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Abstract

We build on abduction-based explanations for ma-
chine learning and develop a method for comput-
ing local explanations for neural network models
in natural language processing (NLP). Our expla-
nations comprise a subset of the words of the in-
put text that satisfies two key features: optimal-
ity w.r.t. a user-defined cost function, such as the
length of explanation, and robustness, in that they
ensure prediction invariance for any bounded per-
turbation in the embedding space of the left-out
words. We present two solution algorithms, respec-
tively based on implicit hitting sets and maximum
universal subsets, introducing a number of algorith-
mic improvements to speed up convergence of hard
instances. We show how our method can be con-
figured with different perturbation sets in the em-
bedded space and used to detect bias in predictions
by enforcing include/exclude constraints on biased
terms, as well as to enhance existing heuristic-
based NLP explanation frameworks such as An-
chors. We evaluate our framework on three widely
used sentiment analysis tasks and texts of up to
100 words from SST, Twitter and IMDB datasets,
demonstrating the effectiveness of the derived ex-
planations1.

1 Introduction
The increasing prevalence of deep learning models in real-
world decision-making systems has made AI explainability
a central problem, as we seek to complement such highly-
accurate but opaque models with comprehensible explana-
tions as to why the model produced a particular predic-
tion [Samek et al., 2017; Ribeiro et al., 2016; Zhang et al.,
2019; Liu et al., 2018; Letham et al., 2015]. Amongst exist-
ing techniques, local explanations explain the individual pre-
diction in terms of a subset of the input features that justify the
prediction. State-of-the-art explainers such as LIME and An-
chors [Ribeiro et al., 2016; Ribeiro et al., 2018] use heuristics
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to obtain short explanations, which may generalise better be-
yond the given input and are more easily interpretable to hu-
man experts, but lack robustness to adversarial perturbations.
The abduction-based method of [Ignatiev et al., 2019b], on
the other hand, ensures minimality and robustness of the pre-
diction by requiring its invariance w.r.t. any perturbation of
the left-out features, meaning that the explanation is suffi-
cient to imply the prediction. However, since perturbations
are potentially unbounded, this notion of robustness may not
be appropriate for certain applications.

In this paper, we focus on natural language processing
(NLP) neural network models and, working in the embed-
ding space with words as features, introduce optimal robust
explanations (OREs). OREs are provably guaranteed to be
both robust, in the sense that the prediction is invariant for
any (reasonable) replacement of the features outside the ex-
planation, and minimal for a given user defined cost func-
tion, such as the length of the explanation. Our core idea
shares similarities with abduction-based explanations (ABE)
of [Ignatiev et al., 2019b], but is better suited to NLP models,
where the unbounded nature of ABE perturbations may re-
sult in trivial explanations equal to the entire input. We show
that OREs can be formulated as a particular kind of ABE
or, equivalently, minimal satisfying assignment (MSA). We
develop two methods to compute OREs by extending exist-
ing algorithms for ABEs and MSAs [Ignatiev et al., 2019b;
Dillig et al., 2012]. In particular, we incorporate state-of-
the-art robustness verification methods [Katz et al., 2019;
Wang et al., 2018] to solve entailment/robustness queries and
improve convergence by including sparse adversarial attacks
and search tree reductions. By adding suitable constraints,
we show that our approach allows one to detect biased deci-
sions [Darwiche and Hirth, 2020] and enhance heuristic ex-
plainers with robustness guarantees [Ignatiev et al., 2019d].

To the best of our knowledge, this is the first method to de-
rive local explanations for NLP models with provable robust-
ness and optimality guarantees. We empirically demonstrate
that our approach can provide useful explanations for non-
trivial fully-connected and convolutional networks on three
widely used sentiment analysis benchmarks (SST, Twitter
and IMDB). We compare OREs with the popular Anchors
method, showing that Anchors often lack prediction robust-
ness in our benchmarks, and demonstrate the usefulness of
our framework on model debugging, bias evaluation, and re-
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pair of non-formal explainers like Anchors.

2 Related Work
Interpretability of machine learning models is receiving in-
creasing attention [Chakraborty et al., 2017]. Existing meth-
ods broadly fall in two categories: explanations via glob-
ally interpretable models (e.g. [Wang and Rudin, 2015;
Zhang et al., 2018]), and local explanations for a given in-
put and prediction (to which our work belongs). Two promi-
nent examples of the latter category are LIME [Ribeiro et
al., 2016], which learns a linear model around the neighbour-
hood of an input using random local perturbations, and An-
chors [Ribeiro et al., 2018] (introduced in Section 3). These
methods, however, do not consider robustness, making them
fragile to adversarial attacks and thus insufficient to imply the
prediction. Repair of non-formal explainers has been studied
in [Ignatiev et al., 2019d] but only for boosted trees predic-
tors. [Narodytska et al., 2019] assesses the quality of An-
chors’ explanations by encoding the model and explanation
as a propositional formula. The explanation quality is then
determined using model counting, but for binarised neural
networks only. Other works that focus on binarised neu-
ral networks, Boolean classifiers or similar representations
include [Shi et al., 2020; Darwiche and Hirth, 2020; Dar-
wiche, 2020]. Methods tailored to (locally) explaining NLP
model decisions for a given input include [Li et al., 2015;
Singh et al., 2018]. These identify input features, or clusters
of input features, that most contribute to the prediction, using
saliency and agglomerative contextual decomposition respec-
tively. Layer-wise relevance propagation [Bach et al., 2015]
is also popular for NLP explanations, and is used in [Arras
et al., 2016; Arras et al., 2017; Ding et al., 2017]. Similarly
to the above, these methods do not consider robustness. Ro-
bustness of neural network NLP models to adversarial exam-
ples has been studied in [Huang et al., 2019; Jia et al., 2019;
La Malfa et al., 2020]. We note that robustness verifica-
tion is a different (and arguably simpler) problem from de-
riving a robust explanation, as the latter requires perform-
ing multiple robustness verification queries (see Section 4).
Existing neural network verification approaches include sym-
bolic (SMT) [Katz et al., 2019], relaxation [Ko et al., 2019;
Wang et al., 2018], and global optimisation [Ruan et al.,
2018]. Research utilising hitting sets can be seen in [Ignatiev
et al., 2019c], which relates explanations and adversarial ex-
amples through a generalised form of hitting set duality, and
[Ignatiev et al., 2019a], which works on improving model-
based diagnoses by using an algorithm based on hitting sets
to filter out non-subset-minimal sets of diagnoses.

3 Optimal Robust Explanations for NLP
Preliminaries. We consider a standard NLP classification
task where we classify some given input text t into a plausible
class y from a finite set Y . We assume that t is a fixed length
sequence of words (i.e., features) l, t = (w1, . . . , wl), where
wi ∈ W with W being a finite vocabulary (possibly includ-
ing padding). Text inputs are encoded using a continuous
word embedding E : W → Rd, where d is the size of
the embedding [Mikolov et al., 2013]. Thus, given a text

t = (w1, . . . , wl), we define the embedding E(t) of t as the
sequence x = (xw1 , . . . , xwl

) ∈ Rl·d, where xwi = E(wi).
We denote with WE ⊆ W the vocabulary used to train E .
We consider embedding vectors trained from scratch on
the sentiment task, a technique that enforces words that
are positively correlated to each of the output classes to be
gathered closer in the embedding space [Baroni et al., 2014],
which is considered a good proxy for semantic similarity
with respect to the target task compared to count-based
embeddings [Alzantot et al., 2018]. For classification we
consider a neural network M : Rl·d → Y that operates on
the text embedding.

Robust Explanations. In this paper, we seek to provide lo-
cal explanations for the predictions of a neural network NLP
model. For a text embedding x = E(t) and a prediction
M(x), a local explanation E is a subset of the features of t,
i.e., E ⊆ F where F = {w1, . . . , wl}, that is sufficient to im-
ply the prediction. We focus on deriving robust explanations,
i.e., on extracting a subset E of the text features F which
ensure that the neural network prediction remains invariant
for any perturbation of the other features F \ E. Thus, the
features in a robust explanation are sufficient to imply the pre-
diction that we aim to explain, a clearly desirable feature for
a local explanation. In particular, we focus on explanations
that are robust w.r.t. bounded perturbations in the embedding
space of the input text. We extract word-level explanations
by means of word embeddings: we note that OREs work,
without further extensions, with diverse representations (e.g.,
sentence-level, characters-level, etc.). For a word w ∈ W ,
with embedding xw = E(w) we denote with B(w) ⊆ Rd a
generic set of word-level perturbations. We consider the fol-
lowing kinds of perturbation sets, depicted also in Fig. 1.

ε-ball: B(w) = {x ∈ Rd | ‖x − xw‖p ≤ ε}, for some ε > 0
and p > 0. This is a standard measure of local robustness in
computer vision, where ε-variations are interpreted as manip-
ulations of the pixel intensity of an image. It has also been
adopted in early NLP robustness works [Miyato et al., 2016],
but then replaced with better representations based on actual
word replacements and their embeddings, see below.

k-NN box closure: B(w) = BB(E(NNk(w))), where
BB(X) is the minimum bounding box for set X; for a set
W ′ ⊆ W , E(W ′) =

⋃
w′∈W ′{E(w′)}; and NNk(w) is the

set of the k closest words to w in the embedding space, i.e.,
words w′ with smallest d(xw, E(w′)), where d is a valid no-
tion of distance between embedded vectors, such as p-norms
or cosine similarity, even though the box closure can be cal-
culated for any set of embedded words. This provides an
over-approximation of the k-NN convex closure, for which
constraint propagation (and thus robustness checking) is more
efficient [Jia et al., 2019; Huang et al., 2019].

For some word-level perturbation B, set of features E ⊆
F , and input text t with embedding (x1, . . . , xl), we denote
with BE(t) the set of text-level perturbations obtained from
t by keeping constant the features in E and perturbing the
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Figure 1: A graphical representation of the perturbation sets we de-
fine in the embedding space.

others according to B:

BE(t) = {(x′1, . . . , x′l) ∈ Rl·d | x′w = xw if w ∈ E;

x′w ∈ B(w) otherwise}. (1)

A robust explanation E ⊆ F ensures prediction invariance
for any point in BE(t), i.e., any perturbation (within B) of the
features in F \ E.
Def. 1 (Robust Explanation). For a text t = (w1, . . . , wl)
with embedding x = E(t), word-level perturbation B, and
classifier M , a subset E ⊆ F of the features of t is a robust
explanation iff

∀x′ ∈ BE(t). M(x′) =M(x). (2)

We denote (2) with predicate RobM,x(E).
Optimal Robust Explanations (OREs). While robustness is
a desirable property, it is not enough alone to produce use-
ful explanations. Indeed, we can see that an explanation E
including all the features, i.e., E = F , trivially satisfies Def-
inition 1. Typically, one seeks short explanations, because
these can generalise to several instances beyond the input x
and are easier for human decision makers to interpret. We
thus introduce optimal robust explanations (OREs), that is,
explanations that are both robust and optimal w.r.t. an arbi-
trary cost function that assign a penalty to each word.
Def. 2 (Optimal Robust Explanation). Given a cost function
C : W → R+, and for t = (w1, . . . , wl), x, B, and M as in
Def. 1, a subset E∗ ⊆ F of the features of t is an ORE iff

E∗ ∈ argmin
E⊆F

∑
w∈E
C(w) s.t. RobM,x(E). (3)

Note that (3) is always feasible, because its feasible set
always includes at least the trivial explanation E = F . A
special case of our OREs is when C is uniform (it assigns the
same cost to all words in t), in which case E∗ is (one of)
the robust explanations of smallest size, i.e., with the least
number of words.

Relation with Abductive Explanations. Our OREs have
similarities with the abduction-based explanations (ABEs)
of [Ignatiev et al., 2019b] in that they also derive minimal-
cost explanations with robustness guarantees. For an input
text t = (w1, . . . , wl), let C =

∧l
i=1 χi = xwi

be the cube

representing the embedding of t, where χi is a variable denot-
ing the i-th feature of x. LetN represent the logical encoding
of the classifierM , and ŷ be the formula representing the out-
put of N given χ1, . . . , χl.
Def. 3 ([Ignatiev et al., 2019b]). An abduction-based expla-
nation (ABE) is a minimal cost subset C∗ of C such that
C∗ ∧N |= ŷ.

Note that the above entailment is equivalently expressed as
C∗ |= (N → ŷ). Let B =

∧l
i=1 χi ∈ B(wi) be the con-

straints encoding our perturbation space. Then, the follow-
ing proposition shows that OREs can be defined in a similar
abductive fashion and also in terms of minimum satisfying
assignments (MSAs) [Dillig et al., 2012]. In this way, we
can derive OREs via analogous algorithms to those used for
ABEs [2019b] and MSAs [Dillig et al., 2012], as explained in
Section 4. Moreover, we find that every ORE can be formu-
lated as a prime implicant [Ignatiev et al., 2019b], a property
that connects our OREs with the notion of sufficient reason
introduced in [Darwiche and Hirth, 2020].
Prop. 1. Let E∗ be an ORE and C∗ its constraint encoding.
Define φ ≡ (B ∧N )→ ŷ. Then, all the following definitions
apply to C∗:

1. C∗ is a minimal cost subset of C such that C∗ |= φ.
2. C∗ is a minimum satisfying assignment for φ.
3. C∗ is a prime implicant of φ.

Proof. See supplement2

The key difference with ABEs is that our OREs are robust
to bounded perturbations of the excluded features, while
ABEs must be robust to any possible perturbation. This is an
important difference because it is hard (often impossible) to
guarantee prediction invariance w.r.t. the entire input space
when this space is continuous and high-dimensional, like in
our NLP embeddings. In other words, if for our NLP tasks
we allowed any word-level perturbation as in ABEs, in most
cases the resulting OREs will be of the trivial kind, E∗ = F
(or C∗ = C), and thus of little use. For example, if we
consider ε-ball perturbations and the review “the gorgeously
elaborate continuation of the lord of the rings”, the resulting
smallest-size explanation is of the trivial kind (it contains the
whole review) already at ε = 0.1.

Exclude and include constraints. We further consider OREs
E∗ derived under constraints that enforce specific features F ′
to be included/excluded from the explanation:

E∗ ∈ argmin
E⊆F

∑
w∈E
C(w) s.t. RobM,x(E) ∧ φ(E), (4)

where φ(E) is one of F ′ ∩ E = ∅ (exclude) and F ′ ⊆ E (in-
clude). Note that adding include constraints doesn’t affect the
feasibility of our problem, because the feasible region of (4)
always contains at least the explanation E∗∪F ′, where E∗ is
a solution of (3) and F ′ are the features to include. See Def. 1.
Conversely, exclude constraints might make the problem in-
feasible when the features in F ′ don’t admit perturbations,

2For this and any subsequent reference to the supplement/ap-
pendix, please refer to the full version of the paper on the arXiv.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2660



i.e., they are necessary for the prediction, and thus cannot be
excluded. Such constraints can be easily accommodated by
any solution algorithm for non-constrained OREs: for include
ones, it is sufficient to restrict the feasible set of explanations
to the supersets of F ′; for exclude constraints, we can ma-
nipulate the cost function so as to make any explanation with
features in F ′ strictly sub-optimal w.r.t. explanations without,
that is, we use cost C′ such that ∀w∈F\F ′C′(w) = C(w) and
∀w′∈F ′C′(w′) >

∑
w∈F\F ′ C(w). The ORE obtained under

cost C′ might still include features from F ′, which implies
that (4) is infeasible (i.e., no robust explanation without ele-
ments of F ′ exists).

Constrained OREs enable two crucial use cases: detecting
biased decisions, and enhancing non-formal explainability
frameworks.

Detecting bias. Following [Darwiche and Hirth, 2020], we
deem a classifier decision biased if it depends on protected
features, i.e., a set of input words that should not affect
the decision (e.g., a movie review affected by the director’s
name). In particular, a decision M(x) is biased if we can
find, within a given set of text-level perturbations, an input x′
that agrees with x on all but protected features and such that
M(x) 6=M(x′).
Def. 4. For classifierM , text t with features F , protected fea-
tures F ′ and embedding x = E(t), decision M(x) is biased
w.r.t. some word-level perturbation B, if

∃x′ ∈ BF\F ′(t).M(x) 6=M(x′).

The proposition below allows us to use exclude constraints
to detect bias.
Prop. 2. For M , t, F , F ′, x and B as per Def. 4, decision
M(x) is biased iff (4) is infeasible under F ′ ∩ E = ∅.

Proof. See supplement

Enhancing non-formal explainers. The local explanations
produced by heuristic approaches like LIME or Anchors do
not enjoy the same robustness/invariance guarantees of our
OREs. We can use our approach to minimally extend (w.r.t.
the chosen cost function) any non-robust local explanation
F ′ in order to make it robust, by solving (4) under the include
constraint F ′ ⊆ E. In particular, with a uniform C, our
approach would identify the smallest set of extra words that
make F ′ robust. Being minimal/smallest, such an extension
retains to a large extent the original explainability properties.

Relation with Anchors. Anchors [Ribeiro et al., 2018] are
a state-of-the-art method for ML explanations. Given a per-
turbation distribution D, classifier M and input x, an anchor
A is a predicate over the input features such that A(x) holds
and A has high precision and coverage, defined next.

prec(A) = Pr
D(x′|A(x′))

(M(x) =M(x′)); cov(A) = Pr
D(x′)

(A(x′))

(5)
In other words, prec(A) is the probability that the predic-
tion is invariant for any perturbation x′ to which explana-
tion A applies. In this sense, precision can be intended as

a robustness probability. cov(A) is the probability that ex-
planation A applies to a perturbation. To discuss the relation
between Anchors and OREs, for an input text t, consider an
arbitrary distribution D with support in B∅(t) (the set of all
possible text-level perturbations), see (1); and consider an-
chors A defined as subsets E of the input features F , i.e.,
AE(x) =

∧
w∈E xw = E(w). Then, our OREs enjoy the

following properties.

Prop. 3. If E is a robust explanation, then prec(AE) = 1.

Proof. See supplement

Note that when D is continuous, cov(AE) is always zero
unlessE = ∅, in which case cov(A∅) = 1 (asA∅ = true). In-
deed, for E 6= ∅, the set {x′ | AE(x

′)} has |E| fewer degrees
of freedom than the support of D, and thus has both measure
and coverage equal to zero. We thus illustrate the next prop-
erty assuming that D is discrete (when D is continuous, the
following still applies to any empirical approximation of D).

Prop. 4. If E ⊆ E′, then cov(AE) ≥ cov(AE′).

Proof. See supplement

The above proposition suggests that using a uniform C, i.e.,
minimizing the explanation’s length, is a sensible strategy to
obtain high-coverage OREs.

4 Solution Algorithms
We present two solution algorithms to derive OREs, respec-
tively based on the hitting-set (HS) paradigm of [Ignatiev
et al., 2019b] and the MSA algorithm of [Dillig et al.,
2012]. Albeit different, both algorithms rely on repeated
entailment/robustness checksB∧E∧N |= ŷ for a candidate
explanation E ⊂ C. For this check, we employ two state-of-
the-art neural network verification tools, Marabou [Katz et
al., 2019] and Neurify [Wang et al., 2018]: they both give
provably correct answers and, when the entailment is not
satisfied, produce a counter-example x′ ∈ BE(t), i.e., a per-
turbation that agrees with E and such that B ∧ C ′ ∧ N 6|= ŷ,
where C ′ is the cube representing x′. We now briefly outline
the two algorithms. A more detailed discussion (including
the pseudo-code) is available in the supplement.

Minimum Hitting Set. For a counterexample C ′, let I ′ be
the set of feature variables where C ′ does not agree with C
(the cube representing the input). Then, every explanation
E that satisfies the entailment must hit all such sets I ′ built
for any counter-examples C ′ [Ignatiev et al., 2016]. Thus,
the HS paradigm iteratively checks candidates E built by
selecting the subset of C whose variables form a minimum
HS (w.r.t. cost C) of said I ′s. However, we found that this
method often struggles to converge for our NLP models,
especially with large perturbations spaces (i.e., large ε or k).
We solved this problem by extending the HS approach with
a sub-routine that generates batches of sparse adversarial
attacks for the input C. This has a two-fold benefit: 1) we
reduce the number of entailment queries required to produce
counter-examples, and 2) sparsity results in small I ′ sets,
which further improves convergence.
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'# this movie is really stupid and very boring most of the time there are 

almost no ghoulies in it at all there is nothing good about this movie on 

any level just more bad actors pathetically attempting to make a movie 

so they can get enough money to eat avoid at all costs.' (IMDB)

'The main story ... is compelling enough but it is difficult to shrug off the 

 annoyance of that chatty fish.' (SST)

'i couldn't bear to watch it  and I thought the UA loss was embarrassing 

  ...' (Twitter)

'# well I am the target market I loved it furthermore my husband also a 

 boomer with strong memories of the 60s liked it a lot too i haven't read 

 the book so i went into it neutral i was very pleasantly surprised its now

 on our highly recommended video list br br.' (IMDB)

'Still this flick is fun and host to some truly excellent sequences.' (SST)

'Is delighted by the beautiful weather.' (Twitter)

Figure 2: OREs for IMDB, SST and Twitter datasets (all the texts are correctly classified). Models employed are FC with 50 input words
each with accuracies respectively 0.89, 0.77 and 0.75. OREs are highlighted in blue. Technique used is kNN boxes with k=15.

Minimum Satisfying Assignment. This algorithm ex-
ploits the duality between MSAs and maximum universal
subsets (MUSs): for cost C and formula φ ≡ (B ∧ N ) → ŷ,
an MUS X is a set of variables with maximum C such that
∀X.φ, which implies that C \ X is an MSA for φ [Dillig
et al., 2012] and, in turn, an ORE. Thus, the algorithm
of [Dillig et al., 2012] focuses on deriving an MUS, and
it does so in a recursive branch-and-bound manner, where
each branch adds a feature to the candidate MUS. Such an
algorithm is exponential in the worst-case, but we mitigated
this by selecting a good ordering for feature exploration and
performing entailment checks to rule out features that cannot
be in the MUS (thus reducing the search tree).

'# I've seen Foxy Brown, Coffy Friday Foster Bucktown, and Black Mama White 

 Mama of these this is Pam Griers worst movie poor acting bad script boring

 action scenes theres just nothing there avoid this and rent Friday Foster 

 Coffy or Foxy Brown instead' (IMDB, predicted as negative)

'# a few words for the people here in cine club the worst crap ever seen on this 

honorable cinema a very poor script a very bad actors and a very bad movie 

dont waste your time looking this movie see the very good or any movie have 

been good commented by me say no more' (IMDB, predicted as negative)

'# I gave this a 2 and it only avoided a 1 because of the occasional unintentional 

laugh the film is excruciatingly. Boring and incredibly cheap its even worse if you 

know anything at all about the Fantastic Four.', (IMDB, predicted as negative) 

Figure 3: Examples of Optimal Robust Explanations - highlighted
in blue -. OREs were extracted using kNN boxes with 25 neigh-
bors per-word: fixing words in an ORE guarantees the model to be
locally robust. The examples come from the IMDB dataset, model
employed is a FC network with 100 input words (accuracy 0.81).

5 Experimental Results
Settings. We have trained fully connected (FC) and convo-
lutional neural networks (CNN) models on sentiment anal-
ysis datasets that differ in the input length and difficulty of
the learning task3. We considered 3 well-established bench-
marks for sentiment analysis, namely SST [Socher et al.,
2013], Twitter [Go et al., 2009] and IMDB [Maas et al.,
2011] datasets. From these, we have chosen 40 representa-
tive input texts, balancing positive and negative examples.
Embeddings are pre-trained on the same datasets used for
classification [Chollet and others, 2018]. Both the HS and

3Experiments were parallelized on a server with two 24-core In-
tel Xenon 6252 processors and 256GB of RAM, but each instance
is single-threaded and can be executed on a low-end laptop.

'Star/producer Salma Hayek and director Julie Taymor have infused Frida 

 with a visual style unique and inherent to the titular character paintings 

 and in the process created a masterful work of art of their own.' (SST)

'The film just might turn on many people to opera in general, an art form 

 at once visceral and spiritual wonderfully vulgar and sublimely lofty 

 and as emotionally grand as life.' (SST)

'Nah I haven't received my stimulus yet.' (Twitter)

Figure 4: Comparison of OREs for SST and Twitter texts on FC
(red) vs CNN (blue) models (common words in magenta). The first
two are positive reviews, the third is negative (all correctly classi-
fied). Accuracies of FC and CNN models are, respectively, 0.88 and
0.89 on SST, 0.77 on Twitter. Models have input length of 25 words,
OREs are extracted with kNN boxes (k=25).

MSA algorithms have been implemented in Python and use
Marabou [Katz et al., 2019] and Neurify [Wang et al., 2018]
to answer robustness queries. Marabou is fast at verifying
ReLU FC networks, but it becomes memory intensive with
CNNs. On the other hand, the symbolic interval analysis of
Neurify is more efficient for CNNs. A downside of Neurify is
that it is less flexible in the constraint definition (inputs have
to be represented as squared bi-dimensional grids, thus posing
problems for NLP inputs which are usually specified as 3-d
tensors). In the experiments below, we opted for the kNN-
box perturbation space, as we found that the k parameter was
easier to interpret and tune than the ε parameter for the ε-ball
space, and improved verification time. Further details on the
experimental settings, including a selection of ε-ball results,
are given in the supplement.

Effect of classifier’s accuracy and robustness. We find that
our approach generally results in meaningful and compact
explanations for NLP. In Figure 2, we show a few OREs
extracted for negative and positive texts, where the returned
OREs are both concise and semantically consistent with
the predicted sentiment. However, the quality of our OREs
depends on that of the underlying classifier. Indeed, en-
hanced models with better accuracy and/or trained on longer
inputs tend to produce higher quality OREs. We show this in
Figures 4, 3 and 5, where we observe that enhanced models
tend to result in more semantically consistent explanations.
For lower-quality models, some OREs include seemingly
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'# what a waste of talent a very poor semi coherent script cripples this 
 film rather unimaginative direction too some very faint echoes of Fargo 
 here but it just doesnt come off.' (IMDB)

'I couldn't bear to watch it and I thought the UA loss was embarrassing 

 ...' (Twitter)

ORE, FC 25 Inp. Words

ORE, FC 50 Inp. Words ORE, FC 25 ∩ FC 50

ORE, FC 100 Inp. Words

'# a few words for the people here in cine club the worst crap ever 

seen on this honorable cinema a very poor script a very bad actors 

and a very bad movie [...]' (IMDB)

ORE, FC 25 ∩ FC 50 ∩ FC 100

Figure 5: Comparison of OREs on negative IMDB and Twitter in-
puts for FC models. The first and third examples are trained with 25
(red) VS 50 (blue) input words (words in common to both OREs are
in magenta). The second example further uses an FC model trained
with 100 input words (words in common to all three OREs are in
orange). Accuracy is respectively 0.7 and 0.77 and 0.81 for IMDB,
and 0.77 for both Twitter models. All the examples are classified
correctly. OREs are extracted with kNN boxes (k=25).

irrelevant terms (e.g., “film”, “and”), thus exhibiting short-
comings of the classifier.

Detecting biases. As per Prop. 2, we applied exclude con-
straints to detect biased decisions. In Figure 6, we provide
a few example instances exhibiting such a bias, i.e., where
any robust explanation contains at least one protected feature.
These OREs include proper names that shouldn’t constitute a
sufficient reason for the model’s classification. When we try
to exclude proper names, no robust explanation exists, indi-
cating that a decision bias exists.

'Star/producer Salma Hayek and director Julie Taymor have infused Frida [...]'

(SST, FC 10 Input Words, k-NN (k=375))

Austin Powers in Goldmember has the right stuff for silly [...]'

(SST, FC 10 Input Words, k-NN (k=27))

Words to excludeORE

Figure 6: Two examples of decision bias from an FC model with an
accuracy of 0.80.

'Morning!! Beautiful isn't it! What you got planned for today?' (Twitter, 

 predicted as negative)

'This one is not nearly as dreadful as expected.' (SST, predicted as 

 negative)

ORE's polarized wordsORE

Figure 7: Two examples of over-sensitivity to polarized terms (in
red). Other words in the OREs are highlighted in green. Models
used are FC with 25 input words (accuracy 0.82 and 0.74). Method
used is kNN with k respectively equal to 8 and 10.

Debugging prediction errors. An important use-case
for OREs is when a model commits a misclassification.
Misclassifications in sentiment analysis tasks usually depend
on over-sensitivity of the model to polarized terms. In this

sense, knowing a minimal, sufficient reason behind the
model’s prediction can be useful to debug it. As shown in
the first example in Figure 7, the model cannot recognize the
double negation constituted by the terms not and dreadful as
a syntax construct, hence it exploits the negation term not to
classify the review as negative.

Comparison to Anchors. We evaluate the robustness of
Anchors for FC and CNN models on the SST and Twit-
ter datasets: accuracies are 0.89 for FC+SST, 0.82 for
FC+Twitter, 0.89 for CNN+SST, and 0.77 for CNN+Twitter.
To compute robustness, we assume a kNN-box perturbation
space B with k = 15 for FC and k = 25 for CNN models. To
extract Anchors, we set D to the standard perturbation distri-
bution of [Ribeiro et al., 2018], defined by a set of context-
wise perturbations generated by a powerful language model.
Thus defined Bs are small compared to the support of D, and
so one would expect high-precision Anchors to be relatively
robust w.r.t. said Bs. On the contrary, the Anchors extracted
for the FC models attain an average precision of 0.996 on
SST and 0.975 on Twitter, but only 12.5% of them are robust
for the SST case and 7.5% for Twitter. With CNN models,
high-quality Anchors are even more brittle: 0% of Anchors
are robust on SST reviews and 5.4% on Twitter, despite an
average precision of 0.995 and 0.971, respectively.

We remark, however, that Anchors are not designed to pro-
vide such robustness guarantees. Our approach becomes use-
ful in this context, because it can minimally extend any local
explanation to make it robust, by using include constraints as
explained in Section 3. In Figure 8 we show a few examples
of how, starting from non-robust Anchors explanations, our
algorithm can find the minimum number of words to make
them provably robust.

`The film just might turn on many people to opera in  general, 
an art form at once visceral and spiritual  wonderfully vulgar 
and sublimely lofty.` (SST)

`There are far worse messages to teach a young  audience 

which will probably be perfectly happy  with the sloppy 

slapstick comedy.` (SST)

`This one is not nearly as dreadful as expected.`  (SST)

Anchors Minimal Robust Extension

Figure 8: Examples of Anchors explanations (in blue) along with the
minimal extension required to make them robust (in red). Examples
are classified (without errors) with a 25-input-word CNN (accuracy
0.89). OREs are extracted for kNN boxes and k=25.

6 Conclusions
We have introduced optimal robust explanations (OREs) and
applied them to enhance interpretability of NLP models.
OREs provide concise and sufficient reasons for a partic-
ular prediction, as they are guaranteed to be both minimal
w.r.t. a given cost function and robust, in that the prediction
is invariant for any bounded replacement of the left-out fea-
tures. We have presented two solution algorithms that build
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on the relation between our OREs, abduction-based explana-
tions and minimum satisfying assignments. We have demon-
strated the usefulness of our approach on widely-adopted sen-
timent analysis tasks, providing explanations for neural net-
work models beyond reach for existing formal explainers.
Detecting biased decisions, debugging misclassifications, and
repairing non-robust explanations are some of key use cases
that our OREs enable. Future research plans include explor-
ing more general classes of perturbations beyond the embed-
ding space.

Acknowledgements
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (FUN2MODEL,
grant agreement No. 834115) and the EPSRC Programme
Grant on Mobile Autonomy (EP/M019918/1).

References
[Alzantot et al., 2018] Moustafa Alzantot, Yash Sharma,

Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-
Wei Chang. Generating natural language adversarial ex-
amples. arXiv preprint arXiv:1804.07998, 2018.

[Arras et al., 2016] Leila Arras, Franziska Horn, Grégoire
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