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Tomáš Kocák and Aurélien Garivier
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Abstract
We propose an analysis of Probably Approximately
Correct (PAC) identification of an ε-best arm in
graph bandit models with Gaussian distributions.
We consider finite but potentially very large ban-
dit models where the set of arms is endowed with a
graph structure, and we assume that the arms’ ex-
pectations µ are smooth with respect to this graph.
Our goal is to identify an arm whose expectation is
at most ε below the largest of all means. We focus
on the fixed-confidence setting: given a risk param-
eter δ, we consider sequential strategies that yield
an ε-optimal arm with probability at least 1−δ. All
such strategies use at least T ∗R,ε(µ) log(1/δ) sam-
ples, where R is the smoothness parameter. We
identify the complexity term T ∗R,ε(µ) as the solu-
tion of a min-max problem for which we give a
game-theoretic analysis and an approximation pro-
cedure. This procedure is the key element re-
quired by the asymptotically optimal Track-and-
Stop strategy.

1 Introduction
A bandit model (see [Lattimore and Szepesvári, 2019] and
references therein) is a set of probability distributions ν =
{νa : a ∈ A}. These distributions are called arms, and
the statistician can sample one of them at each time step
t ≥ 1. Best-arm identification (BAI) consists of using those
samples so as to find which arm has the highest expectation
µa = E(νa), while ε-BAI aims at identifying an arm a such
that µa ≥ maxb µb − ε. A fixed-confidence algorithm for a
given risk δ consists in a sampling rule At choosing thanks
to past observations which arm is sampled at each time step
t, and of a stopping rule τ (a stopping time): it is called δ-
correct if Aτ+1 is ε-optimal with probability at least 1 − δ.
The efficiency of this algorithm is measured by the mean
number Eν [τ ] of samples needed.

Since the work of [Mannor and Tsitsiklis, 2004] and [Even-
Dar et al., 2006], best-arm identification has received consid-
erable interest. It has been proved that good strategies require
no more than A(ν)+B(ν) log(1/δ) samples, for some func-
tionsA andB of the model that were progressively improved.
While, for example, [Karnin et al., 2013] investigated more

on term A, other authors insisted on the fact that B is the
dominant term when δ is small and focused on the best pos-
sible term B. For BAI (with ε = 0), the latter was identi-
fied by [Garivier and Kaufmann, 2016] and [Russo, 2016].
The first of those articles provided a generic analysis that re-
duces BAI to the identification of an information-theoretic
complexity term that gives at the same time a lower bound
on the performance of any algorithm, and a key ingredient
of an asymptotically optimal strategy called Track-and-Stop.
This term appears to be the solution of a min-max optimiza-
tion program, for which an ad-hoc solution was given in the
aforementioned article.

While these first works were limited to the δ-correct iden-
tification of the best arm (which was assumed to exist and
be unique), [Garivier and Kaufmann, 2019] proposed an ex-
tension to the problem of identifying ε-optimal arms. Simul-
taneously, [Degenne and Koolen, 2019] leveraged the game-
theoretic nature of the complexity term to encompass even
more general objectives.

In parallel with this progress, vanilla bandit models have
shown limitations in settings (such as recommendation sys-
tems) where the number of arms is huge. It is then not un-
common that the set of arms is naturally endowed with some
structure. One simple way to take this structure into account
is to assume the existence of some notion of similarity: some
arms are ”close” from one another, in the sense that their out-
comes are expected to have similar distributions. Graph ban-
dits are meant to provide a theoretical framework for this set-
ting: the set of arms is provided with a graph structure where
the weight wa,b of the link from arm a to arm b measures
their similarity. The set of means µ = (µa : 1 ≤ a ≤ K) is
assumed to be smooth with respect to this graph in the sense
that

‖µ‖2L ,
∑
a, b∈A

wa,b
(µa − µb)2

2
= µTLµ ≤ R , (1)

where L denotes the graph’s Laplacian and R is some known
upper-bound. This means that two arms connected by an edge
with significant weight should have similar expectations.

Recently, [Kocák and Garivier, 2020] showed how to op-
timally, δ-correctly identify the best arm in a graph bandit
model if it exists. But the consideration of very large sets of
arms, and the fact that many of them might be close to opti-
mal, suggest that it is often more relevant to identify (more
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quickly) any ε−optimal arm instead of the unique best.
In the present work, we address the problem of PAC iden-

tification of an ε-best arm in graph bandit models, hence
encompassing all the aforementioned difficulties. We focus
on finite bandit models with K arms: A = {1, . . . , K}.
In order to avoid technicalities, we consider Gaussian arms
νa = N (µa, 1) and identify the bandit problem with vector
µ = (µ1, . . . , µK) of arm expectations.

Following the approach of [Garivier and Kaufmann, 2016],
we start in Section 2 by identifying the complexity of the
problem as the optimal ratio Eν [τ ]/ log(1/δ) of any (ε, δ)-
PAC algorithm when δ → 0. This complexity term appears
to be the solution of an interesting max-min progam. Taking
great benefit from its game-theoretic structure, we propose a
solution that is radically different from [Garivier and Kauf-
mann, 2019] even in the case where R = ∞, a case that we
treat separately in Section 3. The structured case R < ∞,
which is the main contribution of this paper, is treated in Sec-
tion 4.

2 The Complexity of ε-BAI for Graph Bandits
2.1 Characteristic Time
Several factors are contributing to the complexity of identify-
ing one of the ε-best arms in bandit problems. The difficulty
is related to the quantity T ∗R, ε(µ) called characteristic time.

Definition 1. Characteristic time T ∗R, ε(µ) is defined as

T ∗R, ε(µ)−1 , max
ω∈∆K

i∈A∗
ε(µ)

min
j 6=i

λ∈Mi, j
R, ε

∑
a∈[K]

ωa
(µa − λa)2

2
(2)

where ∆K is the K-dimensional simplex,A∗ε(µ) is the set of
all ε-best arms of bandit problem µ

A∗ε(µ) , {a ∈ A : µa ≥ max
b∈A

(µb)− ε},

and Mi, j
R, ε is a set of bandit problems with smoothness at

most R and with arm j being better than arm i by at least ε
margin

Mi, j
R, ε , {λ ∈ RK : λTLλ ≤ R, λi ≤ λj − ε}. (3)

λTLλ ≤ R is often called a spectral constraint, hence the
name spectral bandits.
Remark. This definition is backward compatible with previ-
ous papers. By setting R to infinity, every problem satisfies
the spectral constraint and we obtain the setting of [Garivier
and Kaufmann, 2019]. By setting ε to zero, we are identi-
fying only the best arm which leads to the setting of [Kocák
and Garivier, 2020]. By setting R to infinity and ε to zero at
the same time we obtain the original setting of [Garivier and
Kaufmann, 2016].

The starting point for this paper is stated in the following
proposition. This proposition can be obtained along the lines
of a recent paper by [Garivier and Kaufmann, 2019]. It shows
the connection between the expected stopping time of any δ-
correct algorithm that identifies ε-best arms and the charac-
teristic time defined previously.

Proposition 1. For any δ-correct strategy and any bandit
problem µ, the expectation of stopping time τδ of the strat-
egy is lower bounded as

lim inf
δ→0

Eµ[τδ]

log(1/δ)
≥ T ∗R, ε(µ)

where the characteristic time T ∗R, ε(µ) is defined in Eq. (2).
The most significant part of this proposition is that it pro-

vides a lower bound that scales with the characteristic time.
The proof is assuming that the learner plays according to
strategy ω from the definition of T ∗R, ε(µ), i.e. playing arm
a with probability ωa, while the environment chooses some
bandit problem λ for the learner. By choosing the best possi-
ble strategy ω for the learner while the environment chooses
the hardest possible bandit problem λ we obtain the lower
bound from the proposition.

However, this works also the other way around. If the
learner plays according to the optimal strategy ω∗, the strat-
egy that maximizes expression in the definition of T ∗R, ε(µ),
the expected stopping time of the learner is also proportional
to the characteristic time and therefore matching the lower
bound (possibly up to some multiplicative constant). There-
fore, the main focus of this paper is on analyzing the char-
acteristic time and finding a way to compute optimal weight
ω∗ for the learner and provide an algorithm that utilizes these
weights.

2.2 Game-Theoretical Point of View
As we hinted in the previous section, computing the inverse
of characteristic time, T ∗R, ε(µ)−1, can be seen as a game be-
tween the learner and the environment where:
• The first player (learner) chooses one of the ε-best arms
i ∈ A∗ε(µ) and ω ∈ ∆K while trying to maximize the
value of the optimization problem.
• The second player (environment) chooses alternative

arm j 6= i and bandit problem λ ∈ Mi, j
R, ε while try-

ing to minimize the value of the optimization problem.
In fact, the optimization function in the definition of

T ∗R, ε(µ)−1 is very simple; linear in ω and quadratic in λ. To
make it more apparent, we use the following definition and
rewrite the optimization problem in a slightly different way.

Definition 2. Let Mi, j
R, ε be the set of the problems with

smoothness at most R and arm j being better than arm i by at
least ε (expression (3)). Define the set of elementwise diver-
gences from µ toMi, j

R, ε as

Di, jR, ε ,
{
d ∈ RK : ∃λ ∈Mi, j

R, ε s.t. da ,
(µa − λa)2

2

}
This definition enables us to rewrite T ∗R, ε(µ)−1 in a more

compact way as

T ∗R, ε(µ)−1 = sup
ω∈∆K

max
i∈A∗

ε(µ)
min
j 6=i

inf
d∈Di, j

R, ε

ωTd (4)

Thanks to this reparametrization we obtained an optimization
problem that is linear with independent ω and d. We use
this form later to simplify the presentation of some ideas and
proofs. We approach this optimization problem in two steps:
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1. Given i and ω of the first player (learner), we compute
the best response d (resp. λ) of the second player

2. Having the best response, we can find optimalω∗ (either
directly or numerically, depending on the problem)

In any case, it is important to be able to compute the best re-
sponse of the second player. When finding the best response,
usually it is helpful to split the optimization problem into sev-
eral smaller problems and solve them separately. We do it by
considering only a subproblem with fixed i.
Definition 3. By fixing i in T ∗R, ε(µ)−1 we can define

T iR, ε(µ)−1 , sup
ω∈∆K

min
j 6=i

inf
d∈Di, j

R, ε

ωTd

This definition enables us to compute T ∗R, ε(µ)−1 as

T ∗R, ε(µ)−1 = max
i∈A∗

ε(µ)
T iR, ε(µ)−1.

3 BAI Problem Without Structure
In this section, we focus on the setting without structure. This
setting was previously studied by [Garivier and Kaufmann,
2019] and can be obtained simply by setting the smoothness
parameter R to ∞ which would make any bandit problem
satisfy the smoothness constraint (Expression (1)). The main
contribution of this section is to significantly simplify the
proofs of [Garivier and Kaufmann, 2019] by using a previ-
ously mentioned game-theoretical approach while providing
the necessary ideas and reasoning later used in the more dif-
ficult spectral case. As mentioned earlier, this game-theoretic
approach was initiated in [Degenne and Koolen, 2019].

Finding values of individual T i∞, ε(µ)−1 is reminiscent of
the problems solved by [Garivier and Kaufmann, 2016] and
[Kocák and Garivier, 2020]. However, this time we assume
that i is not necessarily the optimal arm but it is at most ε
away from the optimal arm. The following theorem shows
the main result of the unconstrained case and a convenient
way of computing optimal weights ω∗(µ).
Theorem 2. Assume that i is one of the ε optimal arms
of bandit problem µ, i.e. µi > µj − ε for every j ∈
[K]. Let I be any arm different from i and define sequence
{xa(c)}a∈[K]/{i} as

xI(c) = c

xj(c) =

[(
1 + xI(c)

−1
) δi, jε
δi, Iε
− 1

]−1

for any j ∈ [K]/{i, I}, constant c, and δi, jε = (µi−µj +ε).
Let f(c) be a function with parameter c defined as

f(c) =
∑

j∈[K]/{i}

xj(c)
2.

Then there exist c∗ ∈ R+ such that f(c∗) = 1 and we obtain
optimal ω∗(µ) as

ω∗i (µ) =
1

1 +
∑
j∈[K]/{i} xj(c

∗)

ω∗j (µ) = xj(c
∗)ω∗i (µ) for j ∈ [K]/{i}

The rest of this section is dedicated to building necessary
tools for the proof of Theorem 2 later in Section 3.2.

3.1 Best Response Oracle - Setting Without
Constraint

The following lemma shows us the form of the best response
of Player 2 in T i∞, ε(µ)−1 game.

Lemma 3. Let ω be a vector from ∆K and µ a bandit prob-
lem. Then the best response λi, j∞, ε(ω) ∈ Mi, j

∞, ε to ω, with
arm j being better than arm i by at least ε, is in form

λi, j∞, ε(ω) = (µ1, . . . , µi−1, t, . . . , t+ ε, µj+1, . . . , µK)T

for

t =
µiωi + µjωj
ωi + ωj

− ε
(

ωj
ωi + ωj

)
.

Proof. Assuming that j-th position of λi, j∞, ε(ω) is exactly ε
larger than i-th position of λi, j∞, ε(ω), for some ε ≥ ε. Using
simple calculus we obtain that

t =
µiωi + µjωj
ωi + ωj

− ε
(

ωj
ωi + ωj

)
while the element on the j-th position has value

µiωi + µjωj
ωi + ωj

+ ε

(
ωi

ωi + ωj

)
.

The first part of both expressions is a weighted average of µi
and µj which is always in interval [µj , µi] and therefore, by
increasing ε we increase our objective function. This makes
ε = ε the optimal choice.

Corollary 1. Let ω be a vector from ∆K and µ a bandit
problem. Then the best response di, j∞, ε(ω) ∈ Di, j∞, ε toω, with
arm j being better than arm i by at least ε, is zero everywhere
except for the i-th and j-th position

di, j∞, ε(ω) = (0, . . . , 0,
ωj

2δi, jε
2︸ ︷︷ ︸

position i

, . . . ,
ωi

2δi, jε
2︸ ︷︷ ︸

position j

, 0, . . . , 0)T

for

ωj =
ωj

ωi + ωj
, ωi =

ωi
ωi + ωj

, δi, jε = (µi − µj + ε)2 .

Proof. The proof is obtained by combining Lemma 3 with
the definition of Di, j∞, ε.

3.2 Proof of Theorem 2
Now that we know the exact form of the best response pro-
vided by the oracle, we are ready to prove the statement of
Theorem 2 for the non-spectral setting.

Using Corollary 1 problem T i∞, ε(µ)−1 transforms into

T i∞, ε(µ)−1 = sup
ω∈∆K

min
j 6=i

ωTdi, j∞, ε(ω) ,

where Player 2 now chooses only j 6= i. The following
lemma shows that Player 2 can play a mixed strategy (a con-
vex combination of pure strategies where the player plays
only one arm j) while not changing the value of the game.
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Lemma 4. Let ω be a vector in RK and D be a compact
subset of RK then

inf
d∈D

ωTd = inf
d∈Conv(D)

ωTd ,

where Conv(D) is the convex hull of D.

Proof. Since D is a compact set, there exist vector d∗ such
that

ωTd∗ = inf
d∈Conv(D)

ωTd .

We also know that d∗ is a vector from the convex hull of
D therefore, d∗ can be expressed as a convex combination∑
j∈[K] qjd

j for q = (q1, . . . , qK) ∈ ∆K of at most K
points dj ∈ D. Therefore, we have

ωTd∗ = ωT
∑
j∈[K]

qjd
j ≥

∑
j∈[K]

qjω
Td∗ = ωTd∗ .

The inequality in the previous expression holds since d∗ is
the minimizer of the expression from the lemma statement.
However, the first term in the previous expression is the same
as the last term and therefore the inequality should achieve
equality. This can occur only if ωTdj = ωTd∗ for every j
where qj 6= 0. Since at least one qj is strictly positive, cor-
responding dj is one of the minimizers of the minimization
problem over D.

As we mentioned, Lemma 4 allows Player 2 to play a
mixed strategy while the value of the game stays the same.
The main benefit of this change is that the game now has
a Nash equilibrium. In order to be in the equilibrium, any
change to the strategy of the first player should result in same
value of the game as long as the second player plays the op-
timal mixed strategy. This also means that in the mixed strat-
egy of the second player, all the elements of played vector
should be the same. Therefore, there has to be a convex com-
bination with coefficients {qj ≥ 0}j∈[K]/{i} such that

di, ∗∞, ε(ω) =
∑
j∈[K]
j 6=i

qjd
i, j
∞, ε(ω) and di, ∗∞, ε(ω) = r1 (5)

for some constant r. Since for any j 6= i only di, j∞, ε(ω) is not
0 at position j, value of qj can not be 0 and

qjd
i, j
∞, ε(ω) = qkd

i, k
∞, ε(ω) for any j, k ∈ [K]/{i} . (6)

Now we have everything necessary to find the convex com-
bination for a given ω as well as the way to find optimal ω∗
for the first player.

3.3 Finding Weights qj and Optimal ω∗

Instead of finding the convex combination we can look for
a linear combination that gives us 1 and then renormalize it
to obtain a convex combination. Since di, j∞, ε(ω) is the only
member contributing to the j-th element, we can divide it by
di, j∞, ε(ω)j to obtain 1 at the j-th position. Therefore, qj is
proportional to di, j∞, ε(ω)−1

j . Now we have a vector of ones
except for the i-th element for which we do not have any

guarantees. In order to be in Nash equilibrium, i-th element
should be 1 as well. That means that

di, ∗∞, ε(ω)i =
∑
j∈[K]
j 6=i

di, j∞, ε(ω)i

di, j∞, ε(ω)j
=
∑
j∈[K]
j 6=i

(
ωj
ωi

)2

= 1 . (7)

From Lemma 4 and the fact that both di, j∞, ε(ω) and di, k∞, ε(ω)
contribute to the optimal mixed strategy, they need to be
equally good when the first player chooses optimal ω∗.
Therefore, we have
ω∗i d

i, j
∞, ε(ω

∗)i + ω∗j d
i, j
∞, ε(ω

∗)j = ω∗i d
i, k
∞, ε(ω

∗)i + ω∗kd
i, k
∞, ε(ω

∗)k

which, after a few steps, leads to

xj(c
∗) =

[(
1 + xk(c∗)−1

)
,
δi, jε

δi, kε
− 1

]−1

.

This provides us a way to express xj(c∗) using xk(c∗) for any
combination of arms j and k. In particular, setting k = I we
recover Theorem 2

4 BAI Problem with Structure
The main complexity of spectral setting comes from the
fact that the best response for the second player of game
T iR, ε(µ)−1 does not have a closed form and therefore, it is
impossible to compute ω∗ directly as in the case without
structure. We solve this problem in several steps:
• Computing best response to ω numerically.
• Restating T iR, ε(µ)−1 as a function of ω.
• Computing a supergradient for this function.
• Applying a gradient algorithm to compute optimal ω∗.

4.1 Best Response Oracle - Spectral Setting
The oracle needs to find λi, jR, ε(ω) that minimizes

inf
λ∈Mi, j

R, ε

∑
a∈[K]

ωa
(µa − λa)2

2
.

In the case where the oracle for the setting without
structure returns λi, j∞, ε(ω) that satisfies spectral constraint
(λi, j∞, ε(ω)TLλi, j∞, ε(ω) ≤ R), we are done and the spectral or-
acle should return value λi, jR, ε(ω) = λi, j∞, ε(ω). On the other
hand, we can restrict our search for the problems λi, jR, ε(ω)
with smoothness exactly R, thanks to the following lemma.
Lemma 5. Let λi, j∞, ε(ω) be the response of non-spectral ora-
cle such that λi, j∞, ε(ω)TLλi, j∞, ε(ω) > R then the response of
spectral oracle λi, jR, ε(ω) satisfies λi, jR, ε(ω)TLλi, jR, ε(ω) = R.

Proof idea. Suppose that the smoothness of λi, jR, ε(ω) is
smaller than R, i.e. λi, jR, ε(ω)TLλi, jR, ε(ω) < R. Define λ
as a convex combination of non-spectral and spectral oracle
responses with parameter α ∈ (0, 1).

λ = αλi, jR, ε(ω) + (1− α)λi, j∞, ε(ω).

For small enough α, we can show that λ improves the op-
timization problem while still satisfying the spectral con-
straint.
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Knowing that the smoothness of the oracle response is ex-
actly R, we use the Lagrange multiplier method to solve the
problem

F (λ, γ) ,
∑
a∈[K]

ωa
(µa − λa)2

2
+ γ(λTLλ−R) ,

where λi = λj − ε and γ is the Lagrange multiplier. Before
solving this problem we need to eliminate coupling between
i-th and j-th elements of λ and introduce some notation to
simplify some of the expressions in the next lemma. Lets fix
indices i and j for the moment and define:

Any tilde index ã is equal to a if a < j or a − 1 if a > j.
This means that by removing element on the j-position of
some vector, we can refer to the original element on the a-th
position using ã.

• ω̃ is a vector such that

ω̃ã = ωa for all a ∈ [K]/{i, j}
ω̃ĩ = ωi + ωj

• Ω̃ is a diagonal matrix with ω̃ on diagonal.

• λ̃ is a vector such that

λ̃ã = λa for all a ∈ [K]/{j}

• µ̃ is a vector such that

µ̃ã = µa for all a ∈ [K]/{i, j}

µ̃ĩ =
ωiµi + ωjµj
ωi + ωj

− εωj
ωi + ωj

• L̃ is a matrix created from L by adding j-th row and
column to i-th row and column and updating diagonal
entries to have a zero sum on every row and column and
then removing t-th row and column from the matrix.

L̃ã, b̃ = La, b for all a, b ∈ [K]/{i, j}

L̃ĩ, ã = L̃ã, ĩ = Li, a + Lj, a for all a ∈ [K]/{i, j}

L̃ĩ, ĩ =
∑

a∈[K]/{i, j}

−L̃i, ã

• L̃j is a vector created from the j-th column of L by set-
ting i-th element to 0, updating j-th element to have zero
sum of elements, and removing i-th element.

Lemma 6. Let i and j are fixed and L̃j be the j-th column of
L̃. Then we define λ̃(γ) as

λ̃(γ) ,
(
Ω̃ + 2γL̃

)−1(
Ω̃µ̃+ 2γεL̃j

)
There exists γ∗ such that λ(γ∗)TLλ(γ∗) = R and λ(γ∗) is
the best response vector that corresponds to λ̃(γ∗) such that
element on the j-th position is larger than the element on the
i-th position by exactly ε.

Proof idea. The statement of the lemma can be obtain tak-
ing partial derivatives of F (λ, γ) and solving the resulting
system of equations.

4.2 Supergradient as the Best Response
Now that we have a way to compute the best response to
Player 1, we are ready to restate T iR, ε(µ)−1 as a function
of ω and provide a lemma that shows the form of a supergra-
dient for this function. Define f i(ω) as

f i(ω) , min
j 6=i

inf
d∈Di, j

R, ε

ωTd .

Note that T iR, ε(µ)−1 = sup
ω∈∆K

f i(ω) . The following lemma

gives us a convenient way to compute a supergradient of f i
at ω. In fact, the best response di, j(ω), computed by the
best response oracle from Section 4.1, is a supergradient of
f i thanks to the following lemma.

Lemma 7. Let D ⊆ RK be a compact set. Then function
f : ∆K → R defined as f(ω) = infd∈D ω

Td is a concave
function and d∗(ω) = arg mind∈D ω

Td is a supergradient of
f at ω.

Proof. Let d∗(ω) ∈ D be a vector that realizes the infimum
from the definition of f(ω). Such a vector is well defined
since D is compact. First, we prove that d∗(ω) is a supergra-
dient of f at any point ω since the existence of supergradient
implies the concavity of the function.

Let ω1 and ω2 be any two points from the domain of f .
From the definition of d∗(ω) we have

ωT

2d
∗(ω1) ≥ ωT

2d
∗(ω2)

ωT

1d
∗(ω1) + (ω2 − ω1)Td∗(ω1) ≥ ωT

2d
∗(ω2)

Which, using the definition of f , can be further rewritten as

f(ω1) + d∗(ω1)T(ω2 − ω1) ≥ f(ω2) .

Thus, d∗(ω1) is a supergradient of f at ω1 and function f is
concave.

Now that we have a supergradient for function f i(ω), we
are ready to apply a gradient-based algorithm to find the op-
timal ω∗ and therefore, the value of T iR, ε(µ)−1. The algo-
rithm of our choice is the mirror ascent algorithm that pro-
vides strong guarantees.

Theorem 8. Let ω1 = ( 1
K , . . . ,

1
K )T and learning rate

η = 1
L

√
2 logK

t . Then mirror ascent algorithm optimizing
L-Lipschitz function f , with respect to ‖ · ‖1, defined on ∆K

with generalized negative entropy Φ as the mirror map enjoys
the following guarantees

f(ω∗)− f

(
1

t

t∑
s=1

ωs

)
≤ L

√
2 logK

t
.

Proof. This result can be adapted from [Bubeck, 2015].

Now, the last step is using the geometry of the problem and
the form of the best response oracle to show that f i(ω) is Lip-
schitz for some constant L. This is captured in the following
lemma.
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Lemma 9. Let f i : ∆K → R be a function such that

f i(ω) = min
j 6=i

inf
λ∈Mi, j

R, ε

∑
a∈[K]

ωa
(µa − λa)2

2
.

Then function f i is L-Lipschitz with respect to ‖ · ‖1 for any

L ≥ max
a,b∈[K]

(µa − µb + ε)2

2
.

5 Algorithm
Solving the complexity problem (3) permits to rely on
the SpectralTaS (Algorithm 1) by [Kocák and Gariv-
ier, 2020] which is a variation of the asymptotically opti-
mal Track-and-Stop algorithm introduced in [Garivier and
Kaufmann, 2016]. Essentially, this algorithm tracks optimal
sampling distribution ω∗ with respect to the current estimate
of unknown bandit problem µ and playing accordingly. By
playing an arm, the estimate of µ gets progressively better
over time which, in consequence, leads to a more precise sam-
pling distribution ω∗.

The last two ingredients for the algorithm are sampling and
stopping rules. We recall them for self-containment, and refer
to [Garivier and Kaufmann, 2016; Kocák and Garivier, 2020]
for more details.

5.1 Sampling Rule
In order to capture and correct possible arm underestimation,
the algorithm introduces extra small amount of exploration.
For every γ ∈ (0, 1/K], let ω∗,γ(µ) be an L∞ projection
of ω∗(µ) onto ∆γ

K defined as
{

(ω1, . . . , ωK) ∈ [γ, 1]K :

ω1 + · · ·+ ωK = 1
}

. Then the sampling rule is

At+1 ∈ arg max
a∈[K]

t∑
s=0

ω∗,γsa

(
µ̂(s)

)
−Na(t) . (8)

where γs of order of 1/
√
s which provides as much explo-

ration as possible while not influencing the bounds signifi-
cantly.

5.2 Stopping Rule
The algorithm should stop as soon as it has gathered sufficient
evidence on the superiority of one of the arms with probabil-
ity 1− δ: for two arms i ∈ A∗ε(µ̂) and j ∈ [K], denote by

Zi,j(t) = inf
λ∈Mi, j

R, ε

∑
a∈[K]

1

2
Na(t)(µa − λa)2

the generalized likelihood ratio statistics for the test µi > µj .
Then the stopping rule is given by

τ = inf

{
t ∈ N : max

i∈A∗
ε(µ̂)

min
j 6=i

Zi,j(t) > β(t, δ)

}
, (9)

where β(·, ·) is a threshold function to be chosen typi-
cally slightly larger than log(1/δ). Theorem 10 in [Gariv-
ier and Kaufmann, 2016] shows that the choice β(t, δ) =
log(2t(K − 1)/δ) and Aτ+1 = arg maxa∈[K] µ̂a(τ) yields
a probability of failure Pν (Aτ+1 /∈ a∗(µ)) ≤ δ.

Algorithm 1 SpectralTaS
1: Input and initialization:
2: L : graph Laplacian
3: ε, δ : tolerance and confidence parameters
4: R : upper bound on the smoothness of µ
5: Play each arm a once and observe rewards ra
6: µ̂1 = (r1, . . . , rK)T : empirical estimate of µ
7: while Stopping Rule (9) not satisfied do
8: Compute ω∗(µ̂t) by mirror ascent
9: Choose At according to Sampling Rule (8)

10: Obtain reward rt of arm At
11: Update µ̂t according to rt
12: end while
13: Output arm A∗ = arg maxa∈[K] µ̂a

Figure 1: Effect of R on the characteristic and stopping time.

6 Experiments
For the experiments, we used bandit problem

µ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1, 0)

with K = 11 arms, a graph that connects all the neighboring
actions a and a+ 1 for every a ∈ [K − 1], ε = 0.05, and dif-
ferent values ofR. The following plot demonstrates the effect
of smoothness parameter R on both theoretical and empirical
stopping times. The green curve represents the average stop-
ping time of 10 runs of SpectralTaS while the red curve
represents the characteristic time.

7 Conclusion and Open Problems
We identified the characteristic time of fixed-confidence ε-
best arm identification in bandit models with graph smooth-
ness. It appears as a delicate min-max optimization problem,
but thanks to a game-theoretic analysis of this complexity we
could provide an efficient algorithm for its computation, lead-
ing to an asymptotically optimal algorithm. While this pro-
vides a complete treatment of the fixed-confidence-setting,
the dual fixed-budget setting is still not understood. How
good is a strategy following the estimated optimal weights,
but stopping at a given time n and not at a chosen stopping
time? Are some improvements using the budget n possible?
These natural questions are open for further investigations.
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