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2Université Côte d’Azur, Inria, France

3Fujitsu Ltd., Japan
{theo.lacombe, mathieu.carriere, frederic.chazal, marc.glisse}@inria.fr,

{ike.yuichi, umeda.yuhei}@fujitsu.com

Abstract

Although neural networks are capable of reaching
astonishing performances on a wide variety of con-
texts, properly training networks on complicated
tasks requires expertise and can be expensive from
a computational perspective. In industrial appli-
cations, data coming from an open-world setting
might widely differ from the benchmark datasets on
which a network was trained. Being able to monitor
the presence of such variations without retraining
the network is of crucial importance. In this article,
we develop a method to monitor trained neural net-
works based on the topological properties of their
activation graphs. To each new observation, we as-
sign a Topological Uncertainty, a score that aims to
assess the reliability of the predictions by investi-
gating the whole network instead of its final layer
only, as typically done by practitioners. Our ap-
proach entirely works at a post-training level and
does not require any assumption on the network
architecture, optimization scheme, nor the use of
data augmentation or auxiliary datasets; and can be
faithfully applied on a large range of network ar-
chitectures and data types. We showcase experi-
mentally the potential of Topological Uncertainty
in the context of trained network selection, Out-Of-
Distribution detection, and shift-detection, both on
synthetic and real datasets of images and graphs.

1 Introduction
Over the last decade, Deep Learning (DL) has become the
most popular approach to tackle complex machine learning
tasks, opening the door to a broad range of industrial appli-
cations. Despite its undeniable strengths, monitoring the be-
havior of deep Neural Networks (NN) in real-life applications
can be challenging. The more complex the architectures be-
come, the stronger the predictive strengths of the networks,
but the looser our grasp on their behaviors and weaknesses.

∗Contact Author

Figure 1: (Left) Confidence (maximum in the final soft-max layer)
of the predictions made by a neural network trained on the two-
moons dataset (white and black crosses) over the plane. Away from
the thin classification boundary (confidence value close to 0.5), the
network tends to produce over-confident predictions (value close to
1), even for points that are far away from the training data. (Right)
Topological distance between all activation graphs and the activation
graphs computed on the train set (higher means less confident).

Training a neural network requires task-specific expertise,
is time consuming, and requires the use of high-end ex-
pensive hardware. With the rise of companies providing
model marketplaces (e.g., [Kumar et al., 2020, Table 1] or
tensorflow-hub), it is now common that users only have
access to fixed trained neural networks, with few information
on the training process, and would rather avoid training the
networks again.

In practice, a network can perform well on a given learn-
ing problem—in the sense that it can achieve high accu-
racy on the training and test sets—, but lack reliability when
used in real-life applications thereafter. One can think of,
among other examples, adversarial attacks, that are mis-
interpreted by neural networks with high confidence levels
[Nguyen et al., 2015; Akhtar and Mian, 2018; Biggio and
Roli, 2018], calibration issues leading to under- or over-
confident predictions [Guo et al., 2017; Ovadia et al., 2019;
Hein et al., 2019], lack of robustness to corruption or pertur-
bation of the input data [Hendrycks and Dietterich, 2019].

Related Work
Many techniques have been proposed to improve or mon-
itor the behavior of NN deployed in real-life applications.
Most require specific actions taken during the training phase
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of the network; for instance via data augmentation [Shorten
and Khoshgoftaar, 2019]), the use of large auxiliary datasets1

[Hendrycks et al., 2019], modifications of the network archi-
tecture [DeVries and Taylor, 2018] or its objective function
[Atzmon et al., 2019; Van Amersfoort et al., 2020], or using
several networks at once to produce predictions [Lakshmi-
narayanan et al., 2017]. The approach we introduce in this
article focuses on acting at a post-training level only, and
since our goal is to benchmark it against the use of confi-
dence alone in a similar setting, we use, in our experimental
results, the baseline introduced in [Hendrycks and Gimpel,
2017], which proposes to monitor NNs based on their confi-
dences and on the idea that low-confidence predictions may
account for anomalies.

Using topological quantities to investigate NN properties
has experienced a growth of interest recently (see for instance
[Guss and Salakhutdinov, 2018; Carlsson and Gabrielsson,
2020]). In [Gebhart and Schrater, 2017; Gebhart et al.,
2019], the authors introduce the notion of activation graphs
and showcase their use in the context of adversarial attacks.
We mix this idea with [Rieck et al., 2019], which proposes
to investigate topological properties of NN layer-wise2. A
topological score based on an estimation of the NN decision
boundary has been proposed in [Ramamurthy et al., 2019] to
perform trained network selection, an idea we adapt in Sub-
section 4.1.

Contributions

In this work, we propose a new approach to monitor trained
NNs by leveraging the topological properties of activation
graphs. Our main goal is to showcase the potential benefits
of investigating network predictions through the lens of the
whole network instead of looking at its confidence encoded
by its final layer only as usually done in practice.

To that aim, we introduce Topological Uncertainty (TU),
a simple topological quantity that, for a given NN and a new
observation, encodes how the network “reacts” to this obser-
vation, and whether this reaction is similar to the one on train-
ing data. Our approach does not require any assumption on
the network training phase nor the type of input data, and can
thus be deployed in a wide variety of settings. Furthermore, it
only relies on computating maximum spanning trees (MST),
leading to a simple and efficient implementation.

Experimentally, we show that TU can be used to monitor
trained NNs and detect Out-of-Distribution (OOD) or shifted
samples when deployed in real-life applications. Our results
suggest that TU can drastically improve on a standard base-
line based on the network confidence in different situations.
Our implementation will be incorporated in the Gudhi li-
brary3.

1In particular, the 80 million tiny images dataset
[Torralba et al., 2008], used as an auxiliary dataset in state-of-the-art
OOD detection techniques [Chen et al., 2020], has been withdrawn
for ethical concerns. This situation illustrates unexpected limitations
when relying on such datasets to calibrate neural networks.

2A detailed comparison is deferred to the supplementary material
3https://gudhi.inria.fr/

2 Background
2.1 Neural Networks
For the sake of clarity, we restrict our presentation to se-
quential neural networks, although our approach (detailed in
Section 3) can be generalized to more general architectures,
e.g., recurrent neural networks. We also restrict to classifica-
tion tasks; let d denote the dimension of the input space and
K be the number of classes. A (sequential) neural network
(NN) learns a function F : Rd → RK that can be written as
F = fL ◦ · · · ◦ f1, where the (f`)

L
`=1 are elementary blocks

defined for ` = 1, . . . , L− 1 as

x`+1 = f`(x`) = σ`(W` · x` + b`),

with W` ∈ Rd`×d`+1 , b` ∈ Rd`+1 , and (σ`)` are activation
maps4, e.g., σ` = ReLU: x 7→ max{x, 0}. In classifi-
cation tasks, the final activation fL = σL is usually taken
to be the soft-max function, so that the output xL = F (x)
can be understood as a probability distribution on {1, . . . ,K}
whose entries (F (x)k)k indicate the likelihood that x belongs
to class k. The predicted class is thus arg maxk{F (x)k},
while the confidence that the network has in its prediction
is maxk{F (x)k} ∈ [0, 1]. Given a training set of observa-
tions and labels (X train, Y train) = (xi, yi)

Ntrain
i=1 distributed

according to some (unknown) joint law (X ,Y), the net-
work parameters W`, b` are optimized to minimize the loss∑
L(F (xi), yi) for some loss function L (e.g., the categori-

cal cross-entropy). The (training) accuracy of F is defined as
1

Ntrain

∑Ntrain

i=1 1arg max(F (xi))=yi .

2.2 Activation Graphs and Topological
Descriptors

Activation graphs. Let us consider a neural network F
and two layers of size d` and d`+1 respectively, connected
by a matrix W` ∈ Rd`×d`+1 . One can build a bipartite
graph G` whose vertex set is V` t V`+1 with |V`| = d` and
|V`+1| = d`+1, and edge set is E` = V` × V`+1. Following
[Gebhart et al., 2019], given an instance x ∈ Rd, one can as-
sociate to each edge (i, j) ∈ E` the weight |W`(i, j) · x`(i)|,
where x`(i) (resp. W`(i, j)) denotes the i-th coordinate of
x` ∈ Rd` (resp. entry (i, j) of W` ∈ Rd`×d`+1 ). Intuitively,
the quantity |W`(i, j) ·x`(i)| encodes how much the observa-
tion x “activates” the connection between the i-th unit of the
`-th layer and the j-th unit of the (`+1)-th layer of F . In this
way, we obtain a sequence of bipartite graphs (G`(x, F ))`
called the activation graphs of the pair (x, F ), whose vertices
are V` t V`+1 and edges weights are given by the aforemen-
tioned formula.

Maximum spanning trees and persistence diagrams. To
summarize the information contained in these possibly large
graphs in a quantitative way, we rely on topological descrip-
tors called persistence diagrams, coming from the Topologi-
cal Data Analysis (TDA) literature. A formal introduction to
TDA is not required in this work (we refer to the supplemen-
tary material for a more general introduction): in our specific

4Note that this formalism encompasses both fully-connected and
convolutional layers that are routinely used by practitioners.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2667

https://gudhi.inria.fr/


case, persistence diagrams can be directly defined as the dis-
tribution of weights of a maximum spanning tree (MST). We
recall that given a connected graph G with N + 1 vertices, a
MST is a connected acyclic sub-graph of G sharing the same
set of vertices such that the sum of the N edge weights is
maximal among such sub-graphs. MST can be computed effi-
ciently, namely in quasilinear time with respect to the number
of edges in G. Given the ordered weights w1 ≥ · · · ≥ wN
of a MST built on top of a graph G, its persistence diagram is
the one-dimensional probability distribution

µ(G) :=
1

N

N∑
i=1

δwi
,

where δwi denotes the Dirac mass at wi ∈ R. See Figure 2
for an illustration.

Comparing and averaging persistence diagrams. The
standard way to compare persistence diagrams relies on op-
timal partial matching metrics. The choice of such metrics
is motivated by stability theorems that, in our context, imply
that the map x 7→ µ(G`(x, F )) is Lipschitz with Lipschitz
constant that only depends on the network architecture and
weights5 (and not on properties of the distribution of x ∼ X
for instance). The computation of these metrics is in gen-
eral challenging [Kerber et al., 2017]. However, in our spe-
cific setting, the distance Dist(µ, ν) between two diagrams
µ = 1

N

∑N
i=1 δwi

and ν = 1
N

∑N
j=1 δw′

j
can be simply ob-

tained by computing a 1D-optimal matching5, which in turn
only requires to match points in increasing order, leading to
the simple formula

Dist(µ, ν)2 =
1

N

N∑
i=1

|wi − w′i|2,

where w1 ≥ w2 ≥ · · · ≥ wN and w′1 ≥ w′2 ≥ · · · ≥ w′N .
With this metric comes a notion of average persistence dia-
gram, called a Fréchet mean [Turner et al., 2014]: a Fréchet
mean µ of a set of M diagrams µ1, . . . , µM is a minimizer of
ν 7→

∑M
m=1 Dist(µm, ν)2, which in our context simply reads

µ :=
1

N

N∑
i=1

δw̄i
,

where w̄i = 1
M

∑M
m=1 w

(m)
i and w(m)

i denotes the i-th point
of µm. The Fréchet mean provides a geometric way to con-
cisely summarize the information contained in a set of persis-
tence diagrams.

3 Topological Uncertainty (TU)
Building on the material introduced in Section 2, we pro-
pose the following pipeline, which is summarized in Fig-
ure 2. Given a trained network F : Rd → RK and an
observation x, we build a sequence of activation graphs
G1(x, F ), . . . , GL−1(x, F ). We then compute a MST of
each G`(x, F ), which in turn induces a persistence diagram

5We refer to the supplementary material for details and proofs.

D`(x, F ) := µ(G`(x, F )). Assuming F was trained on a set
X train, one can store the corresponding sequence of diagrams
(D`(x

train, F ))` for each xtrain ∈ X train. These diagrams sum-
marize how the network is activated by the training data.
Thus, given a new observation x with arg max(F (x)) = k,
one can compute the sequence (D`(x, F ))` and then the
quantity

min
xtrain∈X train,

arg max(F (xtrain))=k

Dist
(
D`(x, F ), D`(x

train, F )
)
,

that is, comparingD`(x, F ) to the diagrams of training obser-
vations that share the same predicted label than x. Figure 1
(right) shows how this quantity evolves over the plane, and
how, contrary to the network confidence (left), it allows one
to detect instances that are far away from the training distri-
bution.

Since storing the whole set of training diagrams for each
class and each layer {D`(x

train, F ) : arg max(F (xtrain)) =
k} might be inefficient in practice, we propose to summa-
rize these sets through their respective Fréchet means Dtrain

`,k .
For a new observation x ∈ Rd, let k(x) = arg max(F (x)) be
its predicted class, and (D`(x, F ))` the corresponding persis-
tence diagrams. The Topological Uncertainty of x is defined
to be

TU(x, F ) :=
1

L

L∑
`=1

Dist
(
D`(x, F ), Dtrain

`,k(x)

)
, (1)

which is the average distance over layers between the per-
sistence diagrams of the activation graphs of (x, F ) and the
average diagrams stored from the training set. Having a low
TU suggests that x activates the network F in a similar way to
the points in X train whose class predicted by F was the same
as x. Conversely, an observation with a high TU (although
being possibly classified with a high confidence) is likely to
account for an OOD sample as it activates the network in an
unusual manner.
Remarks. Our definition of activation graphs differs from
the one introduced in [Gebhart et al., 2019], as we build one
activation graph for each layer, instead of a single, possi-
bly very large, graph on the whole network. Note also that
the definition of TU can be declined in a variety of ways.
First, one does not necessarily need to work with all layers
1 ≤ ` ≤ L, but can only consider a subset of those. Similarly,
one can estimate Fréchet means Dtrain

`,k using only a subset of
the training data. These techniques might be of interest when
dealing with large datasets and deep networks. One could
also replace the Fréchet mean Dtrain

`,k by some other diagram
of interest; in particular, using the empty diagram instead al-
lows us to retrieve a quantity analog to the Neural persistence
introduced in [Rieck et al., 2019]. On an other note, there are
other methods to build persistence diagrams on top of acti-
vation graphs that may lead to richer topological descriptors,
but our construction has the advantage of returning diagrams
supported on the real line (instead of the plane as it usually oc-
curs in TDA) with fixed number of points, which dramatically
simplifies the computation of distances and Fréchet means,
and makes the process efficient practically.
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Figure 2: Pipeline presented in this article: Each observation activates the network with a weight |W`(i, j) ·x`(i)| on the edge connecting the
i-th unit in the `-th layer to the j-th unit of the (`+ 1)-th layer. A maximum spanning tree is then computed for each layer ` of the network,
whose distribution of weights provides a corresponding persistence diagram. On this example, the network used is a simple network with
two hidden-layers of 64 units each with ReLU activation, each layer is fully-connected (dense matrix).

4 Experiments
This section showcases the use of TU in different contexts:
trained network selection (§4.1), monitoring of trained net-
works that achieve large train and test accuracies but have
not been tweaked to be robust to Out-Of-Distribution obser-
vations (§4.2) or distribution shift (§4.3).

Datasets and experimental setting. We use standard, pub-
licly available, datasets of graphs and images. MNIST,
Fashion-MNIST, CIFAR-10, SVHN, DTD are datasets
of images, while MUTAG and COX2 are datasets of graphs
coming from a chemical framework. We also build two
OOD image datasets, Gaussian and Uniform, by ran-
domly sampling pixel values following a Gaussian distribu-
tion (resp. uniform on the unit cube). A detailed report of
datasets and experimental settings (data preprocessing, net-
work architectures and training parameters, etc.) can be
found in the supplementary material.

4.1 Trained Network Selection for Unlabeled Data
In this subsection, we showcase our method in the context
of trained network selection through an experiment proposed
in [Ramamurthy et al., 2019, §4.3.2]. Given a dataset with
10 classes (here, MNIST or Fashion-MNIST), we train 45
NNs on the binary classification problems i vs. j for each pair
of classes (i, j) with i > j, and store the average persistence
diagrams of the activation graphs for the different layers and
classes as explained in Section 3. These networks are denoted
by Fij in the following, and consistently reach high accura-
cies on their respective training and test sets given the sim-
plicity of the considered tasks. Then, for each pair of classes
k1 > k2, we sample a set of new observationsXk1,k2 made of
200 instances sampled from the test set of the initial dataset
(in particular, these observations have not been seen during
the training of any of the (Fij)ij) whose labels are k1 and
k2. Assume now that k1, k2 and the labels of our new obser-

Figure 3: Score and accuracies obtained on 45 models trained on the
MNIST dataset when fed with a set X1,0 of images representing 0
and 1 digits. The point annotations refer to the values (i, j) on which
the network was initially trained. For instance, a network trained on
7 and 4 has a score of 0.49 and an accuracy of ∼ 75% on X1,0.

vations are unknown. The goal is to select a network that is
likely to perform well on Xk1,k2 among the (Fij)ij . To that
aim, we compute a score for each pairing (k1, k2) ↔ (i, j),
which is defined as the average TU (see Eq. (1)) when feed-
ing Fij with Xk1,k2 . A low score between (i, j) and (k1, k2)
suggests thatXk1,k2 activates Fij in a “known” way, thus that
Fij is likely to be a relevant classifier forXk1,k2 , while a high
score suggests that the data in Xk1,k2 is likely to be different
from the one on which Fi,j was trained, making it a less rel-
evant choice. Figure 3 plots the couple (scores, accuracies)
obtained on MNIST when taking (k1, k2) = (1, 0), that is,
we feed networks that have been trained to classify between
i and j handwritten digits with images representing 0 and 1
digits. Not surprisingly, F1,0 achieves both a small TU (thus
would be selected by our method) and a high accuracy. On the
other hand, using the model F7,6 on X1,0 leads to the highest
score and a low accuracy.
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To quantitatively evaluate the benefit of using our score to
select a model, we use the the metric proposed by [Rama-
murthy et al., 2019]: the difference between the mean accu-
racy obtained using the 5 models that have the lowest scores
and the 5 models that have the highest scores. We obtain
a +14.8%-increase on MNIST and a +12.6%-increase on
Fashion-MNIST. These positive values indicate that, on
average, using low TU as a criterion helps to select a better
model to classify our new set of observations. As a compar-
ison, using the average network confidence as a score leads
to +6.6% on MNIST and +4.7% on Fashion-MNIST, in-
dicating that using (high) confidence to select a model would
be less relevant than using TU, on average. See the supple-
mentary material for a complementary discussion.
Remark. Our setting differs from the one of [Ramamurthy
et al., 2019]: in the latter work, the method requires to have
access to true labels on the set of new observations Xk1,k2
(which we do not), but do not need to evaluate Fij(x), x ∈
Xk1,k2 on each model Fij (which we do). To that respect, we
stress the complementary aspect of both methods.

4.2 Detection of Out-Of-Distribution Samples
The following experiment illustrates the behavior of TU when
a trained network faces Out-Of-Distribution (OOD) observa-
tions, that is, observations that are not distributed according
to the training distribution. To demonstrate the flexibility
of our approach, we present the experiment in the context
of graph classification, relying on the COX2 and the MUTAG
graph datasets. Complementary results on image datasets can
be found in Table 1 and in the supplementary material. Work-
ing with these datasets is motivated by the possibility of us-
ing simple networks while achieving reasonably high accura-
cies which are near state-of-the-art on these sets. To train
and evaluate our networks, we extract 40 spectral features
from graphs—thus representing a graph by a vector in R40—
following a procedure proposed in [Carrière et al., 2020]. See
the supplementary material for details.

For both datasets, we build a set of 100 fake graphs in the
following way. Let N and M be the distributions of num-
ber of vertices and number of edges respectively in a given
dataset (e.g., graphs in MUTAG have on average 17.9 ± 4.6
vertices and 19.8 ± 5.7 edges). Fake graphs are sampled as
Erdős-Renyi graphs of parameters (n,m/n2), with n ∼ N ,
m ∼ M, thus by construction fake graphs have (on average)
the same number of vertices and edges as graphs from the
training dataset. These sets are referred to as Fake-MUTAG
and Fake-COX2, respectively.

Now, given a network FMUTAG trained on MUTAG (resp.
FCOX2 trained on COX2), we store the average persistence
diagrams of each classes. It allows us to compute the cor-
responding distribution of TUs T train = {TU(x, FMUTAG) :
x ∈ MUTAG} (resp. TU(x, FCOX2)). Similarly, we eval-
uate the TUs of graphs from the Fake-MUTAG (resp.
Fake-COX2) and from COX2 (resp. MUTAG), see Figure 4
((a,c), respectively). As expected, the TUs of training inputs
T train are concentrated around low values. Conversely, the
TUs of OOD graphs (both from the Fake dataset and the sec-
ond graph dataset) are significantly higher. Despite important
differences in terms of TU, the network still shows confidence

Baseline Topological Uncertainty
Training data OOD data FPR ↓ AUC ↑ FPR ↓ AUC ↑
MUTAG Fake-MUTAG 98.4 1.7 0.0 99.8

COX2 93.0 31 0.0 100.0

COX2 Fake-COX2 91.2 1.4 0.0 99.9
MUTAG 91.2 1.1 0.0 100.0

CIFAR-10

FMNIST 93.6 54.9 65.6 86.4
MNIST 94.7 58.3 25.4 94.7
SVHN 90.6 27.6 83.6 65.8
DTD 90.9 32.6 90.3 57.3
Uniform 91.5 31.8 59.1 80.2
Gaussian 91.0 27.2 18.8 88.2

Table 1: Comparison between the baseline confidence-based OOD-
detector and our TU-based classifier on graph datasets (first two
rows) and on image datasets for a network trained on CIFAR-10.
FPR is given at TPR 95%. ↑: higher is better, ↓: lower is better.

near 100% ((b,d) plots) for OOD datasets, making this quan-
tity impractical for detecting OOD samples.

To quantify this intuition, we propose a simple OOD de-
tector. Let F be a network trained on MUTAG or COX2, with
distribution of training TUs T train. A new observation x is
classified as an OOD sample if TU(x, F ) is larger than the q-
th quantile of T train. This classifier can be evaluated with stan-
dard metrics used in OOD detection experiments: the False
Positive Rate at 95% of True Positive Rate (FPR at 95%TPR),
and the Area Under the ROC Curve (AUC). We compare
our approach with the baseline introduced in [Hendrycks and
Gimpel, 2017] based on confidence only: a point is classi-
fied as an OOD sample if its confidence is lower than the q-th
quantile of the distribution of confidences of training sam-
ples. As recorded in Table 1, this baseline performs poorly
on these graph datasets, which is explained by the fact that
(perhaps surprisingly) the assumption of loc. cit. that training
samples tend to be assigned a larger confidence than OOD-
ones is not satisfied in this experiment. In the third row of
this Table, we provide similar results for a network trained
on CIFAR-10 using other image datasets as OOD sets. Al-
though in this setting TU is not as efficient as it is on graph
datasets, it still improves on the baseline reliably.

4.3 Sensitivity to Shifts in Sample Distribution
This last experimental subsection is dedicated to distribu-
tion shift. Distribution shifts share similar ideas with OOD-
detection, in the sense that the network will be confronted
to samples that are not following the training distribution.
However, the difference lies in the fact that these new ob-
servations are shifted instances of observations that would be
sampled with respect to the training distribution. In partic-
ular, shifted instances still have an underlying label that one
may hope to recover. Formally, given a training distribution
X and a parametric family of shifts (sγ)γ with the conven-
tion that s0 = id, a shifted sample with level of shift γ is
a sample sγ(x1), . . . , sγ(xN ), where x1, . . . , xN ∼ X with
underlying labels y1, . . . , yN . For instance, given an image,
one can apply a corruption shift of parameter γ = n ∈ N
where sn(x) consists of randomly switching n pixels of the
image x (xij 7→ 1− xij). See the top row of Figure 5.

Ideally, one would hope a trained network F to be robust to
shifts, that is arg max(F (x)) = arg max(F (sγ(x))). How-
ever, since the map x 7→ sγ(x) cannot be inverted in general,
one cannot realistically expect robustness to hold for high lev-
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Figure 4: (a) Distributions of Topological Uncertainties (TU) of a network trained on the MUTAG dataset. Blue distribution corresponds to
T train. Green and red distributions correspond to topological uncertainties of observations coming from Fake-MUTAG and COX2 datasets
respectively. (b) Distributions of network confidences (max{F (x)k}). The network makes overconfident predictions, especially on OOD
datasets that are classified almost systematically with a confidence of 1. (c,d) Similar plots for the COX2 dataset.

Figure 5: (Top row) A 0 digit from the MNIST dataset exposed to increasing level of shift (pixel corruption). (Bottom row), (Left). The TU
(with 0.1 and 0.9 quantiles) of corrupted inputs in the MNIST dataset with respect to the corruption level n. (middle) The accuracy of the
network on these data (that is, the proportion of observations that are still correctly classified). (right) The confidence of the network in its
predictions. Although the accuracy is dropping significantly, the network remains overall extremely confident in its predictions.

els of shift. Here, we illustrate how TU can be used as a way
to monitor the presence of shifts that would lead to a dra-
matic diminution of the network accuracy in situations where
the network confidence would be helpless.

For this, we train a network on MNIST and, following the
methodology presented in Section 3, store the correspond-
ing average persistence diagrams for the 10 classes appearing
in the training set. We then expose a batch of 1000 obser-
vations from the test set containing 100 instances of each
class (that have thus not been seen by the network during
the training phase) to the corruption shifts with various shift
levels n ∈ {0, 10, 20, 50, 100, 150, . . . , 500}. For each shift
level, we evaluate the distributions of TUs and confidences
attributed by the network to each sample, along with the ac-
curacy of the network over the batch. As illustrated in the
second row of Figure 5, as the batch shifts, the TU increases
and the accuracy drops. However, the network confidence re-
mains very close to 1, making this indicator unable to account
for the shift. In practice, one can monitor a network by rou-
tinely evaluating the distribution of TUs of a new batch (e.g.,
daily recorded data). A sudden change in this 1D distribution
is likely to reflect a shift in the distribution of observations
that may itself lead to a drop in accuracy (or the apparition of
OOD samples as illustrated in Subsection 4.2).

We end this subsection by stressing that the empirical re-
lation we observe between the TU and the network accuracy
cannot be guaranteed without further assumption on the law
(X ,Y). It however occurs consistently in our experiments

(see the supplementary material for complementary experi-
ments involving different types of shift and network architec-
tures). Studying the theoretical behavior of the TU and acti-
vation graphs in general will be the focus of further works.

5 Conclusion and Perspectives
Monitoring trained neural networks deployed in practical ap-
plications is of major importance and is challenging when
facing samples coming from a distribution that differs from
the training one. While previous works focus on improving
the behavior of the network confidence, in this article we pro-
pose to investigate the whole network instead of restricting
to its final layer. By considering a network as a sequence
of bipartite graphs on top of which we extract topological
features, we introduce the Topological Uncertainty, a tool to
compactly quantify if a new observation activates the network
in the same way as training samples did. This notion can be
adapted to a wide range of networks and is independent from
the way the network was trained. We illustrate numerically
how it can be used to monitor networks and how it turns out to
be a strong alternative to network confidence on these tasks.
Our implementation will be integrated to the Gudhi library.

We believe that this work will motivate further develop-
ments involving Topological Uncertainty, and more generally
activation graphs, when it comes to understand and monitor
neural networks. In particular, most techniques introduced
in recent years to improve confidence-based descriptors may
be declined to be used with Topological Uncertainty. These
trails of research will be investigated in future work.
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