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Abstract

Application of deep learning to NP-hard com-
binatorial optimization problems is an emerging
research trend, and a number of interesting ap-
proaches have been published over the last few
years. In this work we address robust optimiza-
tion, which is a more complex variant where a max-
min problem is to be solved. We obtain robust so-
lutions by solving the inner minimization problem
exactly and apply Reinforcement Learning to learn
a heuristic for the outer problem. The minimization
term in the inner objective represents an obstacle to
existing RL-based approaches, as its value depends
on the full solution in a non-linear manner and can-
not be evaluated for partial solutions constructed
by the agent over the course of each episode. We
overcome this obstacle by defining the reward in
terms of the one-step advantage over a baseline pol-
icy whose role can be played by any fast heuris-
tic for the given problem. The agent is trained to
maximize the total advantage, which, as we show,
is equivalent to the original objective. We validate
our approach by solving min-max versions of stan-
dard benchmarks for the Capacitated Vehicle Rout-
ing and the Traveling Salesperson Problem, where
our agents obtain near-optimal solutions and im-
prove upon the baselines.

1 Introduction
When applying computational optimization algorithms to
real-world problems, robustness against uncertainty is a desir-
able property. Optimizers are fed with data about the current
state and expected future events, this data is turned into pa-
rameters of a problem specification, and then optimal or near-
optimal solutions are computed. In real-world applications,
the data comes from automatic measurement, manual specifi-
cation, and from prediction models about the future. Robust
optimization is motivated by the fact that all these categories
of data are likely to have limited accuracy and may contain
errors. In other applications, it is desired to use the solution
many times (e.g. in public transport) and have a performance
guarantee despite frequent changes of the environment.

The notion of robustness has been formalized by assuming
that a given problem instance is characterized by a vector of
known parameters x, an uncertainty set U , and an unknown
parameter vector u ∈ U [Ben-Tal and Nemirovski, 2002].
The value of a solution y is defined by a function f which
depends on y, x, and u. The robust objective function is

f̂(y, x, U) := min
u∈U

f(y, x, u) . (1)

The function f̂ determines the minimum value of solution y
that can be guaranteed regardless of the true value of u, and
the objective is to maximize that guaranteed value.

While robust optimization via the above max-min formu-
lation has been discussed for more than two decades [Mul-
vey et al., 1995], the last fifteen years have witnessed a sub-
stantial amount of research on this topic [Gorissen et al.,
2015]. At the same time, the concept of robustness has
also been studied in the context of machine learning and
in particular Reinforcement Learning [Pinto et al., 2017;
Pattanaik et al., 2018]. In those articles robustness is as-
sociated with mismatches between the training environment
(which often is a simulation for safety reasons) and the final
environment of deployment. The training procedure copes
with such mismatches by providing rewards based on pes-
simistic choices of environment parameters. These choices
are performed in a heuristic manner by an adversary agent
which is trained together with the primary agent.

In this work we present a framework to apply Reinforce-
ment Learning to train agents for (approximate) maximiza-
tion of Equation 1. As we are interested in complex com-
binatorial problems like Vehicle Routing, which are already
NP-hard without the robust objective, we cannot expect to
obtain optimal solutions. Rather, training an RL agent
has been demonstrated in recent work [Khalil et al., 2017;
Kool et al., 2018; Ahn et al., 2020] to produce heuristics
which, as compared to traditional meta-heuristics (like e.g.
evolutionary algorithms), are (a) more flexible due to au-
tomatic adaption to the training distribution of problem in-
stances, and (b) computationally more efficient at test time.

In spite of the heuristic nature of the outer maximization,
we emphasize that, both at training and test time, the mini-
mization in Equation 1 is evaluated exactly in our work. This
is in spirit of the robust optimization paradigm, where - un-
like in stochastic optimization - it is required to have a tight
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lower bound on the solution value under any realization of
the uncertain parameters. The reason why exact minimiza-
tion is efficiently possible here is that the uncertainty set U
is usually defined as a convex region and the value function
f is linear in u. When exact computation of f̂ turns out im-
possible, one can resort to computing a good lower bound in-
stead, which represents another optimization problem where
machine learning might be applicable.

Similar to [Khalil et al., 2017], we model an environment
where actions correspond to single steps of constructing the
solution. Each episode begins with a problem instance, and
the terminal state corresponds to the fully constructed solu-
tion. In the non-robust setting, rewards can usually be pro-
vided to the learning agent based on the improvement of the
solution value achieved with each action [Khalil et al., 2017;
Delarue et al., 2020], which requires an extension of the ob-
jective function to partial solutions.

In the robust setting, the minimization term in Equation 1
introduces non-linearity to the cost function which rules out
this option in all non-trivial cases. This is because the ro-
bust objective value of partial solutions depends on the un-
certain parameters u, and the worst-case values of u depend
on the full solution. We overcome this obstacle by defining
the reward as the one-step advantage over some baseline pol-
icy which is able to complete the partial solutions.

In a series of experiments with the Capacitated Vehi-
cle Routing Problem (CVRP) and the Traveling Salesperson
Problem (TSP) we demonstrate the effectiveness of our ap-
proach. Our trained agents improve upon the baselines, con-
structing robust solutions using only forward passes through
their neural networks. On instances that are small enough to
admit computation of optimal solutions for comparison, the
agents’ CVRP (TSP) solutions are within 9% (3%) of the op-
timum. Furthermore, we demonstrate that the agents general-
ize well to problem instances outside the training distribution.

To summarize, the main contributions of this work are that
(1) we present the first methodology to apply Reinforcement
Learning to robust combinatorial optimization with max-min
problems, (2) our framework allows to re-use existing heuris-
tics to guide the training, (3) the trained agents compute near-
optimal solutions that improve upon the baselines, and (4)
agents generalize to unseen types of problem instances.

2 Preliminaries
2.1 Robust Optimization
In a robust optimization problem, the objective is to compute

max
y∈Y

min
u∈U

f(y, x, u) = max
y∈Y

f̂(y, x, U) , (2)

where the certain parameters x, the uncertainty set U , and
the solution space Y are given as the input, and the objective
function f is considered to be fixed. To disambiguate, we
denote f̂ (defined in Equation 1) as the robust objective, while
f is the non-robust objective function.

We remark that there also exists a more general problem
formulation where the space Y of feasible solutions depends
on the uncertain parameters u [Bertsimas et al., 2011]. So-
lutions are then required to be feasible for any u ∈ U and it

remains open how Reinforcement Learning can help to com-
pute solutions with such guarantees.

While Equation 2 formulates robust optimization as a max-
min problem, this does not preclude application of this work
to robust minimization problems. By changing the sign of the
objective function f , min-max problems can be converted to
equivalent max-min problems. One such case is the Traveling
Salesperson Problem (TSP), which we use as our running ex-
ample throughout the next sections. In this problem a traveler
has to visit n nodes in a graph, the objective is to find a tour
with minimum total travel distance, and there is uncertainty
about the specification of distances between the node pairs.

2.2 Reinforcement Learning
In Reinforcement Learning (RL), an agent is trained to act in
an environment. The environment is modeled as a Markov
Decision Process (MDP), which is defined here as a tuple
(S,A, σ, r, p0, Sterm), where S is the set of states, A is the set
of actions that can be applied by the agent, σ : S × A → S
is the state transition function which determines how ac-
tions affect the environment state, and the reward function
r : S × A → R determines a scalar reward received by the
agent in response to applying actions. The initial state of the
environment is chosen according to probability distribution
p0 ∈ P(S), and Sterm ⊂ S is the set of terminal states.

An episode is a sequence of states, actions, and rewards
s0, a0, r0, s1, a1, r1, . . . , sn, starting from initial state s0 and
ending at terminal state sn. In step i = 0 . . . n− 1, the agent
receives the current state si and chooses an action ai ∈ A.
The environment generates the reward ri and the next state
si+1 as r(si, ai) and σ(si, ai), respectively, and communi-
cates both to the agent as feedback.

For simplicity of notation we consider the functions r
and σ to be deterministic in this work. We note however
that our framework is also applicable to nondeterministic en-
vironments. In the context of optimization, nondeterministic
actions correspond to randomized optimization methods.

A policy is a function π : S → A which chooses an action
a ∈ A for any given state s ∈ S. Reinforcement Learning
agents are trained to find a policy which optimizes the dis-
counted sum of rewards

∑n−1
i=0 γ

iri, where γ ∈ (0, 1] is a
constant denoted the discount factor.

3 Related Work
Reinforcement Learning has been successfully applied to
combinatorial optimization over the past years, and in par-
ticular the breakthroughs achieved in deep learning have
brought this topic substantially forward [Kool et al., 2018;
Deudon et al., 2018].

The modern approach - which is also what we apply in this
work - is to train the agent on distributions of problem in-
stances. Here in each episode a new instance is presented to
the agent, and the aim is that the agent will learn a strategy to
generate good solutions for the whole class of instances, in-
cluding unseen ones. The advantage is that, after the training
has been completed, new instances can be solved instantly.

A commonly applied technique is to use sequence-to-
sequence models for generating solutions to problem in-
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stances. Here both the problem input and the output are con-
sidered sequences over an alphabet, and sequence models are
trained to generate near-optimal output. Kool et al. [2018]
address the Traveling Salesperson Problem using the Trans-
former architecture, and a similar methodology has been ap-
plied by Deudon et al. [2018].

Khalil et al. [2017] describe an alternative to sequence-to-
sequence models. In their model, each action of the agent is
an incremental step in the process of building a solution to the
problem instance at hand. After each such step the state of the
environment, which is represented as a graph, is updated and
an intermediate reward is given to the agent based on a metric
measuring the performance of the partial solution constructed
so far. Although in principle also the sequence-to-sequence
methodology could be extended to robust optimization, we
base our methodology on Khalil et al. [2017], as it enables
the agent to receive intermediate feedback.

An interesting extension of the multi-step approach was
recently presented by Ahn et al. [2020] and applied to the
Maximum Independent Set problem. In their framework, the
number of episode steps is not independent from the actions
chosen, but can be influenced by the learning agent. The ap-
proach is compatible with the framework for robust optimiza-
tion we present in this work, as we make no specific assump-
tions about the effects of actions. Delarue et al. [2020] have
presented an approach to combine Reinforcement Learning
and mathematical programming for vehicle routing, where
a machine learning model approximates the value function
of states and action selection corresponds to solving a sim-
pler combinatorial problem using a MIP solver. Karalias and
Loukas [2020] have proposed an unsupervised learning ap-
proach to combinatorial optimization, where the model out-
put represents a distribution over solutions and the cost func-
tion is defined as an upper bound on the expected solution
cost and on a penalty term for infeasibility.

All work mentioned above addresses classical optimization
problems. To the best of our knowledge, we are the first to ap-
ply Reinforcement Learning to the robust combinatorial op-
timization setting with max-min problems. Robust optimiza-
tion as an operations research topic has been studied for sev-
eral decades; see [Yanıkoğlu et al., 2019] for a recent survey.
Gorissen et al. [2015] distinguish between two fundamental
ways to deal with robust optimization. Either the problem is
reformulated to obtain a classical optimization problem with-
out the maximization term in Equation 2, or an adversarial
approach is chosen, where computations are performed in it-
erations of computing maximum value solutions and mini-
mum value parameter realizations. Our approach follows the
second approach, using Reinforcement Learning to learn to
generate high value solutions in face of the adversary.

For the Capacitated Vehicle Routing Problem we consider
in our experiments, the case of demand uncertainty has been
addressed by Sungur et al. [2008] via a re-formulation of the
problem. Lee et al. [2012] consider the scenario where both
the travel time and the demand are uncertain, and customers
have deadlines. We adapt their definition of the uncertainty
region, which is constructed such that the ratio between nom-
inal and actual distance for each edge is upper bounded.

Eufinger et al. [2020] study the k-adaptability model,

which is a problem variant where the optimizer can gener-
ate multiple solutions and then choose one of them once the
uncertain parameters become known. We use their methodol-
ogy as one of the baselines in our experiments.

4 Methodology
4.1 MDP with One-Step Advantage Rewards
When applying Reinforcement Learning to combinatorial op-
timization, it is convenient to use a state space S where states
s ∈ S represent both the given problem instance and a par-
tial solution that has been constructed so far. Initial states
represent instances with empty partial solutions. Likewise, in
terminal states from Sterm the solution is complete.

For convenience of notation, we define f̂(s) for s ∈ Sterm

as the evaluation of f̂ on the solution represented1 by s.
The action set A represents solution construction steps.

When applied in a non-terminal state s /∈ Sterm, an action trig-
gers the transition to anther state s′ ∈ S, which represents the
same problem instance with a modified partial solution. Our
framework does not make any assumptions about the nature
of the modifications. For example, in TSP the actions could
encode the deletion or addition of a node to the tour, the action
of swapping two nodes, or some probabilistic modification.

The non-robust objective function in most common combi-
natorial optimization problems is linear in the solution struc-
ture. For example, in TSP, the objective function is the sum of
distances traveled. This property admits a natural extension
of f to partial solutions. By defining the reward of each action
in terms of the objective value of the newly inserted solution
parts, one arrives at a reward function with the property that

n−1∑
i=0

ri = f(sn) (3)

for the reward sequence r0, . . . , rn of any complete episode
which starts at initial state s0 and ends at terminal state sn.

This linearity property does not hold for the robust objec-
tive f̂ due to the minimization over the uncertainty set. Here
the value of a partial solution is the result of a minimization
process which requires the complete solution as input.

It would be possible to preserve Equation 3 by using sparse
rewards, that is, r1 = . . . = rn−2 := 0 and rn−1 := f̂(sn).
However, as the episode length can involve a huge number
of steps, this choice makes training of agents difficult and
lengthy.2

Instead, we use a baseline policy π0 to define rewards of
intermediate actions. For any state s ∈ S, define τ(s, π0) ∈
Sterm as the terminal state reached when repeatedly applying
π0 from s onward, and τ(s, π0) := s for terminal states s.
For any state-action pair s, a, we define

r(s, a) := f̂(τ(s′, π0))− f̂(τ(s, π0)) , (4)

1In order not to overload this work with notation, we refrain from
formally defining a notion of partial solutions and mappings between
states/actions and problems/solutions.

2The long version of this paper contains an experiment validating
that claim.
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Algorithm 1 MDP environment with one-step advantage
INITIALIZATION
1: select new instance s
from training set
2: v ← f̂(τ(s, π0))
3: return s

ACTION PROCESSING
Input: action a
1. s← σ(s, a)

2. v′ ← f̂(τ(s, π0))
3. r ← v′ − v; v ← v′

4. return r, s

where s′ = σ(a, s) is the state reached when applying the
action. With this definition, the reward function corresponds
to the improvement obtained when applying action a in state s
instead of following π0.

The only restriction in the choice of the baseline policy π0

is that τ(·, π0) must be well-defined, i.e., the policy has to
reach a terminal state after a finite number of steps. For per-
formance reasons it is recommended to choose π0 such that τ
can be evaluated very fast, as it has to be calculated by the
environment every time a reward is given to the agent. As
rewards are only required as training feedback, the baseline
policy never has to be evaluated at test time.

Algorithm 1 contains a pseudo-code description of the en-
vironment behavior during training, which is determined by
the set of training instances or initial states, the state transition
function σ, the objective f , and the baseline policy π0. Recall
that evaluation of f̂ during initialization and action process-
ing involves solving a minimization problem.

4.2 Agent Design
The architecture of our agent follows the DQN methodol-
ogy, which has been introduced and made famous by Mnih
et al. [2015] for its impressive performance on Atari games.

For a given MDP, the action value function Qπ : S ×A 7→
R of a policy π is defined as the discounted sum of rewards
obtained when applying a given action in a given state and
then following π until reaching a terminal state. Likewise,Q∗
is defined as the action value function of the optimal policy.

In order to learn Q∗, the agent maintains a parameterized
function QΘ to provide approximate action values. QΘ must
be differentiable in the parameter vector Θ in order to ad-
mit training by Gradient Descent. The structure of QΘ

can be chosen according to the structure of the combinato-
rial problem at hand; for optimization problems on graphs
it has been demonstrated by Khalil et al. [2017] that the
structure2vec architecture is a good choice.

It is often desirable to restrict the set of feasible actions
depending on the current state. For example, when in TSP
each action corresponds to the addition of one node to the
tour, it is not feasible to add a node that has already been
added in a previous step. One approach to deal with this issue
is to define a helper function [Khalil et al., 2017], which maps
each action to some feasible construction step. As this might
make the effects of actions less predictable and thus harder
to learn, we also experiment with action masking. Let M :
S × A → {0, 1} be such that M(s, a) = 1 if and only if
action a is feasible in state s. By defining

Q̄Θ := M ·QΘ − (1−M) · C (5)

for some large constant C and training Q̄Θ instead of QΘ in
the agent, we achieve that infeasible actions are never cho-
sen at test time when the agent maximizes the action value.
It remains possible that the agent chooses infeasible actions
for reasons of exploration during training, and then a helper
function is still required to make the action feasible. Note
however that ∇ΘQ̄Θ(s, a) = M(s, a) · ∇ΘQΘ(s, a), thus
the gradient vanishes for infeasible actions, and training of
QΘ(s, a) remains unaffected by them. This property is es-
sential for training because Equation 5 has large errors for
infeasible actions that get corrected by the helper function.

Training of the parameters Θ is performed using the DQN
methodology3 as described in [Mnih et al., 2015].

5 Experiments
In our experimental study, we address the Capacitated Vehi-
cle Routing Problem (CVRP) and the Traveling Salesperson
Problem (TSP). We are given a set of customers, each asso-
ciated with a node v of a graph. In TSP, a minimum distance
tour visiting all customers has to be computed. In CVRP, each
customer has a demand dv , which can be imagined as the size
of a parcel that needs to be delivered to the customer. A spe-
cial graph node v0 serves as the depot, and vehicles, each hav-
ing the same capacity (normalized to 1 in our model), can be
dispatched from the depot to serve a sequence of customers
and then return. The total demand served on such a tour must
not exceed the vehicle capacity. The target is to find a set of
tours such that all customer demands are served and the total
distance traveled is minimized.

The distance traveled is determined by given pairwise dis-
tances between the nodes, and we consider this quantity to
be uncertain: A number of edges can have a travel distance
larger than specified, e.g. due to traffic jams. More specif-
ically, the uncertainty set is parameterized by the deviation
rate α and the deviation factor β. If n is the number of nodes
in a given graph, up to bα·nc edges can have a distance which
is by a factor of up to β larger than specified.

We make use of the DQN implementation provided by the
Dopamine framework [Castro et al., 2018], implementing a
custom Q-network (see below) and providing custom envi-
ronments for openAI gym [Brockman et al., 2016].

The structure of QΘ follows the structure2vec archi-
tecture [Dai et al., 2016] as in [Khalil et al., 2017], where
several graph convolutional layers are stacked in a network
with a graph as input and one output for each node. For per-
formance reasons, the degree of the input graph is restricted
to the 10 nearest neighbors of each node. Note that this does
not restrict the set of edges that can be used in tours con-
structed by the agent. The structure2vec architecture
has the additional advantage that the number of parameters is
independent from the graph size, and thus agents trained on
one set of graphs can be tested on larger or smaller graphs.
While in [Khalil et al., 2017] the convolution parameters are
shared among the layers, we also experiment with a version
where each layer has its own parameters.

We have implemented two baseline policies applicable to
CVRP and TSP. Policy πgreedy adds at each step the node to

3See long paper version for all details.
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the current tour which can be inserted at minimal cost. When-
ever there is no such node because of the capacity constraint
in CVRP, the current tour is ended and a new tour is started.
Baseline policy πangle sorts the nodes by the angle of the di-
rection to reach them from the depot and always picks the
next unserved node in this sorting. Whenever in CVRP that
node cannot be accommodated into the current tour, a new
tour is started. Both baselines do not take into account un-
certainty; thus it is up to the learning agent to understand the
effects of its actions in light of the robust objective.

We consider selection of nodes with no unserved demand
as infeasible actions. To deal with them, we apply the base-
line policy as a helper function whenever an infeasible choice
has been made. For the sake of comparison, we also experi-
ment with masking of infeasible actions as described in Equa-
tion 5.

5.1 Problem Instances
For both problems we are experimenting with several
datasets, consisting of instances of various sizes (15-20
nodes, 40-50 nodes, 90-100 nodes, 200-300 nodes). We
have generated independent training and test sets for each of
the four size classes. The coordinates of the depot and the
other nodes were generated uniformly from the unit square,
while the node demands of the CVRP instances were ob-
tained by squaring uniform numbers from the interval [0, 1].
Our generation method corresponds to one of the generators
used in the 8th DIMACS Implementation Challenge [John-
son and McGeoch, 2007]. Each training and test set consists
of 1,000 instances. Furthermore, for the CVRP problem we
test the trained agents on benchmark instance sets provided
by CVRPlib; see [Uchoa et al., 2017] for more informa-
tion on the instances and their origin. All instances of CVRP
and TSP have been extended to robust (min-max) problems,
where we defined uncertain distances by setting α = 0.3 and
β = 2.

5.2 Baselines
To our knowledge, we are the first to apply a machine-
learning based methodology to optimization with robustness
guarantees. As baselines for comparison we use two com-
binatorial heuristics and an approach based on mixed-integer
programming (MIP). One heuristic, called GRD, applies pol-
icy πgreedy described above to the original instances. We chose
this method as a simple heuristic whose runtime is compa-
rable to that of our trained agents. The second one, denoted
ITR, is based on an iterative procedure [Eufinger et al., 2020]
for the robust CVRP problem with uncertain travel costs.
It represents a more involved approach which explicitly ad-
dresses the max-min nature of the problem. Finally, the MIP
approach is to formulate the problem as a mixed-integer pro-
gram and apply a solver to it under some runtime limit4.

5.3 Results
Throughout the presentation of the results, we display the ob-
tained tour lengths in terms of the robust objective f̄ , which is
a tight upper bound on the solution cost in face of uncertainty.

4See long paper version for implementation details of the base-
lines.

GRD ITR RL

15-20 nodes 14.6 13.1 13.0
40-50 nodes 37.9 34.7 33.6
90-100 nodes 79.0 74.0 70.2
200-300 nodes 203.8 197.1 180.0

Table 1: Average tour length on CVRP test sets.

GRD ITR RL

15-20 nodes 5.9 6.0 5.5
40-50 nodes 9.5 10.2 8.7
90-100 nodes 13.6 15.8 12.5
200-300 nodes 21.6 27.6 21.7

Table 2: Average tour length on TSP test sets.

Table 1 displays the performance of our RL method and
the baselines on test instances of various sizes, reporting the
worst-case costs within the uncertainty region, averaged over
all 1,000 CVRP test instances of the respective size classes.
Our trained agents outperform the two baselines by some per-
cent on all size classes. The respective results for the TSP
instances are presented in Table 2. Here the trained agent
outperforms the baselines on the all but the largest instances.

To obtain exact approximation ratios of our agents, we use
the baseline which applies a solver to the mixed-integer prob-
lem formulation. A subset of the instances with 15-20 nodes
could be solved optimally, and the computation of the approx-
imation factors is based on these small instances only. Table 4
provides evidence that the agents’ solutions are, on average,
within 10% (3%) of the optimum for CVRP (TSP).

Next we evaluate the generalization performance of the
agents to instances outside the training distribution. We tested
each of the four CVRP agents, trained on the four instance
size classes, on each of the four corresponding test sets. The
results are depicted in Figure 1. For each test set, the agent
trained on the respective training set performs best, and the
agent trained on the smallest instances does not generalize
well. For the other agents, the performance is not far away
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Figure 1: Test performance for varying training and test sets.
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ITR GRD 15-20 40-50 90-100 2-300

A 43.0 43.9 42.1 41.9 41.6 42.1
B 42.3 42.4 41.1 41.1 39.8 40.1
CMT 74.8 65.2 70.7 68.6 62.7 63.6
E 33.6 31.4 32.2 30.9 30.0 30.4
F 45.0 47.5 40.9 40.6 43.0 41.3
Gldn 343.3 301.3 341.0 332.7 328.4 326.9
M 98.8 86.1 94.2 91.8 83.1 82.5
P 30.6 29.0 29.0 28.4 28.3 28.3
X 456.5 464.1 476.5 467.6 464.2 461.6

Table 3: Average tour length on CVRPlib instances by baselines
and RL agents trained on different instance sizes.

RL optimum approx. factor

CVRP 12.26 11.30 1.09
TSP 5.32 5.19 1.03

Table 4: Mean costs and mean approximation factor on instances
where optimal solutions could be computed.

from the “specialists” for the respective instance sizes.
We also evaluate the four trained CVRP agents on the

CVRPlib data sets. Table 3 shows that for most of these stan-
dard benchmarks our RL agents exhibit good performance for
the robust objective. The agent trained on instances with 90-
100 nodes appears to be the most universal choice.

In a further experiment we look at two algorithm variants.
In one variant we are masking infeasible actions using Equa-
tion 5. In the second variant each convolution layer is pa-
rameterized by individual weights. In Figure 2 the training
progress in terms of the test cost is compared between the RL
baseline and the two variants trained on the CVRP dataset
with 90-100 nodes. While there is only little effect on the
final performance, we find that action masking leads to sub-
stantially faster convergence time. This effect can also be ob-
served on the other instance sizes. However, this effect does
not generalize to TSP, as observed in another experiment5.

We finally compare the solutions computed by the RL
agent (trained with instance size 90-100) to the solutions ob-
tained from the mixed-integer problem formulation, where
one hour of CPU runtime was admitted for the MIP solver.
For each of the synthetic datasets, we have run the solver on
30 out of the 1,000 randomly generated instances, while we
have included most datasets from CVRPlib and applied the
solver to each instance from the selected datasets. The results
are displayed in Table 5. On most datasets, the MIP based ap-
proach beats the RL approach. Recall however that the solver
has one hour of computation time to search for a solution,
while the trained RL agents return a solution within a single
pass, which takes at most seconds.

6 Summary and Conclusion
We have presented an RL-based methodology to solve robust
combinatorial optimization problems. Our agents are trained
using feedback from exact evaluation of the robust objective.

5The experiment will be provided in the long paper version.
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Figure 2: Mean test cost as achieved during training on the CVRP
dataset with 90-100 nodes.

RL MIP_1h

VRP 15-20 nodes 13.11 11.31
VRP 40-50 nodes 32.2 29.41
VRP 90-100 nodes 66.04 63.81
VRP 200-300 nodes 190.47 247.39
CVRPlib-A 41.63 39.29
CVRPlib-B 39.84 37.25
CVRPlib-CMT 62.66 69.27
CVRPlib-E 30.0 28.51
CVRPlib-F 42.97 45.47
CVRPlib-Golden 328.45 241.34
CVRPlib-M 83.09 96.74
CVRPlib-P 28.3 26.37

Table 5: Mean tour length of our RL-based solution and MIP base-
line with runtime limit of one hour.

The agents learn to optimize a tight lower bound on the so-
lution value in face of uncertainty, which is assisted by an
environment which provides rewards based on the advantage
over a baseline policy. Our experiments demonstrate that the
trained agents are able to provide near-optimal solutions to
min-max routing problems. Masking of infeasible actions
can help to speed up training, and we observed that the agents
generalize well to unseen distributions of problem instances.

We remark that the evaluation of both the baseline heuristic
and the robust objective function in every training step repre-
sents a computational overhead as compared to non-robust
optimization. An alternative approach to provide robustness
guarantees could be to train a secondary agent to minimize
lower bounds on f̄ in the form of dual solutions.
Disclaimer The content of this work does not reflect the
official opinion of the European Union. Responsibility for
the information and views expressed therein lies entirely with
the authors.
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