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Abstract
We propose a novel approach for class incremen-
tal online learning in a limited data setting. This
problem setting is challenging because of the follow-
ing constraints: (1) Classes are given incrementally,
which necessitates a class incremental learning ap-
proach; (2) Data for each class is given in an online
fashion, i.e., each training example is seen only once
during training; (3) Each class has very few training
examples; and (4) We do not use or assume access
to any replay/memory to store data from previous
classes. Therefore, in this setting, we have to han-
dle twofold problems of catastrophic forgetting and
overfitting. In our approach, we learn robust repre-
sentations that are generalizable across tasks without
suffering from the problems of catastrophic forget-
ting and overfitting to accommodate future classes
with limited samples. Our proposed method lever-
ages the meta-learning framework with knowledge
consolidation. The meta-learning framework helps
the model for rapid learning when samples appear
in an online fashion. Simultaneously, knowledge
consolidation helps to learn a robust representation
against forgetting under online updates to facilitate
future learning. Our approach significantly outper-
forms other methods on several benchmarks.

1 Introduction
Deep neural networks have achieved promising results on var-
ious tasks. However, these models suffer from the problem of
catastrophic forgetting [Kirkpatrick et al., 2017]. The most
prominent reason for catastrophic forgetting is that the model
is not trained to also remember the previous knowledge when
acquiring new knowledge. In general, the model is trained to
optimize its performance on the current task with no consider-
ation of how the updated model will perform on earlier tasks.
This greedy update overwrites the parameter values that may
have been optimal for previous tasks. Continual-learning (CL)
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(also sometimes referred to as lifelong/incremental learning)
is a learning paradigm to address this issue in deep neural
networks and has been gaining significant attention in recent
work [Parisi et al., 2019].

We present a novel approach for class incremental online
learning problem in a limited data setting. This problem set-
ting is more challenging than standard class incremental learn-
ing [Javed and White, 2019] due to additional constraints: (1)
Data in each class appears in the online fashion, i.e., the model
sees every training example exactly once; (2) The number of
training examples in each class is very small; and (3) We do
not use any replay/memory to store the training examples from
previous classes. This is the most general setting for class in-
cremental learning and various practical usage scenario can be
obtained through this or a relaxed setting. For instance, in face
recognition, it is common to have few examples per class but
usually not in an online learning fashion, whereas for a robot
navigating in an environment, the setting would also be online.
We empirically show that learning a robust representation that
can accommodate future tasks may be a potential solution
to handle the problem mentioned above. Our proposed ap-
proach achieves this by leveraging the meta-learning [Finn et
al., 2017] framework with knowledge consolidation.

Meta-learning [Finn et al., 2017] has proven to be an ef-
fective approach for learning generic feature representations
that can be rapidly adapted to new tasks by fine-tuning using
very few examples (and in some cases, even without fine-
tuning [Vinyals et al., 2016; Raghu et al., 2020]). While
such use of meta-learning might seem appealing and does
indeed show some promising results in continual learning set-
tings [Javed and White, 2019], in practice, this approach is still
prone to the problem of catastrophic forgetting. One of the
reasons for this is the overparametrized nature of deep neural
networks, in which only a few neurons are activated/fired for
all samples. As a result, the network is reliant only on a small
set of parameters. Although this may not be a problem when
learning only a single task, it can potentially be an issue in
continual learning where we are required to learn a sequence
of tasks and, while learning a new task, any changes to these
parameters can drastically affect the performance on the older
tasks.
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Figure 1: The figure shows the various steps in knowledge consolidation. The original model is learned via a meta-learner. Thereafter, we
transfer the model’s knowledge into a subset of parameters and partition the model into important and unimportant parameters. Then we retrain
the model by allowing A∗

U to change freely according to the loss function and also constraining A∗
I to preserve previous knowledge.

To address this, we present a knowledge consolidation based
meta-learning approach. In our approach, during training, we
identify and split the network parameters into two groups,
called important and unimportant. The network’s existing
knowledge is squeezed into the set of important parameters,
and the unimportant/dead parameters are freed, thereby ex-
panding the network’s capacity to accommodate the future
learning trajectories. Briefly, a learning trajectory is a se-
quence of examples where examples from a particular class
occur together in the sequence (we discuss this in detail later).
The proposed strategy ensures that the knowledge from the
old learning trajectories is preserved in a compressed form
within a small set of important network parameters, which we
identify and isolate, and then move on to adopt new learning
trajectories. The extra knowledge obtained via learning from
the new trajectories updates the unimportant parameters, and
they also become important. In knowledge consolidation, we
rejuvenate the dead neurons in the model and consolidate the
knowledge of the previously preserved parameters and the new
rejuvenated parameters. This helps to learn a robust representa-
tion. Therefore, the model capacity is fully utilized, and small
changes in a few parameters strongly resist the catastrophic
forgetting. The knowledge consolidation process overview is
shown in Fig. 1.

Note that we use knowledge consolidation and meta-
learning in the training phase. Training is done on a base
class set using multiple learning trajectories. We strictly fol-
low class incremental online learning setting within a learning
trajectory. However, across learning trajectories, the class in-
cremental learning setting is not used (since multiple learning
trajectories can have the same set of classes). Therefore, we do
not follow the incremental learning setting during training on
the base class set (since training is done on multiple learning
trajectories). We follow this to make the model’s represen-
tation robust and facilitate future continual learning during
evaluation time (Section 2), where we perform class incremen-
tal online learning with limited data on a novel class set. We
use entirely different (disjoint) classes in the novel class set
than the base class set, and during evaluation on the novel
class set, we only use meta-learning for quick adaptation.

Our approach significantly outperforms other incremental
learning methods by a significant margin. We show that a
basic online updating strategy on representations learned by

our approach Knowledge Consolidation based Class Incremen-
tal Online Learning (KCCIOL) is better than memory-based
rehearsal methods. Our approach can also be integrated with
existing continual learning approaches such as MER, EWC,
ER-Reservoir as shown in Section 7.

2 Problem Formulation and Evaluation
Protocol for Novel Class Set Testing

Let {τ1, τ2 . . . τk . . . τl . . . } denote a stream of learning-
trajectories and ∀i, τi ∼ Ptest(τ) where Ptest(τ) denotes the
trajectory distribution during testing from the novel class set.
Each learning-trajectory τi is further split into two sets – train
and validation, i.e., τi = {τtr, τval}where τtr = {xn, yn}kn=1

and τval = {xn, yn}k+sn=k+1 are the labeled samples, {k, s} ∈
N. Here, ∀n, (xn, yn) ∈ (Xtest,Ytest) denote the input and
label pairs and the trajectory distribution Ptest(τ) is defined
over (Xtest,Ytest) which is disjoint from base training class
set (Xtrain,Ytrain) i.e. Ytrain ∩ Ytest = ∅. Moreover,
we assume class(τtr) = class(τval) i.e. classes of τtr are
the same as classes of τval. The goal of continual learning
is to minimize the loss on the unseen examples of classes
learnt earlier in an incremental fashion, and can be written as:
Eτ∼Ptest(τ)[L(f(τxval|θ,W), τyval)] i.e model is evaluated on
τval. Our evaluation protocol (Algorithm 4) is similar to the
class-incremental setting [Javed and White, 2019], but samples
within each class also arrive in an online manner. In particular,
here are the key differences: 1) We assume availability of very
few samples per class; 2) For a particular class, each sample is
seen exactly once; and 3) We do not use any replay mechanism.
These differences make our problem setting considerably more
challenging than the standard class-incremental setting.

3 Training on Base Class Set using Meta
Learning Approach

Following a similar notation as in Sec. 2, let
{τ1, τ2 . . . τk . . . τl . . . } denote a stream of learning tra-
jectories and ∀i, τi ∼ Ptrain(τ) where Ptrain(τ) denotes the
learning trajectory distribution during training. Following
the model-agnostic meta learning (MAML) set-up [Finn
et al., 2017], we assume that the ith learning-trajectory’s
data τi is further split into two sets, meta-train and meta-
val, i.e. τi = {τtr, τval} where τtr = {xn, yn}kn=1 and
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τval = {xn, yn}k+sn=k+1 are the labeled samples, {k, s} ∈ N.
Here, ∀n, (xn, yn) ∈ (Xtrain,Ytrain) denote the input and
label pairs and the learning trajectory distribution Ptrain(τ)
is defined over (Xtrain,Ytrain). Moreover, we assume
class(τtr) ⊂ class(τval) i.e. classes of τtr are a proper
subset τval; therefore τval contains all the classes of τtr and
some additional classes. Note that τval and τtr are the random
trajectories of length k and s, respectively. In τtr, samples
of each class occur together, i.e samples from class 2 occur
after and before samples from class 1 and class 3, respectively.
We sample a learning trajectory multiple times for training on
a base class set. We randomly sample a learning trajectory
by selecting a subset (proper) of classes (randomly) from
the base class set. Therefore, every learning trajectory has a
different class order.

We follow the MAML setting of continual learning [Javed
and White, 2019]. In the inner loop, each class arrives in a
sequential manner, and the boundary of each class is avail-
able in advance. In the outer-loop, the aim is to minimize
the empirical risk over the unseen data, provided the model is
optimized on the seen data in an online fashion with the con-
tinual learning constraint i.e. when learning from the training
data of current class, we are not allowed to access the training
data of previous classes. The overall loss function across all
trajectories is defined as:

Eτ∼Ptrain(τ)[L(f(τxval|θ,W), τyval)] (1)

L(f(τxval|θ,W), τyval) denotes the loss on the model f for
the validation trajectory of τ . For notational brevity (and
slight abuse of notation), we use τxval to refer to all the in-
puts of validation trajectory of task τ and τyval to refer to the
corresponding true labels.

The function f : X → Y is defined as f(τx|θ,W) =
g(h(τx|θ)|W) where hθ : X → Rd is defined by parameter
θ (representation learning parameters) and gW : Rd → Y is
defined by W. The classifier parameters W are learned using
meta-train set (τtr), and representation learning parameters θ
and W are jointly learned using the meta-val set (τval).

In the inner-loop of the meta-learner, which learns W, the
model is trained on the meta-train data τtr. The outer loop,
which learns θ and W is trained using meta-val data τval.
In the outer loop, the model’s loss is also computed on novel
classes not seen during the inner-loop training since the classes
in τtr are a proper subset of classes in τval. Evaluation on both
sets τtr and τval makes the model perform well on both current
and previously learned classes. The optimization problems
solved by the inner loop and the outer loop are given by:

W = argmin
W

ltr(θ,W)
def
= L(f(τxtr|θ,W), τytr) (2)

(θ,W) = argmin
θ,W

lval(θ,W)
def
= L(f(τxval|θ,W), τyval) (3)

In Eq. 2, for notational simplicity, we use the entire training
data but during training we perform an online update over
τtr. The above two optimization problems are solved in an
alternating fashion using τtr and τval, respectively, with the
most recent parameter W obtained from Eq. 2 used in Eq. 3.

4 Knowledge Consolidation based Meta
Learning for Training on Base Class Set

While the meta-learning based approach for continual learning
described in the above section is promising, it is not partic-
ularly effective for our problem setting. One of the reasons
for this is the overparametrized nature of deep neural net-
works, in which only a few neurons are activated/fired for all
samples. As a result, the network is reliant only on a small
set of parameters. Although this may not be a problem for a
single task learning setting, it can potentially be an issue in
continual learning where we are required to learn a sequence
of tasks and, while learning a new task, any changes to these
parameters can drastically affect the performance on the older
tasks. We overcome this by using a knowledge consolida-
tion based meta-learning approach. Our proposed approach
identifies the important and unimportant/dead parameters, reju-
venates the dead parameters, and consolidates the knowledge
of the important and reborn parameters (Fig. 1). Therefore,
the model capacity is fully utilized, and small changes in a
few parameters strongly resist the catastrophic forgetting.

A simple way to assess the importance of a parameter is to
use its absolute value [Han et al., 2015], often used in deep
model compression. We can discard weights/parameters hav-
ing small absolute values without sacrificing upon the model’s
performance [Han et al., 2015]. We leverage this simple idea
to identify the important parameters in the model effectively.
The proposed approached modifies the meta-learning frame-
work by introducing knowledge consolidation. We define
A = [θ,W] as the joint set of parameters of the complete
model. We partition model parameters A into two disjoint
sets. The important parameters are denoted by AI and the
“less important” ones are denoted by AL, s.t., A = {AI ,AL}
and AI ∩AL = ∅.

Most of the model’s knowledge is contained in AI . Our
goal is to preserve the knowledge present in AI . We apply a
weight-constrained regularization on AI to ensure minimal
changes when a new trajectory is learned. On the other hand,
we let AL be free to change in order to accommodate new
trajectories. Therefore, while learning a new set of trajectories,
the following regularized loss function is optimized:∑

τ∼Ptrain(τ)

L(f(τxval|θ,W), τyval) +R(AI) (4)

One way to define the weight-constrained regularization
R(AI) would be λ||At+1

I −At
I ||F , where At

I is the important
weights after tth step. The large value of λ ensures minimal
changes in the important weights.

Naı̈vely partitioning the model into {AI ,AL} (based on ab-
solute value) often does not show any significant improvement
since various techniques like dropout and batch normalization
force the model’s knowledge to be shared across all model
parameters, which causes AL to contain non-negligible knowl-
edge. Ideally, the value of unimportant weights should be zero.
However, in reality, this is not the case and the set AL usually
contains the non-negligible information. Therefore, we first
distill the model’s knowledge into a subset of parameters A∗I
(important parameters set) such that the remaining part A∗U
(unimportant parameters set) contains negligible information.
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The weight-constrained regularization can now be imposed
on A∗I , while the set A∗U is free to be adapted for the new
trajectories. To transfer/distill the model’s knowledge to a
subset of the parameters, we finetune the complete model with
the following `1 regularized objective:∑

τ∼Ptrain(τ)

L(f(τxval|θ,W), τyval) + γ||A||1 (5)

We can maintain model performance by using an appropriate
hyperparameter γ. The `1 regularizer forces the model knowl-
edge to be squeezed in a subset of model parameters A∗I . Rest
of the model parameters A∗U contain negligible information
and therefore are free to change. Now, the set A can be split
into important parameters A∗I and unimportant parameters set
A∗U , i.e., A = {A∗I ,A∗U} and A∗I ∩A∗U = ∅. Given this up-
dated set of important and unimportant/dead set of parameters,
the outer-loop optimization of the meta-learner is given by
(akin to Eq-4)

(θ,W) = argmin
θ,W

lval(θ,W)
def
= L(f(τxval|θ,W), τyval)

+λ||A∗t
I −A∗t+1

I ||F
(6)

A∗
t+1

I −A∗
t

I ≈ ∇A∗t
I

(L(f(τxval|θ,W), τyval)) (7)

To preserve the knowledge contained in A∗I , we apply weight-
constrained regularization on A∗I as above, which ensures that
A∗I do not change drastically when new learning-trajectories
are encountered. Rest of the parameters (A∗U ) are free to
change. Therefore, we “rejuvenate” the parameters in A∗U .
Representing these rejuvenated set of parameters as A∗R, now
the consolidated knowledge from both A∗R and A∗I provides
a robust representation for our problem setting. Therefore,
small changes in a few parameters strongly resist catastrophic
forgetting because the model capacity is fully utilized, and
model predictions are not reliant on a small set of parameters.
As demonstrated by our experiments, such a parameter rejuve-
nation and knowledge consolidation significantly enhance the
performance of a meta-learner based model for class incremen-
tal online learning. For a summarized algorithmic description
of our approach, please refer to the Algorithms 1, 2, 3, 4.

5 Related Work
Incremental Learning Methods: Rehearsal based incremen-
tal learning methods [Rebuffi et al., 2017; Shin et al., 2017;
Chaudhry et al., 2019; Isele and Cosgun, 2018; Rolnick
et al., 2019; Chaudhry et al., 2021] store a part of train-
ing data and re-train on this stored data while training on
new tasks. Regularization based incremental learning meth-
ods [Lopez-Paz and Ranzato, 2017; Kirkpatrick et al., 2017;
Chaudhry et al., 2019] add an additional regularization term in
the loss function, which prevents the weights from changing
drastically when moving from one task to the next task. DER
[Buzzega et al., 2020] uses both rehearsal and regularization.
PODNet [Douillard et al., 2020] uses a spatial distillation-loss
along with a representation made of proxy vectors from each
class. The dynamic network methods [Singh et al., 2020;
Singh et al., 2021] are also proposed for incremental learning.

Algorithm 1 Training Algorithm
Require: γ: Learning coefficient for L1 loss
Require: λ: Learning coefficient for constraint loss
Require: δ: Fraction of model parameters ( |A

∗
I |
|A| )

Require: {αi, βi}3i=1: Inner and outer loop lr (learning rate)
Require: {stepsi}3i=1: No of steps for KCCIOL algorithm

1: Randomly Initialize model parameters Θ,
2: mask = 0
3: Θ = KCCIOL(α1, β1, 0, 0,mask,Θ, steps1)
4: Θ = KCCIOL(α2, β2, 0, γ,mask,Θ, steps2)
5: mask = GetMask(Θ, δ)
6: Θ = KCCIOL(α3, β3, λ, 0,mask,Θ, steps3)

Algorithm 2 KCCIOL
Require : ptrain(τ): Distribution over learning trajectories
Require : mask: Index matrix
Require : Θ: Model parameters

1: for i = 1, . . , steps do
2: Sample learning trajectory τi ∼ ptrain(τ)
3: {τtr, τval} = τi
4: {θ,W} = Θ
5: W0 = W
6: for j=1, 2 , . . , k do
7: (Xj , Yj) = (τxtr[j], τ

y
tr[j])

8: Wj = Wj−1 − α∇Wj−1 [L(f(Xj |θ,Wj−1), Yj)]

9: lmeta = [L(f(τxval|θ,Wk), τyval)]
10: lconstraint = ||mask ∗ ∇θ,W lmeta||22
11: l1 = ||Θ||1
12: Update Θ← Θ−β∇θ,W (lmeta+λlconstraint+γl1)

13: return Θ

Algorithm 3 Mask Calculation
Require: Θ: Model Parameters
Require: δ: Fraction of model parameters ( |A

∗
I |
|A| )

1: procedure GETMASK(Θ, δ)
2: threshold = percentile(|Θ|, 1− δ)
3: mask = zeros(len(Θ))
4: index = 0
5: while index <= len(Θ) do
6: if mask[index] >= threshold then
7: mask[index] = 1
8: index+ +
9: return mask

Algorithm 4 Evaluation Protocol
Require : ptest(τ): Distribution over learning trajectories
Require : θ: Representation Learning Parameters

1: Randomly Initialize W
2: Sample learning trajectory τi ∼ ptest(τ)
3: {τtr, τval} = τi
4: for j =1, . . , k do
5: (Xj , Yj) = (τxtr[j], τ

y
tr[j])

6: Wj = Wj−1 − α∇Wj−1 [L(f(Xj |θ,Wj−1), Yj)]

7: return Accuracy(f(τxval|θ,Wk), τyval)
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Meta-Learning Methods: MER [Riemer et al., 2019] uses
meta-learning to learn parameters that prevent interference and
enable knowledge transfer based on future gradients. OML
[Javed and White, 2019] is a meta-learning approach that fo-
cuses on learning a generic representation that prevents catas-
trophic forgetting during online learning. OSAKA [Caccia et
al., 2020] is a general approach to continual learning where
the agent must be able to solve previously unseen distribution
tasks with minimal forgetting on previous tasks. OSAKA is
different from the standard incremental learning setting as
seen tasks can be revisited, and online average accuracy is re-
ported at the end of the training instead of reporting accuracy
on all seen tasks. Therefore, it would be unfair to compare our
method with OSAKA.

Online Continual Learning Methods: MERLIN [K J and
Balasubramanian, 2020] is a replay based method for on-
line continual learning which learns a meta-distribution from
which task specific parameters are sampled at the time of
inference. [von Oswald et al., 2020] proposed a method sim-
ilar to MERLIN where deterministic task specific weights
are generated using hypernetworks [Ha et al., 2017]. GSS
uses constrained optimization for sampling samples for replay
instead of random sampling for online continual learning. In-
cremental learning in online scenario [He et al., 2020] tackles
the problem of catastrophic forgetting in the online scenario
under different setting than ours. [He et al., 2020] is a memory
based method where future data consists of samples from new
classes as well as unseen samples from old classes, whereas,
in our approach, data from one class are seen together. CTN
[Pham et al., 2021] is a bi-level optimization network that uses
a context network to model task-specific features which ad-
dress catastrophic forgetting and knowledge transfer. But the
context network needs task-specific knowledge and semantic
memory to function, whereas our method does use replay and
is task-free.

6 Experiments
We evaluate our approach via extensive experiments across
various datasets. We follow the evaluation protocol where the
model is updated in an online fashion and later evaluated on
the unseen data (Section 2). We compare the performance of
our model (KCCIOL) against several baselines.

Baselines: In the Scratch baseline, we evaluate the per-
formance of a randomly initialized network. In Pretrained
baseline, the network is pretrained on the train set. The SRNN
approach uses a Set-KL method proposed by [Liu et al., 2019]
to learn a sparse representation using train set. MRCL is a re-
cent approach originally proposed by [Javed and White, 2019]
to train a model in a meta-learning setup for continual learn-
ing tasks. OML is a modified version of MRCL proposed by
[Javed and White, 2019] where the classifier parameters are
randomly re-initialized at each step of the training. MAML-
Rep is also a MAML [Finn et al., 2017] based algorithm simi-
lar to OML and MRCL, where batch updates are performed in
the inner-loop.

6.1 Experiments on Omniglot Dataset:
Implementation Details: The Omniglot dataset [Lake et al.,
2015] contains 1623 classes of different handwritten char-

Classes Scratch Pretrained SRNN MRCL MAML-Rep OML Ours
10 15.9 ± 3.5 42.6 ± 10 70.4 83.8 ± 6.2 86.1 92.6 ± 3.5 95.4 ± 3.4
50 2.4 ± 1.4 24.4± 4.3 53.9 66.5 ± 4.0 71.3 81.3 ± 2.4 85.8 ± 2.5

100 1.5 ± 0.3 15.5 ± 1.9 44.3 51.8 ± 2.6 70.0 76.1 ± 2.0 81.4 ± 2.3
150 1.2 ± 0.5 11.7 ± 1.1 27.0 42.8 ± 2.5 53.0 65.2 ± 2.2 77.1 ± 1.6
200 0.8 ± 0.5 8.0 ± 1.1 18.3 33.8 ± 1.8 35.7 59.3 ± 1.8 72.6 ± 1.5

Table 1: Classification accuracy (mean±std) on the omniglot dataset
averaged across 50 test trajectories randomly sampled from the meta-
test set. Classes column refers to the total number of classes in the
sampled trajectory.

acters from 50 different alphabets. Each class contains 20
samples with 15/5 as the train/test split. The first 963 classes
constitute the (Xtrain,Ytrain) and the remaining classes are
used as (Xtest,Ytest). For learning trajectory during training,
τtr consists of 10 samples from a class randomly sampled
from the training set. τval consists of 10+1 samples where
ten samples are randomly sampled from the train set, and the
11th sample belongs to the class used in τtr. During the eval-
uation, each learning trajectory consists of an equal number
of classes in both τtr and τval which are sampled from the
test set. We use 15/5 samples per class for τtr/τval during
evaluation. We use Adam optimizer, and the first six layers
are used for learning representation.
Hyperparameter Settings: We train our model using hyper-
parameters: β1 = 1e-4, α1 = 1e-2, steps1 = 20000, β2 = 1e-4,
α2 = 1e-2 , γ =5e-5, steps2 = 15000, β3 = 1e-4, α3 = 1e-2 ,
λ =5e-4, steps3 = 4000, δ = 0.5.
Model Architecture: We use six convolutional layers fol-
lowed by two fully connected layers, and each convolutional
layer contains 256 filters of 3 × 3 kernel size with (2, 1, 2, 1,
2, 2) strides (same as used in [Javed and White, 2019]). ReLU
activation function is used for the non-linearity.

The proposed approach KCCIOL performs better by a sig-
nificant margin on a wide range of classes as compared to the
other baselines. We achieve a significant performance boost
of 13.3 %, when 200 classes are learnt continually as shown
in Table 1.

6.2 Experiments on Mini-Imagenet Dataset
Implementation Details: Vinyals et al. [Vinyals et al., 2016]
proposed the mini-imagenet dataset, which is a subset of the
imagenet dataset. There are a total of 100 classes with 600
colored images of size 84× 84. We use 64 classes for train-
ing and 20 classes for testing. For learning trajectory during
training, τtr consists of 10 samples from a class randomly
sampled from the training set. τval consists of 15 samples
where 10 samples are randomly sampled from the training
set, and 5 samples belong to the class used in τtr. During the
evaluation, we sample classes from the test set for creating a
learning trajectory. We use 30 samples per class for τtr and
τval. We use Adam optimizer, and the first six layers are used
for learning representations.
Hyperparameter Settings: We train our model using hyper-
parameters: β1 = 1e-4, α1 = 1e-1, steps1 = 26000, β2 = 1e-4,
α2 = 1e-1 , γ =1e-4, steps2 = 26000, β3 = 1e-4, α3 = 0.5 ,
λ =1e-4, steps3 = 22000, δ = 0.5.
Model Architecture: The model architecture for the Mini-
Imagenet is same as used in the Omniglot dataset.
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Classes Scratch Pretrained SRNN MRCL OML Ours
6 19.3 ± 4.0 16.9 34.2 41.8 ± 9.0 37.0 ± 6.8 49.4 ± 6.5
8 12.9 ± 1.3 13.0 29.2 36.8 ± 7.1 34.6 ± 4.2 45.3 ± 4.9

10 10.1 ± 0.9 10.0 25.8 34.4 ± 6.5 33.2 ± 4.6 42.7 ± 4.6
12 8.5 ± 0.9 8.5 23.1 30.6 ± 4.9 29.5 ± 3.2 39.4 ± 3.0
14 9.1 ± 1.9 8.8 20.4 29.6 ± 4.5 27.8 ± 2.5 37.0 ± 3.7
16 7.4 ± 1.8 10.8 18.1 28.0 ± 3.5 25.2 ± 2.0 33.4 ± 2.1
18 5.5 ± 0.7 10.4 17.7 26.3 ± 3.3 23.9 ± 2.1 31.9 ± 2.2
20 6.2 ± 1.4 10.0 17.3 25.5 ± 2.8 22.9 ± 1.6 29.7 ± 1.4

Table 2: Classification accuracy (mean±std) on mini-imagenet
dataset averaged across 50 test trajectories randomly sampled from
the meta-test set. Classes column refers to the total number of classes
in the sampled trajectory.

Method Standard Pre-Training OML Ours
Online 4.64 ± 2.61 21.16 ± 2.71 64.72 ± 2.57 85.68 ± 2.10
Approx. IID 53.95 ± 5.50 54.29 ± 3.48 75.12 ± 3.24 88.66 ± 2.10
MER 54.88 ± 4.12 62.76 ± 2.16 76.00 ± 2.07 91.28 ± 1.38
EWC 5.08 ± 2.47 18.72 ± 3.97 64.44 ± 3.13 87.10 ± 1.40
ER-Reservoir 52.56 ± 2.12 36.72 ± 3.06 68.16 ± 3.12 90.10 ± 1.35

Table 3: KCCIOL combined with existing continual learning methods
on the omniglot dataset. We use 50 tasks with 1 class per task. The
accuracies are averaged over 10 runs.

Our method KCCIOL consistently outperforms others as
shown in Table 2. We get a performance boost upto 12.4 %
over the OML.

7 KCCIOL Complements Existing Continual
Learning Methods

We have demonstrated the efficiency of KCCIOL when
learning-trajectories are learnt in a continual online fashion. In
this section, we will demonstrate that the representation gen-
erated by KCCIOL not only performs well on online updates
but it also greatly improves the performance of other continual
learning methods such as MER [Rolnick et al., 2019], EWC
[Kirkpatrick et al., 2017], ER-Reservoir [Rolnick et al., 2019]
when they use our model as base network. Online, Approx
IID baselines have been taken from [Javed and White, 2019].

We evaluate the model’s performance under four differ-
ent settings for each continual learning method, which are
Standard, Pre-Training, OML, and KCCIOL. In OML and
KCCIOL, we use the θ generated by these methods as the
base of the model and do not update the θ parameters. In the
Pre-Training setting, we train the model independently on the
training data and again keep the θ fixed during the process.
The difference between the Pre-Training and Standard setting
is that all the parameters of the model are updated in the case
of the Standard setting, while in the pre-training, only W
are updated. In the standard setting, the model is pretrained
independently on train data to prevent other settings from hav-
ing an unfair advantage of being trained on the training set.
From Tables-3, 4 we can observe that KCCIOL with just on-
line updates significantly outperforms other continual learning
methods even when they are combined with OML. KCCIOL
can do so because it can learn a generic robust feature repre-
sentation that is generalizable across all tasks, enabling the
model to perform future learning. For the train/test split, we
use 15/5 samples per class. Even without using any mem-

Method Standard Pre-Training OML Ours
Online 1.40 ± 0.43 11.80 ± 1.92 55.32 ± 2.25 80.10 ± 1.71
Approx. IID 48.02 ± 5.67 46.02± 2.83 67.03 ± 2.10 85.90 ± 1.76
MER 29.02 ± 4.01 42.05± 3.71 62.05 ± 2.19 83.42 ± 1.67
EWC 2.04 ± 0.35 10.03 ± 1.53 56.03 ± 3.20 82.90 ± 1.27
ER-Reservoir 24.32 ± 5.37 37.44 ± 1.67 60.92 ± 2.41 84.76 ± 1.12

Table 4: KCCIOL combined with existing continual learning meth-
ods on omniglot. We use 100 tasks with 5 classes per task. The
acccuracies are averaged over 10 runs.

Classes DER DER++ HAL MERLIN GSS PODNet Ours
6 27.22 ± 6.39 36.77±5.73 26.33 ± 3.44 22.78 35.00 42.68 ± 2.33 49.4 ± 5.5
8 22.29 ± 5.42 28.13 ± 3.46 20.63 ± 3.11 14.16 30.00 36.10 ± 2.00 45.3 ± 4.9

10 19.0 ± 2.69 23.5 ± 4.14 15.93 ± 4.14 11.24 24.33 31.48 ± 1.56 42.7 ± 4.6
12 15.58 ± 3.35 19.14 ± 3.51 14.86 ± 2.45 9.42 17.78 27.94 ± 1.42 39.4 ± 3.0
14 13.93 ± 2.18 17.14 ± 3.27 12.36 ± 1.58 7.53 17.14 25.15 ± 1.29 37.0 ± 3.7
16 13.33 ± 2.83 14.21 ± 2.83 10.75 ± 1.56 6.83 11.87 22.93 ± 1.29 33.4 ± 2.1
18 11.48 ± 1.97 13.15 ± 2.96 9.46 ± 1.55 6.16 12.41 21.14 ± 1.22 31.9 ± 2.2
20 9.68 ± 3.07 12.48 ± 2.08 8.9 ± 1.50 6.11 13.00 19.63 ± 1.14 29.7 ± 1.4

Table 5: Performance comparison with recent SOTA incremental
learning methods on the mini-imagenet dataset. Classification ac-
curacy (mean±std) is averaged across 50 test trajectories randomly
sampled from the meta-test set. Classes column refers to the total
number of classes in the sampled trajectory.

ory/replay, KCCIOL can outperform the replay based methods
by a significant margin.

8 Performance Comparison with Recent
SOTA Incremental Learning Methods

We also compare our method KCCIOL with the recent state-
of-the-art incremental learning methods on the mini-imagenet
dataset under incremental online learning setting. From Ta-
ble 5, we can observe that recent incremental learning methods
such as DER [Buzzega et al., 2020], PODNet [Douillard et
al., 2020], HAL [Chaudhry et al., 2021] perform poorly in an
incremental online setting. Even SOTA methods for online
learning, such as GSS [Aljundi et al., 2019], MERLIN [K J
and Balasubramanian, 2020] suffer from catastrophic forget-
ting when training data is limited. We only use thirty samples
per class for experiments on the mini-imagenet dataset. We ob-
serve that KCCIOL outperforms the next best method by more
than 10% when ten classes are learnt continually. Also, all of
the above-mentioned methods are replay based approaches,
while KCCIOL does not use any replay/memory.

9 Conclusion
We propose a novel approach to learn robust feature represen-
tations that are generalizable across future learning classes.
Our approach uses a meta-learning framework with knowledge
consolidation for learning generic feature representations that
can be rapidly adapted for future classes without forgetting the
previous classes under online updates to facilitate future learn-
ing. Our approach shows a significant improvement for class
incremental online learning on several benchmark datasets.
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