] Stuart Geman, Elie Bienenstock, and
René Doursat. Neural networks and the bias/variance
dilemma. Neural computation, 4(1):1–58, 1992.

[Holub et al., 2008] Alex Holub, Pietro Perona, and
Michael C Burl. Entropy-based active learning for object
recognition. In 2008 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops,
pages 1–8. IEEE, 2008.

[Huang and Zhou, 2013] Sheng-Jun Huang and Zhi-Hua
Zhou. Active query driven by uncertainty and diversity for
incremental multi-label learning. In 2013 IEEE 13th Inter-
national Conference on Data Mining, pages 1079–1084.
IEEE, 2013.

[Huang et al., 2010] Sheng-Jun Huang, Rong Jin, and Zhi-
Hua Zhou. Active learning by querying informative and
representative examples. In Advances in neural informa-
tion processing systems, pages 892–900, 2010.

[Lewis and Gale, 1994] David D Lewis and William A Gale.
A sequential algorithm for training text classifiers. In SI-
GIR’94, pages 3–12. Springer, 1994.

[Li and Sethi, 2006] Mingkun Li and Ishwar K Sethi.
Confidence-based active learning. IEEE transactions on
pattern analysis and machine intelligence, 28(8):1251–
1261, 2006.

[Li et al., 2021] Shao-Yuan Li, Sheng-Jun Huang, and Song-
can Chen. Crowdsourcing aggregation with deep bayesian
learning. SCIENCE CHINA-INFORMATION SCIENCES,
64(3), 2021.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, pages 1928–
1937, 2016.

[Redko et al., 2017] Ievgen Redko, Amaury Habrard, and
Marc Sebban. Theoretical analysis of domain adapta-
tion with optimal transport. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, pages 737–753. Springer, 2017.

[Rodrigues et al., 2014] Filipe Rodrigues, Francisco Pereira,
and Bernardete Ribeiro. Gaussian process classification
and active learning with multiple annotators. In Interna-
tional conference on machine learning, pages 433–441,
2014.

[Roy and McCallum, 2001] N Roy and A McCallum. To-
ward optimal active learning through sampling estimation
of error reduction. int. conf. on machine learning, 2001.

[Settles and Craven, 2008] Burr Settles and Mark Craven.
An analysis of active learning strategies for sequence la-
beling tasks. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Processing,
pages 1070–1079, 2008.

[Settles, 2009] Burr Settles. Active learning literature sur-
vey. Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin–Madison, 2009.

[Seung et al., 1992] H Sebastian Seung, Manfred Opper, and
Haim Sompolinsky. Query by committee. In Proceedings
of the fifth annual workshop on Computational learning
theory, pages 287–294, 1992.

[Shao et al., 2019] Jingyu Shao, Qing Wang, and Fangbing
Liu. Learning to sample: an active learning framework.
arXiv preprint arXiv:1909.03585, 2019.

[Sohn et al., 2020] Jy-yong Sohn, Dong-Jun Han, Beongjun
Choi, and Jaekyun Moon. Election coding for distributed
learning: Protecting signsgd against byzantine attacks.
Advances in Neural Information Processing Systems, 33,
2020.

[Terenin et al., 2015] Alexander Terenin, Daniel Simpson,
and David Draper. Asynchronous gibbs sampling. arXiv
preprint arXiv:1509.08999, 2015.

[Wang and Kwong, 2014] Ran Wang and Sam Kwong. Ac-
tive learning with multi-criteria decision making systems.
Pattern Recognition, 47(9):3106–3119, 2014.

[Yan et al., 2011] Yan Yan, Romer Rosales, Glenn Fung, and
Jennifer G Dy. Active learning from crowds. 2011.

[Yan et al., 2020] Yi-Fan Yan, Sheng-Jun Huang, Shaoyi
Chen, Meng Liao, and Jin Xu. Active learning with query
generation for cost-effective text classification. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 6583–6590, 2020.

[You et al., 2014] Xinge You, Ruxin Wang, and Dacheng
Tao. Diverse expected gradient active learning for rela-
tive attributes. IEEE transactions on image processing,
23(7):3203–3217, 2014.

[Zhao et al., 2011] Liyue Zhao, Gita Sukthankar, and Rahul
Sukthankar. Robust active learning using crowdsourced
annotations for activity recognition. In Workshops at the
Twenty-Fifth AAAI Conference on Artificial Intelligence,
2011.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2576


	Introduction
	Related Work
	The Proposed Approach
	The Framework
	Multi-server Multi-worker Implementation
	Theoretical Analysis

	Experiments
	Settings
	Results with Single Server
	Results with Multiple Servers

	Conclusion

