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Abstract
Life-threatening ventricular arrhythmias (VAs) de-
tection on intracardiac electrograms (IEGMs) is es-
sential to Implantable Cardioverter Defibrillators
(ICDs). However, current VAs detection meth-
ods count on a variety of heuristic detection cri-
teria, and require frequent manual interventions to
personalize criteria parameters for each patient to
achieve accurate detection. In this work, we pro-
pose a one-dimensional convolutional neural net-
work (1D-CNN) based life-threatening VAs detec-
tion on IEGMs. The network architecture is elabo-
rately designed to satisfy the extreme resource con-
straints of the ICD while maintaining a high detec-
tion accuracy. We further propose a meta-learning
algorithm with a novel patient-wise training tasks
formatting strategy to personalize the 1D-CNN.
The algorithm generates a well-generalized model
initialization containing across-patient knowledge,
and performs a quick adaptation of the model to the
specific patient’s IEGMs. In this way, a new patient
could be immediately assigned with personalized
1D-CNN model parameters using limited input
data. Compared with the conventional VAs detec-
tion method, the proposed method achieves 2.2%
increased sensitivity for detecting VAs rhythm and
8.6% increased specificity for non-VAs rhythm.

1 Introduction
The Implantable Cardioverter Defibrillator (ICD) is a small
device implanted to reduce Sudden Cardiac Death (SCD)
risk and improve the survival rate for recipients by detecting
ventricular arrhythmias (VAs) on IEGMs, which reflect elec-
tric changes measured by electrodes placed within the heart.
Life-threatening VAs includes ventricular tachycardia (VT)
and ventricular fibrillation (VF), which are the main cause of
SCD [Zdarek and Israel, 2016]. ICDs are programmed to re-
lease defibrillation (i.e., electrical shock) therapy on VAs to
restore rhythm back to normal. Therefore, VAs detection is
a pivotal component to ICDs as detection accuracy severely
affects the effectiveness and lifetime of ICDs.

Current VA detection methods count on a wide variety
of criteria and there are hundreds of programmable crite-

ria parameters affecting the defibrillation delivery decision in
these methods [Madhavan and Friedman, 2013]. To achieve
the best detection performance for the patient, cardiologists
have to periodically and manually tune the criteria parameters
by learning from the cardiac rhythm of the patient [Senges-
Becker et al., 2005]. Current VA detection methods utilized
in ICDs are often referred to as criteria-based VA detection.

However, existing criteria-based methods still suffer from
a relatively high Inappropriate Shock Rate (ISR). Inappro-
priate shock is the shock delivered to a non-VA rhythm (i.e.,
the rhythm other than VT or VF) due to an incorrect detec-
tion and has been associated with proarrhythmia, intolerable
pain, anxiety and depression on patients [Moss et al., 2012].
Inappropriate shock has been reported in 12-23% ICD recip-
ients [Greenberg et al., 2004; Hofer et al., 2017]. To alle-
viate the problem, designing new detection criteria and the
personalized fine-tuning on criteria parameters are two vital
approaches. However, both procedures demand a high level
of expertise engaged and a long period of optimization.

Recently, deep learning based arrhythmias detection on
electrocardiogram (ECG) has achieved outstanding perfor-
mance in terms of accuracy [Hannun et al., 2019; Elola et al.,
2019; Acharya et al., 2018]. Compared with criteria-based
detection methods, its most significant advantage is the re-
duction of the cardiological expertise required in the detection
method design. The labeled ECG signal could be directly uti-
lized as the input and the pre-trained CNN model outputs the
prediction without cumbersome criteria design and selection.

However, there are two main challenges in applying the
aforementioned CNN-based detection models to the scenar-
ios of VA detection on IEGMs: 1) The existing CNNs for ac-
curate arrhythmias detection cannot satisfy the resource con-
straints if deployed on the ICDs platform; 2) The detection
accuracy of the pre-trained CNN model would degrade sig-
nificantly on some patients due to their unique rhythm fea-
tures, which is intolerable in the ICD scenarios. Fine-tuning
the CNN model using the data from the specific patient could
improve the detection accuracy. However, it is not practical
since fine-tuning the CNN requires extensive amount of la-
beled IEGMs for each individual patient.

To address the challenges, we propose the one-dimensional
convolutional neural network (1D-CNN) based VAs detection
and a novel meta-learning algorithm to personalize the 1D-
CNN for patient-specific arrhythmias detection. Specifically,
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we develop a 1D-CNN to detect VAs on the one-channel
IEGMs. The 1D-CNN only occupies tiny memory space and
computational power such that it fits the resource-constrained
ICDs. Since each patient has the unique characteristics in the
rhythm, a pre-trained 1D-CNN cannot achieve the optimal
detection performance for each individual. Thus we propose
a novel meta-learning algorithm. Different from the N-way-
K-shot classification targeted by conventional meta-learning
approaches [Finn et al., 2017a], our meta-learning algorithm
accommodates the patient-specific VAs detection through a
novel patient-wise training tasks formatting strategy. In this
way, the 1D-CNN could learn across-patient knowledge and
end up with a well-generalized model initialization. When
a new patient is involved, a quick adaption would be per-
formed on the well-generalized 1D-CNN to the specific pa-
tient’s rhythm with only limited IEGMs of the patient. An
inner-loop update optimization and a dynamic task set mecha-
nism are devised to optimize the meta-learning process, and at
the same time further improve the model generalization. The
effectiveness of our meta-learning algorithm has also been
examined by surface rhythm ECG, where the patient-specific
arrhythmias detection are evaluated.

The main contributions summarized are as follows:

• We propose a novel 1D-CNN, which meets the require-
ments of ICDs in terms of memory, response time and
power while maintaining a high detection accuracy.

• To the best of our knowledge, this paper is the first to
propose a meta-learning method to accommodate the
patient-specific arrhythmias detection through a novel
patient-wise training tasks formatting strategy.

• We further improve the arrhythmias detection perfor-
mance by optimizing the generalization of the meta-
model initialization through a dynamic task set mech-
anism and an inner-loop update optimization.

• Our meta-learning algorithm is shown to be effective and
generalized on various arrhythmias detection on surface
rhythm from ECG standard databases.

2 Related Works and Motivations
2.1 Ventricular Arrhythmias and ICDs
VF and VT are called life-threatening ventricular arrhythmias
(VAs) which are the main cause of Sudden Cardiac Death
(SCD). More than 60% of deaths from cardiovascular disease
are from the out-of-hospital SCD [Adabag et al., 2010]. Un-
less the heart is shocked back into normal rhythm, the patient
rarely survives.

There are various types of ICDs. In this paper, we focus
on improving the VAs detection accuracy of single-chamber
ICDs [Zanker et al., 2016]. The single-chamber ICD has
leads attached in right ventricle to sense ventricular heart
rhythm and the rhythm data that the ICD normally utilizes
to detect VAs is the one-channel EGMs sensed by right ven-
tricular apex-bipolar (RVA-Bi) lead. Due to the constraints
in physical size and battery lifetime, current ICDs can only
provide 128-1024 KB for ROM and 8-32 KB for RAM to
store data and execute program with 1-5 mA during VAs de-
tection [Strydis et al., 2013; Camara et al., 2015].

2.2 VAs Detection Methods
Current VAs detection methods on ICDs utilize various cri-
teria such as number of intervals to detect (NID), fast/slow
interval determination, rhythm stability, and onset analy-
sis on IEGMs to determine VAs [Zdarek and Israel, 2016;
Thøgersen et al., 2017]. To achieve the best detection per-
formance for each patient, cardiologists have to periodi-
cally fine-tune the criteria parameters by learning the sensed
rhythm of the patient, which requires massive manual inter-
vention to achieve the optimal VAs detection.

Machine Learning (ML) based detection methods for ar-
rhythmias classification become popular in recent years. The
benefits of applying ML are the high detection accuracy
and the degradation of expertise required in method de-
sign. Authors in [Li et al., 2013] utilize SVM to discrimi-
nate VT/VF rhythm based on various combinations of fea-
tures with the highest 97.52% accuracy. The convolutional
neural network (CNN) proposed in [Hannun et al., 2019]
achieves an even better performance in 12 arrhythmias classi-
fication than cardiologists using single-lead ECG. However,
both methods could not be directly deployed on ICDs since
the computational resources are severely constrained. Au-
thors in [Acharya et al., 2018] propose a CNN with simple
structure for VT/VF detection using single-lead surface ECG
in intra-patient paradigms (i.e., the training and testing set
may include data from the same patient). However, the de-
tection accuracy on non-VAs rhythm is only 91.04%, which
cannot be adopted in the ICDs scenarios.

2.3 Motivations
In this work, we are looking for a decent solution to per-
sonalize the VAs detection model with only limited rhythm
data of each individual patient. We find the conventional
meta-learning approaches (e.g. MAML [Finn et al., 2017b]
and Reptile [Nichol et al., 2018]) provide a learning strategy
that a meta-model with well-generalized initialization is ob-
tained by training on the tasks containing support and query
set. The meta-model can be further fine-tuned using the spe-
cific patient’s rhythm data to obtain the personalized detec-
tion model. However, those methods mix training samples
with different classes from various patients in a single train-
ing task during meta-learning process. The training tasks with
such biased data distribution may cause gradient diminishing
and training instability, which degrade the generalization of
the model and leads to low VAs detection accuracy. Thus, it
is necessary to devise a tasks formatting strategy for meta-
learning approaches to optimize the training process and ob-
tain a well-generalized model initialization.

3 Method
In this section, we first introduce the 1D-CNN based VAs de-
tection. We then present the meta-learning algorithm which
performs a quick and effective model personalization.

3.1 1D-CNN Based VAs Detection
We first demonstrate the 1D-CNN detection model applied
on IEGMs in ICDs. As shown in Fig. 1, the input of the 1D-
CNN is the set of 2s-length sampling points (i.e., total 500
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Figure 1: Illustrations of 1D-CNN based VAs detection.

points under 250Hz sampling rate) of the EGMs sensed by the
ICD, and the output would be the prediction (i.e. VAs or non-
VAs) on the given segment. The segment length is set to be
2s since it contains adequate rhythm information for accurate
inference while we can maintain a relatively low computation
overhead for the inference on the devices. The sampling rate
of EGMs is 250Hz since it is the sampling rate applied in
most ICDs [Simon et al., 2007]. The 1D-CNN consists of five
1D-convolutions (stride 2) followed by two fully connected
layers. The batch-normalization (BN) at each layer is applied
to ensure the same magnitude of the numerical values.

The 1D-CNN based VAs detection mechanism leverages
an evaluator to determine the VAs on the sensed IEGMs. As
shown in Fig. 1, the evaluator receives the series of segment
predictions and determines the VAs rhythm with an empir-
ical criteria. The criteria is that the VAs rhythm would be
reported if there are four consecutive VAs predictions on the
2s segments. In other words, the evaluator would consistently
monitor the latest four inferences, and therefore the decision
period is 8 seconds. The criteria is set since the detection pe-
riod of criteria-based VAs detection in ICDs is usually 5 to 10
seconds [Madhavan and Friedman, 2013].

3.2 Learning to Learn Personalized 1D-CNN
There are two key steps to learn a personalized 1D-CNN for
each individual patient’s VAs detection. 1) Meta-learning:
Format the patient-wise training tasks and optimize learning
process to obtain a well-generalized 1D-CNN initialization
containing across-patient knowledge as meta-model. 2) Per-
sonalization: Perform a quick personalization on the meta-
model to adapt to the specific patient’s intracardiac rhythm.

Meta-Learning
Formally, we denote the initial meta-model parameters of the
1D-CNN as φ. The purpose of the learning process is to iter-
atively train the network over each TaskSet T in the TaskSet
collection T to obtain a well-generalized meta-model param-
eters φ∗. However, existing meta-learning algorithms focus
on solving N-way-K-shot classification and are not applicable

in the VAs detection scenarios. To address the challenges, we
propose the patient-wise training tasks and two optimizations
to ensure that the across-patient knowledge is learned by the
meta-model.

We first introduce Patient-wise Training Tasks Format-
ting along with the necessary formulation. For each task of
the T , we randomly select N patients from training patients
dataset and randomly collect n VAs and n non-VAs labeled
2s segments from each selected patient to form a task τi.

Once a task τi is formed, the first p of every patient’s VAs
and non-VAs segments would be extracted to form the sup-
port set, denoted as τ si . The rest n − p VAs and non-VAs
segments of each patient in τi would be formed as query set,
denoted as τ qi . The formal definition of both set are shown as
follows:

τ si = {(x, y)i,Mspt
j
} for j = 1, ..., 2p ·N,

τ qi = {(x, y)i,Mqry
j
} for j = 1, ..., 2(n− p) ·N,

(1)

where (x, y)i is the set of segment and label pairs in τi, and
Mspt and Mqry are the pair indices (in τi) set for τ si and τ qi
separately. There are total 2p · N indices for pairs in τ si and
2(n − p) · N indices for τ qi . A TaskSet T is constructed by
repeating the aforementioned process to include a number of
tasks τi and a TaskSet collection T contains multiple T .

We define the 1D-CNN inference as fθ(x), where x is the
input segment and θ is the parameters of the network. When
adapting the model to each task τi, k-step gradient update
is applied to update the model parameter from θ0i = φ to
θki using the segment and label pairs in the support set τ si of
task τi. The one example gradient update on step m (where
0 < m ≤ k) is defined as follows:

θmi = θm−1i − α 1

|τ si |
∑

(x,y)∈τs
i

∇θm−1
i
L(fθm−1

i
(x), y), (2)

where L is the loss function and α is the learning rate. The
gradient descent (GD) in Eqn. (2) would be processed from
step 0 to k to obtain the task-specific model with θki for τi:

θki = GDk(θ0i ). (3)
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Figure 2: Illustration of the meta-learning over batches of N -patient-wise tasks. The red line indicates the inner-loop model update process,
where each task-specific model is trained over its support set τsi to update its model parameters from θ0i = φ to θki . The blue line indicates
the outer-loop meta-model update process, where the loss of each task-specific model over its query set τ qi is calculated and accumulated as
Lmeta(φ). The meta-model with parameters φ learns the across-patient knowledge and iteratively updates its parameters batch by batch to
obtain the well-generalized initialization φ∗.

This process is defined as inner-loop model update.
Once obtaining |T | number of task-specific models using

Eqn. (3) for each task τi ∈ T , we then evaluate the gener-
alization capability of the obtained models. We first calcu-
late the loss of each task-specific model on the corresponding
task’s query set. The loss is calculated as follows:

Lτi(θ
k
i ) =

1

|τ qi |
∑

(x,y)∈τq
i

L(fθki (x), y). (4)

Here, we fetch the tasks using a tasks batch methodology
(i.e., the batch-size number of tasks are grouped as a batch)
from the TaskSet T . The meta objective of one batch of tasks
is defined as follows:

Lmeta(φ) =
B∑
b=1

Lτb(θ
k
b ), (5)

where b is the index of a particular task in the batch and B
is the batch size. This objective in Eqn. (5) is utilized to
evaluate the generalization of meta-model parameters φ in
terms of the total loss on all tasks in the batch. The objec-
tive should be minimized to optimize the meta-model param-
eters. Such optimization is defined as outer-loop meta-model
update and could be solved using Adam or Stochastic Gra-
dient Descent (SGD). The resulting meta-model parameters
updating is shown as follows:

φ′ = φ− β∇φ
B∑
b=1

Lτb(θ
k
b ), (6)

where β is the meta learning rate and φ′ is the updated pa-
rameters of meta-model which contains the across-patient
knowledge and would be used as the initial parameters for
next batch update.To obtain the well-generalized meta-model
parameters φ∗, we should iteratively update the meta-model
over batches extracted from each TaskSet T ∈ T.

Fig. 2 demonstrates the meta-learning process from initial
model parameters φ to the well-generalized φ∗. Each batch
is formed by extracting different B tasks from the T . As
shown in Fig. 2, for each task τ in a batch, the VAs segments

are denoted with red border and the non-VAs segments are
denoted with green border. N selected patients’ first p VAs
and non-VAs segments form the support set τ s and the rest
n− p segments form the query set τ q of τ . The batch size B
is fixed for all T ∈ T. Therefore, the meta-learning process
is conducted batch by batch until every task from all T in T
are utilized as a member of the batch.

To increase the generalization of the final meta-model pa-
rameters and speed up the learning process, we further pro-
pose the following optimizations:

Dynamic Task Set Mechanism. For each TaskSet T ∈ T,
we apply a dynamic setting to construct the support and query
set for the tasks. In conventional N-way-K-shot classification
problems, the settings of tasks are fixed. The task must con-
sist of samples from different N classes and its support set
must have K elements to fit the classification problem. On
the other hand, in our scenarios of VAs detection, we could
have a flexible setting for the tasks in one T to increase the
universality of the TaskSet collection T without violating the
classification formulation. Here, we extract N patients and a
dynamic number of VAs and non-VAs segments of each pa-
tient to form the support and query set among different T .
The value of N is set to be a random integer value in a preset
range [Nlower,Nupper]. The support and query set defined in
Eqn. (1) are formed with a dynamic p ∈ [Ulow, Uup], where
Ulow, Uup are the lower and upper bound of the random inte-
ger p. Note that inside one T , the value of N and p are kept
the same. This optimization technique could increase the uni-
versality of the data collection so that we could obtain a more
generalized meta-model parameters.

Inner-loop Update Optimization. The training of the con-
ventional meta-learning method is time-consuming and may
come with training instability problem [Antoniou et al.,
2018]. To speed up the training process while maintaining
a high quality of the meta-model parameters, we propose an
inner-loop update steps annealing strategy. This strategy is
based on the observation that the meta-model would rapidly
learn the across-patient knowledge through the preceding part
of the TaskSet collection T. As a consequence, for the Ta
from the latter of T, the losses calculated on each update step
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of the task-specific model are relatively stable or even the
same. Therefore, we propose an annealing strategy based on
a step function to evenly reduce the inner-loop update steps k
in Eqn. (3) for each T in T. The strategy is defined as follows:

θki = GDk(θ0i ), for k = max(k − a mod w,K), (7)

where a is the index of a particular Ta ∈ T, w is the preset
updating stride, andK is the minimal inner-loop update steps.
To stabilize the gradients, we further invoke the multi-step
loss optimization to take the loss of task-specific model based
on the loss from every inner-loop update step. The Eqn. (4)
can be re-written as:

Lτi(θ
k
i ) =

k∑
m=0

vk(m)

(
1

|τ qi |
∑

(x,y)∈τq
i

L(fθmi (x), y)

)
, (8)

where k is the inner-loop steps calculated in Eqn. (7) and
vk(m) is the weight of the loss at step m.

Personalization
The personalization of the 1D-CNN for the given new patient
would start with the well-generalized model parameters φ∗
obtained from the meta-learning. Here, we take advantage
of a routine process in the ICD implantation surgery where
limited IEGMs containing VAs and non-VAs of the patient
would be recorded to assist the cardiologist to tune the crite-
ria parameters before implanting the ICD [Theuns and Gold,
2010]. Instead of having the cardiologists to optimize the
criteria parameters manually, we utilize those limited VAs
and non-VAs rhythm to automatically personalize the 1D-
CNN by fine-tuning the model with φ∗. The 1D-CNN could
quickly adapt to the specific patient’s rhythm feature since
φ∗ contains across-patient knowledge through meta-learning.
Specifically, the parameters of the 1D-CNN with φ∗ would be
updated by SGD and back-propagation with those limited but
labeled VAs and non-VAs segments of the new patient. The
1D-CNN based VAs detection model would be personalized
to adapt to the specific patient with a few training iterations.

4 Experiments
4.1 Dataset and Data Preprocessing
Our dataset is retrieved from volume I & II of Ann Arbor
Electrogram Libraries (AAEL), which is one of the largest
dataset for IEGMs and used by all manufacturers develop-
ing implantable defibrillators to test their methods [AnnAr-
bor, 2003]. The sampling rate of all recordings is 1, 000 Hz.
Different periods of recordings have been annotated and re-
viewed by cardiac electrophysiologists to ensure an accurate
interpretation of arrhythmia.

Here, we select 217 recordings over 78 patients to form
the dataset by excluding the patients who do not experience
VAs and the recordings with length less than 20s. Each se-
lected recording contains the one-channel IEGMs sensed by
RVA-Bi lead. All recordings are resampled to 250 Hz as the
sampling rate is widely utilized in implantable devices [Si-
mon et al., 2007]. As the raw physiological signals contain
noise, we perform very common filtering techniques on the
IEGMs recordings by applying a band-pass FIR filter with a

Data
2s-Segments

Events
Non-Overlapping Overlapping

VAs 2,197 10,542 145
Non-VAs 5,097 10,206 214

Table 1: Data profile for the dataset.

pass-band frequency of 0.5 Hz and stop-band frequency of
50 Hz. Next, the recording is participated into various VA
or non-VA events based on the rhythm diagnostic annotations
on the IEGMs periods. Then, each event is segmented into
segments using a 2-second sliding window (250 Hz × 2 s =
500 samples) with and without a overlap. The overlap is set
to perform data augmentation for training only. The detailed
segments and events statistics are illustrated in Table ??.

4.2 Inter-Patient Evaluation Paradigms
The dataset is partitioned patient-wisely into 5 folds to ensure
that the patients data is not mixed between the training and
testing sets. That is, once the patient is selected for training
or testing, all related events and segments would be utilized
only for training or testing. The split is done randomly on the
patients and we perform 5-fold cross-validation.

For each validation, four folds of patients’ overlapping 2s
segments serve as the training set and are used to perform
learning to learn a well-generalized 1D-CNN model initial-
ization in our method or training in the baseline methods. For
each patient in the last fold for testing, the first 10s rhythm
(five consecutive 2s non-overlapping segments) of a VAs and
a non-VAs event are extracted to serve as the personalizing
set and used to personalize or fine-tune the model for the spe-
cific patient. The rest 2s non-overlapping segments of the pa-
tients serve as testing set and are used to report the detection
performance. In the testing fold, each time we extract a dif-
ferent specific patient with the corresponding segments from
the personalizing set to personalize the model (if applicable)
and the testing set to evaluate the model.

4.3 Methods Evaluated
We present performance comparisons for the following VAs
detection methods:

Criteria-based VAs detection. We implement a VAs de-
tection method used in single-chamber ICDs [Zanker et al.,
2016], denoted as Classic. This method continuously moni-
tors each heart beat and report VAs if criteria is satisfied. We
set two detection zones for VT and VF respectively. The heart
rate boundary of VT/VF zone and fast/slow interval threshold
are fine-tuned for each testing patient to simulate the man-
ual intervention such that the best discrimination performance
could be achieved.

SVM-based VAs detection. We implement an existing ma-
chine learning based VAs detection method using support
vector machine (SVM) [Li et al., 2013], denoted as SVM. The
features extracted in SVM are Count2 and Leakage.
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Methods F1 Se/Sp BAC/ACC PPV/NPV
Classic .923 .972/.910 .941/.935 .880/.979
SVM .902 .951/.892 .921/.916 .861/.964
DL1 .926 .923/.954 .939/.940 .931/.947
DL1-FT .953 .974/.952 .963/.961 .935/.981
DL2 .911 .903/.947 .925/.929 .922/.935
DL2-FT .955 .950/.974 .962/.965 .960/.968
MAML .959 .967/.973 .969/.943 .952/.953
Reptile .943 .955/.941 .951/.948 .932/.976
Meta-Static .973 .982/.985 .983/.987 .977/.976
Meta .993 .993/.996 .995/.995 .994/.996

Table 2: Performance of evaluated methods on events.

Methods F1 Se/Sp BAC/ACC PPV/NPV
SVM .851 .937/.906 .922/.911 .788/.970
DL1 .879 .910/.944 .927/.931 .860/.960
DL1-FT .925 .955/.958 .957/.957 .900/.981
DL2 .865 .890/.937 .914/.922 .844/.953
DL2-FT .926 .936/.967 .951/.957 .916/.972
MAML .929 .934/.923 .933/.951 .921/.969
Reptile .935 .946/.922 .936/.945 .929/.966
Meta-Static .954 .961/.959 .959/.948 .948/.961
Meta .965 .968/.960 .962/.953 .964/.977

Table 3: Performance of evaluated methods on segments.

CNN-based VAs detection. We implement two deep learn-
ing based VAs detection methods. One is based on the CNN
demonstrated in Fig. 1 and the other is an existing CNN-based
VAs detection model [Acharya et al., 2018]. Both models
would be trained on the training set following the mini-batch
training process. We denote these two detection approaches
as DL1 and DL2. Moreover, the pre-trained models would
be firstly fine-tuned with the personalizing set and then eval-
uated on the testing set. We denote these two approaches as
DL1-FT and DL2-FT.
Meta learning-based VAs detection. We implement our
meta-learning based 1D-CNN VAs detection model and de-
note it as Meta. We also implement the same meta-learning
based model but without inner-loop update optimization and
dynamic task set mechanism, denoted as Meta-Static. We fur-
ther implement a conventional meta-learning approach with
and without first-order approximation [Finn et al., 2017b;
Nichol et al., 2018], denoted as MAML and Reptile. Entropy
loss is applied for all CNN models.

4.4 Results
VAs Detection Performance Evaluation
We evaluate our meta-learning based 1D-CNN VAs detec-
tion against other methods in terms of various metrics includ-
ing F1 score (F1), Sensitivity (Se), Specificity (Sp), balanced

accuracy (BAC), accuracy (ACC), positive predictive value
(PPV), and negative predictive value (NPV). The condition
positive is VAs and condition negative is non-VAs.

Table 2 illustrates the detection performance on events.
The performance on events is more practical since the de-
fibrillation therapy should be delivered based on the rhythm
period but not a single 2s segment. Compared with the Clas-
sic, DL1 achieves 4.9% deduction from a baseline of 97.2%
on VAs rhythm detection rate represented Se but 4.4% in-
crease on non-VAs rhythm detection rate from a baseline of
91.0% represented by Sp. As for DL2, it achieves 6.9% lower
on VAs rhythm detection rate and 3.7% higher on non-VAs
rhythm detection rate compared with Classic. Both detec-
tion rates increase to 95.0% and 97.4% respectively after fine-
tuning. As for SVM, it does not perform well since the fea-
tures extracted in the method are not applicable to the IEGMs.
The two conventional meta-learning approaches, MAML and
Reptile, achieve the similar performances on VAs detection
as the DL1-FT and DL2-FT. As for the Meta, it achieves
the best performance on all testing metrics. It has the near-
optimal detection accuracy on VAs rhythm (99.3%) and non-
VAs rhythm (99.6%), and the highest F1 score (0.993).

Table 3 illustrates the detection performance on segments.
Meta still achieves the best performance on all metrics com-
pared with other evaluated methods. The fine-tuning is neces-
sary for CNN-based methods to increase the detection accu-
racy. Therefore, the generalization of the CNN initialization
is critical in the VAs detection scenarios and the proposed
meta-learning provides an effective solution to the problem.
The detailed experimental setup and the performance of the
proposed meta learning method for arrhythmias detection on
ECG would be demonstrated in the Appendix.

Model Generalization and Training Overhead

To demonstrate the importance of the proposed dynamic
task set mechanism and inner-loop update optimization, we
present the average accuracy and loss curve for each patient’s
personalization process of Meta, Meta-Static, MAML, Rep-
tile, DL1 and DL2 together with the training overhead.

The 10-step gradient descent (GD) is applied to personal-
ize each pre-trained model through fine-tuning on the patient-
specific IEGMs. As shown in Fig. 3(a), at step 0, the initial
model of our Meta method do not perform well on the pa-
tients compared with the models of DL1 and DL2. How-
ever, the model initialization of Meta could rapidly adapt to
the specific patient’s rhythm and achieves higher accuracy
through 10-step GD personalization. As shown in Fig. 3(b),
the convergence speed of Meta is much faster than that of
DL1, DL2, MAML and Reptile. The accuracy of Meta im-
proves from 91.4% to 98.9% while that of Meta-Static im-
proves from 92.2% to 97.8%. It indicates that the dynamic
task set mechanism improves the quality of the model initial-
ization.

As for training overhead, the inner-loop optimization of
Meta significantly reduces the training overhead of meta-
learning. The average training hours of Meta is 4.3, while
the Meta-Static requires 8.4 training hours on average.
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Figure 3: Comparison of the Meta methods and other baselines dur-
ing personalization.

Performance on Hardware
We deploy the 1D-CNN on the Apollo3 Blue [Sparkfun,
2018] board to test its performance in terms of energy, latency
and memory overhead on real hardware. The model requires
only 36.2 KB to store its model parameters and occupies at
most 5.32 KB to process the intermediate data. The average
latency on one inference over a 2s segment is 368 ms and the
power is 5.445 mW (supplied with 3.3 V). It turns out that
the model could satisfy the performance requirements of the
implantable devices on VAs detection [Strydis et al., 2013].

5 Conclusion
In this paper, we propose a 1D-CNN based VAs detection
mechanism and a novel meta-learning algorithm for patient-
specific arrhythmias detection. The 1D-CNN is applied to
detect VAs by inputting segments of intracardiac EGMs. The
meta-learning is then utilized to generate personalized hyper-
parameters setting on the 1D CNN for each patient. The
1D-CNN meets the resources constraints and real-time re-
quirements of ICDs while maintaining a high detection ac-
curacy. The proposed patient-wise tasks formatting strategy
improves the applicability of the meta-learning methods. The
1D-CNN personalized by our method achieves 2.2% higher
on VAs rhythm detection rate and 8.6% higher on non-VAs

rhythm detection rate compared with the classic VAs detec-
tion method in ICDs.
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