Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Towards Scalable Complete Verification of ReLU Neural Networks via
Dependency-based Branching

Panagiotis Kouvaros and Alessio Lomuscio
Department of Computing, Imperial College London, UK

{p-kouvaros, a.lomuscio } @imperial.ac.uk

Abstract

We introduce an efficient method for the com-
plete verification of ReLU-based feed-forward neu-
ral networks. The method implements branching
on the ReLU states on the basis of a notion of
dependency between the nodes. This results in
dividing the original verification problem into a
set of sub-problems whose MILP formulations re-
quire fewer integrality constraints. We evaluate
the method on all of the ReLU-based fully con-
nected networks from the first competition for neu-
ral network verification. The experimental results
obtained show 145% performance gains over the
present state-of-the-art in complete verification.

1 Introduction

While the accuracy of neural network classifiers has greatly
improved in the past few years, concerns about their fragility
and opacity have been raised. This hinders the application
of machine learning in a variety of applications, including
safety-critical systems, where error rates need to be shown
to be small before deployment. The area of verification of
neural networks has grown rapidly in the past 3 years in re-
sponse of these concerns and aims to provide methods to ver-
ify automatically that a neural network meets its intended
specifications. For example, robustness against adversarial
attacks [Szegedy et al., 2014], or local robustness, i.e., the
invariance of an image classifier against small image pertur-
bations, is a property that is often studied, among others, in
this area. Results from the verification step can be used in
a process of certification to demonstrate that the classifier is
robust; alternatively, if counterexamples are found these can
be used to improve the model.

A key difficulty in the area is scalability. Simply put,
the present methods, while effective on small models, can-
not presently analyse the networks used in vision and other
complex tasks. This is particularly evident in complete veri-
fication, where, in contrast to incomplete verification, a def-
inite answer to the verification problem needs to be given.
The main drawback of complete verification is the state space
explosion problem whereby the ReLU space, i.e., the search
space generated by the possible states of the ReLU nodes,
grows exponentially in the number of ReLU nodes. This

2643

challenge is well recognised and constitutes the key objective
for further research. This paper makes a contribution in this
direction. In particular, we employ a notion of dependency
between ReLU nodes as a heuristic to construct a MILP-
based, branching approach that divides the original verifica-
tion problem into a set of sub-problems whose ReLU space
is smaller than the original one. In contrast to previous work
in complete verification, the branching method that we de-
vise directly aims at the reduction of the ReLU space. As we
show in experiments on the ReLU-based fully-connected net-
works from the first competition for neural network verifica-
tion (VNN-COMP) [VNN-COMP, 20201, this leads to 145%
performance gains over the present state-of-the-art in com-
plete verification.

The rest of the paper is organised as follows. After dis-
cussing related work in Section 2, in Section 3 we intro-
duce the basic notions for the verification of neural networks
that we use later in the paper. In Section 4 we present a
dependency-based branching method for the MILP formula-
tion of the verification problem. In Section 5 we report an ex-
perimental comparison of the method to the state-of-the-art in
complete verification using the networks from VNN-COMP.

2 Related Work

Formal verification of neural networks comprises complete
and incomplete methods. Complete methods can in principle
return a definite answer as to whether the verification prop-
erty is satisfied, whereas incomplete methods may be un-
able to decide whether the property is satisfied. Complete
methods are based on MILP formulations [Botoeva et al.,
2020; Bastani et al., 2016; Lomuscio and Maganti, 2017;
Cheng et al., 2017; Fischetti and Jo, 2018; Tjeng et al.,
2019], SMT encodings [Ehlers, 2017; Katz et al., 2017;
Katz et al., 20191, and input refinement [Wang er al., 2018;
P. Henriksen, 2020]. Incomplete methods are based on du-
ality [Dvijotham et al., 2018; Wong and Kolter, 2018], lin-
ear approximations [Tran er al., 2020; Singh et al., 2019;
Weng et al., 2018; Tjandraatmadja et al., 2020] and semi-
definite relaxations [Fazlyab et al., 2020; Dathathri er al.,
2020]. While incomplete approaches differ, they all rely on
approximations of the ReLU function. This often improves
their scalability over complete methods but can also hinder
their efficacy to solve the verification problem.

The present contribution uses and extends ideas from

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

MILP encodings [Tjeng er al., 2019; Anderson et al., 2019;
Botoeva er al., 2020] towards conquering scalability in com-
plete verification. This is achieved by developing a novel
divide-and-conquer method that branches on the states of the
ReLU nodes. Branching methods of this kind were previ-
ously considered. Reluplex [Katz et al., 2017] implements
a Simplex-type method which branches on a ReLU node
whenever several pivot operations fail to resolve conflicts in
the constraints representing the verification problem. In SAT-
and MILP-based neural network verification [Ehlers, 2017;
Cheng et al., 2017; Botoeva et al., 2020], branching is del-
egated to the underlying SAT and MILP solvers, though
MILP-solvers are often instructed to prioritise branching for
ReLU nodes in the early layers of the network. Branching is
also considered in [Wang er al., 2018; Rossig and Petkovic,
20201, where the ReLU node to branch is selected on the basis
the nodes’ output gradients so as to tighten the output range
of the network. A common theme among these works is that
they do not target the reduction of the ReLU space, which is
the key aim of the present contribution.

To accomplish this, our method exploits the structure of the
networks on the basis of a notion of dependency between the
ReLU nodes. Whilst the dependency analysis methods are ex-
tended from [Botoeva er al., 2020], the latter work delegates
branching to the MILP solver, thereby offering no mechanism
for selecting the ReLU node to branch, which is a key con-
sideration of the present method. Also, whereas the efficacy
of the cited method in reducing the ReLU space relies on the
analysis of callback cuts by the underlying MILP solver, our
method directly aims at the construction of simpler MILP en-
codings by “eliminating” some of the binary variables. As we
experimentally show this is often more effective.

The dependency-based branching methods that we de-
velop are also related to conflict analysis in MILP [Achter-
berg, 20071, which generalises SAT infeasibility analysis, and
look-ahead based SAT solvers, which prioritise branching for
variables that optimise a heuristic value [Biere et al., 2009].
However, these approaches are domain independent with no
specificity in neural network verification. In particular, as we
experimentally show by comparing with the state-of-the-art
MILP-based verification tools, generic methods do not fully
exploit the highly structured nature of neural networks and
suffer from markedly lower scalability due to this fact.

3 Background

The paper extends previous work in MILP formulations [An-
derson et al., 2019; Lomuscio and Maganti, 2017] and de-
pendency analysis [Botoeva et al., 2020] for the formal ver-
ification of neural networks. This section summarises basic
concepts and fixes the notation used later in the paper.

Feed-forward ReLU networks. A feed-forward neural
network (FFNN) is a vector-valued function f: R%° — RSL
that composes a sequence of L > 1 layers, f(V): R% —
R, ..., f(E): Rs2-1 — Rsz. Each layer £(*) is the compo-
sition of an affine transformation and a non-linear activation
function. That is, £ (x(=1) £ act® (WOx (-1 4 p(#),
where: x(©) is the input to the network; x(“~1) is the output of
the (i — 1)-th layer; act(¥) is the activation function of the i-

2644

th layer; z() = W(®Ox(=1 4 b(®) is the affine transforma-
tion, also called pre-activation, of the i-the layer for a weight
matrix W) € R®%*%-1 and a bias vector b®) € R*. A
ReLU FFNN is a FFNN that contains only the Rectified Lin-
ear Unit (ReLU) activation function. The ReLU function is
ReLU(z(") £ max(0,z(Y) where the maximum function is
applied element-wise on z"). Each j-th element of layer £(*)

is said to be the j-th ReLU node, or simply the j-th node, of

the i-th layer; we sometimes write njm

A node n;i) is said to be in the active state if zg-i) > 0 and in

) 0,

J

to refer to the node.

the inactive state if z

Verification problem. Givena FFNN f, a set of inputs X C
R*° and a set of outputs) C R?®~, the verification problem is
to answer whether

Vx € X: f(x) € V.

We write (f, X,)) to denote an instance of the verification
problem. Typically, X’ and) are finite sets of polyhedra [An-
derson et al., 2019; Wang et al., 2018; Katz et al., 2019;
Tjeng et al., 2019]. In particular, in this work X’ is a box given
by lower and upper bounds on the inputs nodes, i.e., X =
(xO 1 < x? <ul®1 < < 50,10 <u R},

and) is a linear constraint on the network’s outputs, i.e.,
Y= {x) | c"x®) + ¢y > 0}. Among the various instan-
tiations of the verification problem, the local adversarial
robustness problem is one of the most well studied. The
problem is to establish whether all images within a norm-ball
of a given image are classified equivalently by the network.
We here consider the [, norm-ball. For a network f, an
image x with class label ¢ and a perturbation (norm-ball) ra-
dius €, the local adversarial robustness problem can be solved
by solving a verification problem (f, X',);) for each j with
1<j<spj#eX={x"|x-e<x(® <x+e}and

Y, = {X(L) | xg‘) — xéL) > 0}. The answer to the problem
is positive iff every (f, X', ;) has a positive answer.

Bounds. Given a verification problem, we hereafter as-

;i) and an upper bound ugi) for the
pre-activation 2" of each node n{”. The bounds can
be computed from & via bound propagation methods, see,

e.g., [Singh et al.,_2019; Wang et al., 2018; P. Henriksen,
2020]. A node nj(z) is said to be strictly active if 1]0') >0
and strictly inactive if u(-i) < 0. A stable node is a node that

is either strictly active or strictly inactive. An unstable node
is a node that is neither strictly active nor strictly inactive.

sume a lower bound 1

MILP formulation of the verification problem. The veri-
fication problem can be recast into a mixed integer linear pro-
gram (MILP). A MILP is an optimisation problem whereby
a linear objective function over real-valued and integer vari-
ables is sought to be minimised subject to a set of linear con-
straints on its variables, see, e.g., [Papadimitriou and Stei-
glitz, 1998]. The MILP formulation of a verification problem
(f, X,)) is the following:

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

X((})@g@) x4 ¢

subject to x(¥ € X, (o
20) = WO 4 (0, (10)
x§i> > zg‘i), xg‘i) < z;‘i) B lg‘i) (1= 5;@))7
0 < a6 30 20,50 € 0.1}, (10

where 1 << L,1<j<s;. The constraints (1c) model the
ReLU function. In particular, each 6](-Z) is a binary variable

such that 5§i) = 0 iff node nj(i) is inactive and 6? = 1 iff

node n'" is active. We say that a MILP is satisfied if its
optimaf value is above zero. The verification problem has a

positive answer iff its associated MILP is satisfied.

ReLU space. We focus on the branch-and-bound (B&B)
method [Land and Doig, 2010] to solve the MILP (1). A key
step of B&B is the recursive splitting of the feasible region,
i.e., the set of admissible solutions, of a MILP into smaller re-
gions by branching on the values of the binary variables until
a feasible solution is found; see, e.g., [Morrison et al., 2016]
for a thorough description of B&B. The efficacy of B&B is
therefore linked to the size of the search space generated by
the binary variables. We refer to this space as the ReLU space;

it is formally defined as the Cartesian product {0, 1}‘AI of the
ground terms of all the binary variables A = {(5;-1) } . The
1]

ReLU space induced by the MILP formulation (1) can be re-

duced by replacing the ReLLU constraints for a node n]@ with
ng‘) = zy) if the node is strictly active and with xg-i) = 0if
the node is strictly inactive [Tjeng er al., 2019].

Dependency analysis. Dependency analysis [Botoeva et
al., 2020] is a method to further reduce the ReL.U space that

needs to be considered during B&B. In dependency analy-

sis, the state s (s € {active, inactive}) of a node nj(i) de-

pends on the state s’ (s’ € {active, inactive}) of another

(9)

node n,*’ if whenever (i.e., for any network input in X’) the

state of n'? is s, the state of n'” has to be 5. The cited
work identifies these dependencies during B&B, expresses
them as MILP constraints and adds them to the MILP pro-
gram being solved via callback cuts. Intuitively, each con-

straint determines the value of the binary variable associated

with n{"” whenever nﬁq) is in state s’ (as per its binary vari-

able), thereby reducing the ReL.U space.

4 Dependency-based Branching

This section introduces a dependency-based branching pro-
cedure for the MILP formulation of the verification problem
defined above. The procedure recursively divides the veri-
fication problem into pairs of sub-problems. The two sub-
problems are verification problems resulting from an origi-
nally unstable node being split and stabilised into the active
and inactive state. Intuitively, the MILP formulations of the

2645

sub-problems are easier to solve as they contain fewer inte-
grality constraints. Clearly, branching of this kind can be car-
ried out exhaustively to generate sub-problems whose MILP
formulations are linear programs that are generally easier to
solve. However, the number of sub-problems grows expo-
nentially in the number of unstable nodes, thereby rendering
the exhaustive exploration of the ReLU space intractable for
even small networks. In the light of this we develop a pro-
cedure that is parameterised on the branching depth, i.e., the
depth of the tree obtained by recursively dividing the original
problem. Once this depth is reached, all of the generated sub-
problems are solved. Since the sub-problems are obtained
via branching on the states of the ReLU nodes, the original
problem is satisfied iff all of the sub-problems are satisfied.
At the heart of the procedure is the selection of the ReLU
node to branch. The key idea of this work is to exploit the
dependency relations of the network to determine the ReLU
node that will bring about the most significant reduction of
the ReLU space. In particular, at each branching step, the
ReLU node with the most nodes depended on it is selected
for branching. Accounting for these dependencies, not only
the ReLLU node selected for branching is stabilised but also
the nodes that depend on it. This leads to a linear encoding of
the nodes, which in turn leads to a reduced ReL.U space.

4.1 Branching Procedure

The overall verification method is outlined in Algorithm 1.
The method relies on the branching procedure to divide the
given verification problem into a set of sub-problems. It then
encodes the sub-problems into MILPs which can be solved in
parallel. Finally, it answers yes to the original verification
problem iff all the MILPs are satisfied.

The branching procedure comprises three steps. In the
first step, a dependency graph for the network in question
is built. The graph expresses which node depends on which
node. In the second step, the ReLU node that has the most
depended nodes is identified and selected for branching. In
the third step, the verification problem is divided into two
sub-problems: one where the selected node is stabilised into
the active state and one where it is stabilised into the inactive
state. In each sub-problem, all the nodes that depend on the
branching node are stabilised into the state prescribed by the
corresponding dependency. The procedure recursively carries
out these steps until the required branching depth is reached.

We now give a detailed description of the steps of the
branching procedure. In our presentation, we will use the
network from Figure 1 to exemplify each of the steps. We be-
gin with the construction of the dependency graph. This is a
directed graph whose vertices represent node-state pairs and
whose edges represent dependencies between said pairs.

Definition 1 (Dependency graph). Given a verification prob-
lem (f,X,Y) for which £ comprises a set of unstable
nodes U, the associated dependency graph of (f,X,)) is a
directed graph © = (V| E), where:

* V = U x {a,i} is the set of vertices, where a and i
denote “active” and “inactive”.

e« E C V XV is the set of edges such that for every

(n,s),(n',s") € V we have ((n,s),(n',s")) € E iff

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Algorithm 1 The verification procedure.

1: procedure VERIFY((f, X',)), bd)

2 Input: verification problem (f, X',)’), branching depth bd
3 Output: yes/no

4 sub-problems <+ branch((f, X', V), bd)

S: for P in sub-problems do
6
7
8

milp < encode(P)
sub-result <— milp_solver(milp)
if sub-result is not satisfied then return no
9: return yes
10: procedure BRANCH((f, X, Y), bd)
11: Input: verification problem (f, X',)’), branching depth bd

12: Output: a set of verification sub-problems

13: queue < [(£, 0)], sub-problems < []

14: while gueue is not empty do

15: h, d < pop top element of queue

16: if d < bd then

17: © <+ dependency_graph(h)

18: n < branching-node (D)

19: hi(hz) < stabilise h as per the active (inactive)
dependency tree of n.

20: add (h1,d + 1) ((he,d + 1)) to queue

21: else

22: add (h, X,) to sub-problems

23: return sub-problems

Figure 1: A ReLU FFNN. A dashed arrow from X, Q) to ngn with

label ss’ indicates that the s’ state of node n
(@)

depends on the s
state of node n;

the s'-state of node n' depends on the s-state of node n.

Figure 2 shows the dependency graph of the network in the
running example.

The construction of the dependency graph relies on the
method from [Botoeva et al., 2020] to identify the depen-
dencies between the nodes. The graph is built in time
O(L - S?) - §%), where S is the maximum number of nodes
in a layer, L is the number of layers, O(L - S?) is the bound
on the number of edges in the graph, and O(S?) is the cost of
identifying a dependency [Botoeva et al., 2020].

With the construction of the dependency graph, the ReLU
node with the highest dependency degree is heuristically se-
lected for branching. The dependency degree of a node ex-
presses the total number of nodes that depend on it. Con-
cretely, it equals the sum of the number of vertices in the
active and inactive dependency tree of the node, where the
active (inactive, respectively) dependency tree of the node is

2646

the spanning tree of the vertices reached during depth-first-
search from the vertex associated with the active (inactive,
respectively) state of the node in question. Formally, we have:

Definition 2 (Dependency degree). Given a dependency
graph ®, the dependency degree of a ReLU node n equals

H{(n',s") | (n',s") is reachable from (n,a) in D}| +
H{(n',s") | (n',s") is reachable from (n,i) in D}|.

Figure 2 highlights the active and inactive dependency
trees of node nél). From these we can compute the depen-
dency degree of the node as 6.

The highest the dependency degree of the node selected for
branching, the fewer the required binary variables to encode
the resulting sub-problems.

Note that if the active (inactive, respectively) dependency
tree of the selected node contains at least one pair of ver-
tices of the form (n, a) and (n, i), then the sub-problem cor-
responding to the node being active (inactive, respectively)
is discarded. This is because the MILP formulation of the
sub-problem does not have any feasible solution.

The computation of the size of the dependency trees of the
nodes takes time O(L? - S3) via DFS. So, accounting for the
O((L-S?)-S?) cost of constructing the dependency graph, the
identification of the node to split takes time O(L-S3-(L+5S)).
Therefore, for a branching depth bd, the cost of the branching
procedure is O(2°? - L - S% . (L + 9)).

The above concludes the description of the branching pro-
cedure. Next, we define the MILP encodings of the sub-
problems generated by the procedure.

Definition 3 (MILP formulation). Given the dependency
trees T1, ..., % of the ReLU nodes so far selected for branch-
ing, the MILP formulation of a sub-problem (£, X,) is given
as formulation (1), but replacing the ReLU constraints (1c) of
(2)

each node n; " with either one of the following:

(i) if either lg»i) >0or (n]@7 a) is a vertex of some depen-

dency tree, then x(}i) = z(i),

(ii) if either u’”{fm‘h <O0or(]('), i) is a non-root vertex of
J
some dependency tree, then xg D= .

(iii) if (n]“),l) is the root of some dependency tree, then
() <0, X(D _ .

i) <

(iv) if none of the above holds, then Xg-i) > zg-i), x;

2y =1 (1= 61), x < uf - 617,

Clause (i) corresponds to the node being active, either be-
cause the lower bound of the node is above zero or because
this is entailed by a dependency constraint. Analogously,

clauses (ii) and (iii) correspond to the node being inactive.

The two clauses distinguish between vertex (](2 i) being a

root of a dependency tree and not. In the former case, the

@

formulation includes the constraint z: ' < 0 so as to disallow

for spurious solutions whereby z§) > 0 and xé. D =0. In

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

n{?, a n$?. a
/ -
ngl),i nél),i né’g),i ngg),a

(3) 5 (2)

ny”, 1 ng ’,a
) 4 (2) (4 (D 4

ny ', n;” 1 ny ', n; ’,

Figure 2: The dependency graph of the network from Figure 1. An edge from vertex (n, s) to vertex (n’, s’) represents that the s” state of

(1)

node n’ depends on the s state of node n. The rectangles highlight the active and inactive dependency trees of node ny .

the latter case, said constraint is not required since (ny), i)
is in the dependency tree of a node selected for branching;
therefore, the pre-activation of n is guaranteed to be below
zero. Finally, clause (iv) corresponds to the standard MILP
formulation for unstable nodes (see Section 3).

The above concludes the description of the verification pro-
cedure. The procedure is sound, i.e., it assesses a given net-
work to be safe only when the network is safe. The procedure
is also complete, i.e., it can in principle (given enough time)
assess the safety of all networks that are safe.

Theorem 1 (Soundness and completeness). Given a verifi-
cation problem (£f,X,Y), the procedure VERIFY((f, X,)))
from Algorithm I returns yes iff Vx € X : f(x) €).

Proof. The proof is by straightforward induction on the
branching depth. O

4.2 Optimisations

It is known that verifying neural networks is NP-
complete [Katz et al., 2017]. Constructing the dependency
graph has only quadratic complexity. However, to improve
the scalability of the approach, we devise two further optimi-
sation methods.

Iterative branching. To reduce the overhead of the branch-
ing procedure, we consider a variant of the procedure where
several splits are executed on the basis of the same depen-
dency graph, as opposed to building a dependency graph for
each split. Once there are no nodes suitable for branching
(i.e., they have no dependencies with other nodes), the pro-
cedure re-computes the bounds for the nodes by taking into
account the new bounds for the stabilised nodes. On the ba-
sis of these bounds it builds a new dependency graph which
it uses to further divide the verification problem. While iter-
ative branching does not guarantee that the ReLU node with
the highest dependency degree is always selected for branch-
ing, it enhances the performance of the overall verification
method as we experimentally show in Section 5.

Branch monitor. Whilst dependency-based branching im-
proves the overall verification times (see Section 5),
dependency-based branching for MILPs that are already easy
to solve using B&B may be disadvantageous to solving the
original problem without any (dependency-based) branching.
A commonly used indicator of the hardness of MILP pro-
grams is the node throughput in B&B [Klotz and Newman,
2013]. In view of this, our verification procedure formulates
the original verification problem as a MILP and uses the node
throughput to determine whether to initiate branching or not.
In particular, the procedure is parameterised with a threshold
on the number of B&B nodes, i.e, the nodes in the B&B tree,

2647

to be explored by B&B before the branching procedure is ini-
tiated (from the root B&B node). The threshold takes high
values for MILPs whose B&B nodes are easy to analyse and
low values for MILPs whose B&B nodes are hard to analyse.

5 Evaluation

We evaluate the verification procedure introduced above and
present a comparison with the state-of-the-art in complete
methods. The procedure is implemented in Venus2 !,
a Python toolkit that is based on Venus [Botoeva et al.,
2020]. The experimental comparisons focus on the lead-
ing and publicly available complete verification tools: Eran
(deeppoly) [Singh et al., 2019], Marabou [Katz et al., 2019],
MIPVerify [Tjeng et al, 2019], Neurify [Wang ef al.,
2018], Nnenum [S. Bak et al., 2020], Verinet [P. Henrik-
sen, 2020] and Venus [Botoeva et al., 2020]. The compar-
isons are drawn on all of the benchmarks for fully connected
ReLU FFNNs from VNN-COMP:

e ACASXU [Julian et al., 2016] is a collection of 45 ReLU
FFNNs which were developed as part of an airborne col-
lision avoidance system to advise horizontal steering de-
cisions for unmanned aircraft. Each network has 5 in-
puts, 300 ReLU nodes arranged in 6 layers with 50 neu-
rons each and 5 outputs. We verify the networks against
the safety specifications from [Katz ef al., 2017]. These
include four properties that are checked on all of the 45
networks and 6 properties that are checked on a single
network. We therefore consider a total of 186 verifica-
tion problems.

* MNIST [LeCun et al., 1998] is a dataset comprising
images of hand-written digits 0-9, each formatted as
28x28x1-pixel grayscale image. We use three fully con-
nected ReLU FFNNSs trained on the dataset: MNIST2,
MNIST4 and MNIST6. The networks comprise 2, 4
and 6 layers, respectively. Each layer of each of the net-
works has 256 ReLU nodes. We verify the networks
against the local adversarial robustness property w.r.t 25
correctly classified images and perturbation radii of 0.02
and 0.05. We therefore consider a total of 150 verifica-
tion problems.

All the experiments were carried out on an Intel Core i7-
7700K (4 cores) equipped with 16GB RAM, running Linux
kernel 4.15; the ablation experiment on the branching depth
(see below) was carried out on an Intel Core i9-9900X (20
cores) equipped with 125GB RAM, running Linux kernel 5.3.

'Venus2 is available at https:/github.com/vas-group-imperial/
venus2.

https://github.com/vas-group-imperial/venus2
https://github.com/vas-group-imperial/venus2

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Model Radius| Venus2 Eran Marabou MIPVerify| Neurify | Nnenum | Verinet | Venus
ver t| ver t| ver t| ver t| ver t| ver t| ver t| ver t
ACASXU - | 186 11.3| 76 1065.0/149 497.9125 807.1|179 98.9| 186 1.8] - -|184 1233
MNIST2 0.02 25 0.3] 25 0.5| 24 151.0] 25 0.3| 23 2839| 25 1.7| 25 50.1] 25 0.6
0.05 25 2.8 24 109.3| 7 1430.8| 25 29| 20 3952 25 19.1| 22 216.0| 25 5.5
MNIST4 0.02 25 431 25 18.6| 21 325.3| 25 209| 23 213.7| 24 96.5| 20 360.1| 24 83.6
0.05 25 383.12| 22 1688.0| 0 1800.0 6 1407.0] 1 1728.0/ 6 1267.8| 15 1080.2| 3 1603.1
MNIST6 0.02 25 120.9| 18 504.4| 7 3253| 19 362.5| 18 512.7| 21 293.0| 16 648.1| 9 1112.2
0.05 25 605.7| 0 1800.0/ 0 1800.0f O 1800.0f 1 1728.0] 6 1270.9| 8 1237.9| 3 1595.0
ALL \ 336 96.6\ 171 896.1 \218 727.6\229 581.5\265 417.3\ 293 237.0\ 101 597.2\275 376.0

Table 1: Verification results for Venus?2 and the state-of-the-art complete tools. The ver columns report the number of verification problems
that each tool was able to solve and the ¢ columns give the average time in seconds taken by each tool. Highlighted cells indicate the best
performing tool for each of the benchmarks. Verinet was not benchmarked on ACASXU as it does not support the ACASXU specifications.

—— Venus2
- —— Nnenum
EE —— MIPVerify
§ Verinet
E 100 —— Eran
R3) —— Venus
@ Neurify
& —— Marabou
o
o)
£
g
=
Z

0 L Ll Lol
10° 10! 102

Time (s)

103

Figure 3: Number of verification problems solved as a function of
time for the MNIST benchmarks.

Each verification problem was run for a timeout of 30 min-
utes. All MILP-based tools (Venus2, Eran, MIPVerify,
Venus) rely on Gurobi 9.2 for the MILP backend. Venus?2
was run with the branching depth set to 4 for MNIST2 and
MNIST4 and to 7 for ACASXU and MNIST6. The B&B
node threshold was set to 500 for ACASXU and MNIST®6,
to 5000 for MNIST4 and to 10000 for MNIST?2.

Table 1 reports the experimental results 2. Venus2 out-
performed all of the tools by verifying more problems and by
being faster on average. In particular, Venus2 solved 13%
more problems and had a 145% faster average solve time than
the second best performing tool Nnenum.

Venus?2 was only outperformed on the ACASXU bench-
mark only by Nnenum. Also, as can be observed from
Figure 3, Nnenum and Verinet were able to solve
more MNIST verification problems under 100 seconds than
Venus?2 was able to solve within the same time. The lat-
ter two observations indicate an overhead in the construction

Note that the comparative performance of the tools is not al-
ways in agreement with the one reported in VNN-COMP. This is
because the participants in the competition used different machines
with different specifications for the execution of the experiments.

2648

of the dependency graphs and the MILP encodings for ver-
ification problems that the current state-of-the-art can solve
in under 100 seconds. For harder problems Venus2 consis-
tently outperforms all of the tools. This is particularly evident
in MNIST4 and MNIST6 and the more challenging perturba-
tion radius of 0.05. For these benchmarks significant branch-
ing on the ReLU nodes is required to solve the verification
problems, as opposed to the 0.02 perturbation radius where
the tighter bounds for the nodes can often be used to solve
the verification problem without any branching.

We now proceed to evaluate the parameters and optimisa-
tions of Venus2 by documenting the variability of the tool’s
performance under different operational settings.

We begin with benchmarking Venus2 with iterative
branching turned off. Table 2 reports the results obtained on
the MNIST models and the 0.05 perturbation radius. Whilst
iterative branching does not always select the ReLU node
with the highest dependency degree for branching, the results
show that the gains obtained from reducing the number of
dependency graphs constructed outweigh the occasional non-
optimal selection of the node to branch.

Still, the dependency-based branching heuristic is crucial
to Venus?2’s performance: as Table 2 shows, the heuristic is
consistently superior to random branching, e.g., it is 82.49%
faster for the MNIST6 model and the 0.05 radius.

Also, whilst parallelisation definitely contributes to
Venus?2’s performance, the simplified MILP encodings from
dependency-based branching is an additional contributing
factor. In particular, even though Venus2’s performance de-
grades to half its speed when run on a single thread (see Ta-
ble 2), it still outperforms the baseline tool Venus when run
on multiple threads by verifying markedly more images.

Finally, we evaluate the sensitivity of Venus?2 to the B&B
node threshold and the branching depth parameters. For the
study of the former, we use the MNIST6 model and the 0.02
radius since the benchmark contains a mixture of easy and
hard verification problems. For the study of the latter, we use
the MNIST4 model and the 0.05 radius since the benchmark
mainly comprises hard problems for which Venus2 initiates
dependency-based branching.

Figure 4 summarises the results. We observe that Venus?2

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Ablation test MNIST?2 (0.05) MNIST4 (0.05) MNIST6 (0.05)
#branch ver t T #branch ver t 1T #branch ver t 1T
Iterative Branching Off 25 6.63 136.78 % 24 47152 23.07% 17 1096.9 81.09 %
Random Branching 2 25 427 52.49% 23 23 712.08 48% 24 18 1105.38 82.49%
Single-threaded Execution 25 6.04 115.71% 24 501.32 4.40% 21 1154.35 90.58%

Table 2: Ablation experiments for iterative branching turned off instead of on, random selection of the branching node instead of dependency-
based selection, and single-threaded execution instead of multi-threaded execution. The #branch columns report the number of verification
problems for which dependency-based branching was initiated, the ver columns indicate the number of verification problems solved for
each model, the ¢ columns give the average time in seconds taken for each model, and the 1 columns show the increase in time from the

corresponding results in Table 1.

200
180
Y
E 160
F
140
120 4
P | | | | | | |
0 02 04 06 08 1 12 14 16
B&B node threshold 104

350
300
Py
£
=
250
200 ‘ ‘
0 2 4 6 8
Branching depth

Figure 4: Sensitivity of Venus2 to the B&B node threshold and the branching depth parameters. Left: average runtime of Venus2 on
MNIST6 and the 0.02 perturbation radius as a function of the B&B node threshold. Right: average runtime of Venus2 on MNIST4 and

the 0.05 perturbation radius as a function of the branching depth.

performs best for intermediate values of the B&B node
threshold. Intuitively, the branch monitor aims at initiat-
ing dependency-based branching only for problems that are
hard to solve via B&B. Under this light, low values for the
parameter are problematic as they induce the overhead of
dependency-based branching for problems that can easily be
solved via B&B. Analogously, high values are also problem-
atic as they delay the execution of dependency-based branch-
ing for problems that are harder to solve.

We similarly observe that Venus?2 performs best for inter-
mediate values of the branching depth parameter. Intuitively,
intermediate values for the parameter are more effective as
dependency-based branching is executed w.r.t ReLU nodes
with high dependency degrees, as opposed to lower values
which debilitate the effective execution of dependency-based
branching and larger values which encourage branching on
nodes with lower dependency degrees.

6 Conclusions

In this paper we introduced a novel verification method for
ReLU-based neural networks. The key idea upon which the
method is developed is that branching on nodes whose sta-
bilisation forces the stabilisation of other nodes enables the
analysis of the verification problem under stronger MILP for-

2649

mulations. Doing this requires the analysis of the depen-
dency relations of the ReLU nodes, so that the nodes whose
splitting induces the greatest reduction of the ReLU space
can be heuristically determined. The experimental results
showed 145% performance gains for the fully connected net-
works from the first competition for neural network verifica-
tion, thereby indicating a step towards more scalable com-
plete neural network verification.

Acknowledgements

This work is partly funded by DARPA under the Assured
Autonomy programme (FA8750-18-C-0095). A. Lomuscio
is supported by a Royal Academy of Engineering Chair in
Emerging Technologies.

References

[Achterberg, 2007] T. Achterberg. Conflict analysis in mixed
integer programming. Discrete Optimization, 4(1):4-20,
2007.

[Anderson et al., 2019] R. Anderson, J. Huchette, C. Tjan-
draatmadja, and J. Vielma. Strong mixed-integer pro-

gramming formulations for trained neural networks. In
IPCO19, pages 27-42, 2019.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

[Bastani et al., 2016] O. Bastani, Y. Ioannou, L. Lampropou-
los, D. Vytiniotis, A. V. Nori, and A. Criminisi. Measur-
ing neural net robustness with constraints. In NeurIPS16,
pages 2613-2621, 2016.

[Biere et al., 2009] A. Biere, M Heule, and H. Maaren.
Handbook of satisfiability, volume 185. IOS press, 2009.

[Botoeva et al., 2020] E. Botoeva, P. Kouvaros, J. Krongvist,
A. Lomuscio, and R. Misener. Efficient verification of neu-
ral networks via dependency analysis. In AAAI20, 2020.

[Cheng et al., 2017] C. Cheng, G. Niihrenberg, and
H. Ruess. Maximum resilience of artificial neural
networks. In ATVA 17, pages 251-268. Springer, 2017.

[Dathathri et al., 2020] S. Dathathri, K. Dvijotham, A. Ku-
rakin, A. Raghunathan, J. Uesato, R. Bunel, S. Shankar,
J. Steinhardt, 1. Goodfellow, P. Liang, and P. Kohli.
Enabling certification of verification-agnostic networks
via memory-efficient semidefinite programming. In
NeurIPS20, 2020.

[Dvijotham et al., 2018] K. Dvijotham, R. Stanforth,
S. Gowal, T. Mann, and P. Kohli. A dual approach to
scalable verification of deep networks. In UAI, volume 1,
page 2, 2018.

[Ehlers, 2017] R. Ehlers. Formal verification of piece-wise
linear feed-forward neural networks. In ATVA17, volume
10482, pages 269-286. Springer, 2017.

[Fazlyab er al., 2020] M. Fazlyab, M. Morari, and G. J. Pap-
pas. Safety verification and robustness analysis of neu-
ral networks via quadratic constraints and semidefinite

programming. [EEE Transactions on Automatic Control,
2020.

[Fischetti and Jo, 2018] M. Fischetti and J. Jo. Deep neu-
ral networks and mixed integer linear optimization. Con-
straints, pages 1-14, 2018.

[Julian et al., 2016] K. Julian, J. Lopez, J. Brush, M. Owen,
and M. Kochenderfer. Policy compression for aircraft col-
lision avoidance systems. In DASCI16, pages 1-10, 2016.

[Katz et al., 2017] G. Katz, C. W. Barrett, D. L. Dill, K. Ju-
lian, and M. J. Kochenderfer. Reluplex: An efficient SMT
solver for verifying deep neural networks. In CAVI7,
pages 97-117, 2017.

[Katz et al., 2019] G. Katz, D. A. Huang, D. Ibeling, K. Ju-
lian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu,
A. Zeljic, D. L. Dill, M. J. Kochenderfer, and C. W. Bar-
rett. The marabou framework for verification and analysis
of deep neural networks. In CAV19, pages 443-452, 2019.

[Klotz and Newman, 2013] E. Klotz and A. Newman. Prac-
tical guidelines for solving difficult mixed integer linear
programs. Surveys in Operations Research and Manage-
ment Science, 18(1-2):18-32, 2013.

[Land and Doig, 2010] A. Land and A. Doig. An automatic
method for solving discrete programming problems. In 50
Years of Integer Programming 1958-2008, pages 105-132.
Springer, 2010.

2650

[LeCun er al., 1998] Y. LeCun, C. Cortes, and C. J. Burges.
The mnist database of handwritten digits, 1998.

[Lomuscio and Maganti, 2017] A. Lomuscio and L. Maga-
nti. An approach to reachability analysis for feed-forward
relu neural networks. CoRR, abs/1706.07351, 2017.

[Morrison et al., 2016] D. Morrison, S. Jacobson, J. Sauppe,
and E. Sewell. Branch-and-bound algorithms: A survey
of recent advances in searching, branching, and pruning.
Discrete Optimization, 19:79-102, 2016.

[P. Henriksen, 2020] A. Lomuscio P. Henriksen. Efficient
neural network verification via adaptive refinement and ad-
versarial search. In ECAI20, 2020.

[Papadimitriou and Steiglitz, 1998] C. Papadimitriou and
K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1998.

[Rossig and Petkovic, 2020] A. Rssig and M. Petkovic. Ad-
vances in verification of relu neural networks. Journal of
Global Optimization, pages 1-44, 2020.

[S. Bak et al., 2020] H. Tran S. Bak, K. Hobbs, and T. John-
son. Improved geometric path enumeration for verifying
relu neural networks. In CAV20, pages 66-96, 2020.

[Singh er al., 2019] G. Singh, T. Gehr, M. Piischel, and
P. Vechev. An abstract domain for certifying neural net-
works. POPLI9, 3(POPL):1-30, 2019.

[Szegedy et al., 2014] C. Szegedy, W. Zaremba, 1. Sutskever,
J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intrigu-
ing properties of neural networks. In ICLR14, 2014.

[Tjandraatmadja et al., 2020] C. Tjandraatmadja, R. Ander-
son, J. Huchette, W. Ma, K. Patel, and J. Vielma. The con-
vex relaxation barrier, revisited: Tightened single-neuron
relaxations for neural network verification. In NeurIPS20,
2020.

[Tjeng ez al., 2019] V. Tjeng, K. Y. Xiao, and R. Tedrake.
Evaluating robustness of neural networks with mixed in-
teger programming. In ICLR19, 2019.

[Tran er al., 2020] H. Tran, S. Bak, W. Xiang, and T. John-
son. Verification of deep convolutional neural networks
using imagestars. In International Conference on Com-
puter Aided Verification, pages 18—42. Springer, 2020.

[VNN-COMP, 2020] VNN-COMP. Verification of neural
networks competition (vnn-comp20). https://sites.google.
com/view/vnn20/vancomp, 2020. Accessed: 2021-05-29.

[Wang et al., 2018] S. Wang, K. Pei, J. Whitehouse, J. Yang,
and S. Jana. Efficient formal safety analysis of neural net-
works. In NeurIPS18, pages 6369-6379, 2018.

[Weng et al., 2018] L. Weng, G. Zhang, H. Chen, Z. Song,
C. Hsieh, L. Daniel, D. Boning, and I. Dhillon. Towards
fast computation of certified robustness for relu networks.
In ICMLI8, pages 5276-5285, 2018.

[Wong and Kolter, 2018] E. Wong and J. Kolter. Provable
defenses against adversarial examples via the convex outer
adversarial polytope. In ICMLI8, pages 5286-5295, 2018.

https://sites.google.com/view/vnn20/vnncomp
https://sites.google.com/view/vnn20/vnncomp

	Introduction
	Related Work
	Background
	Dependency-based Branching
	Branching Procedure
	Optimisations

	Evaluation
	Conclusions

