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Abstract
Recently, the Stochastic Particle Optimization
Sampling (SPOS) method is proposed to solve
the particle-collapsing pitfall of deterministic Parti-
cle Variational Inference methods by ultilizing the
stochastic Overdamped Langevin dynamics to en-
hance exploration. In this paper, we propose an
accelerated particle optimization sampling method
called Stochastic Hamiltonian Particle Optimiza-
tion Sampling (SHPOS). Compared to the first-
order dynamics used in SPOS, SHPOS adopts an
augmented second-order dynamics, which involves
an extra momentum term to achieve acceleration.
We establish a non-asymptotic convergence anal-
ysis for SHPOS, and show that it enjoys a faster
convergence rate than SPOS. Besides, we also pro-
pose a variance-reduced stochastic gradient variant
of SHPOS for tasks with large-scale datasets and
complex models. Experiments on both synthetic
and real data validate our theory and demonstrate
the superiority of SHPOS over the state-of-the-art.

1 Introduction
Sampling from a Bayesian posterior distribution lies at the
core of many modern machine learning tasks, such as topic
modelling [Gan et al., 2015], reinforcement learning [Liu
et al., 2017], and Bayesian neural networks [Hernández-
Lobato and Adams, 2015]. Particle based Variational Infer-
ence (ParVI) methods have recently drawn great attention due
to their empirical success in approximating the target pos-
terior distribution [Liu and Wang, 2016; Liu et al., 2017;
Feng et al., 2017; Chen et al., 2018; Liu and Zhu, 2018]. Typ-
ically, these methods update a finite set of interacting particles
deterministically to approximately simulate infinite-particle
gradient flows on the Wasserstein space P2(X ).

One representative method of this type is the Stein Vari-
ational Gradient Descent (SVGD) method [Liu and Wang,
2016], which updates the particles according to a gradient
flow described by the Vlasov equation [Liu, 2017; Braun and
Hepp, 1977]. Subsequently, by exploiting the Riemannian
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structure of the Wasserstein space P2(X ), [Liu et al., 2019]
proposed a Nesterov’s-acceleration variant of SVGD called
SVGD Wasserstein Nesterov’s method (SVGD-WNes).

However, ParVI methods have an intractable pitfall that
particles tend to collapse under certain condition due to the
deterministic-update fashion with a limited number of par-
ticles [Zhang et al., 2020a; Zhuo et al., 2018], which indi-
cates a large deviation of the particles’ empirical distribution
to target distribution. To understand the influence of finite-
particle approximation to the infinite-particle gradient flows,
Liu et al. [2019] provided a unified theory on the approxi-
mation property of different ParVI methods. They show that
existing finite-particle ParVIs can be regarded as essentially
smoothing operations on gradient flows, in the form of either
smoothing the density or smoothing functions. Though the
underlying gradient flows usually evolve towards the target
distribution, the smoothing operations deteriorate the conver-
gence of the particles’ empirical distributions in ParVIs to the
target distribution.

Inspired by the random exploration in the dynamics-based
Markov Chain Monte Carlo methods, recent researches re-
lieve the particle-collapsing phenomenon by introducing ad-
ditional stochasticity into ParVI methods [Zhang et al.,
2020a; Zhang et al., 2020b]. Zhang et al. [2020a] integrated
the gradient flow of the first-order Overdamped Langevin Dy-
namics (OLD) into the Vlasov equation used in SVGD, and
proposed a new method called Stochastic Particle Optimiza-
tion Sampling (SPOS). Specifically, SPOS updates a set of
particles following the same mechanism as in SVGD with an
additional drift term and an extra Gaussian random noise in-
duced by OLD. Following the analysis framework of OLD
based MCMC methods, they conduct the non-asymptotic
convergence analysis of SPOS, and establish a bound on the
2-Wasserstein distance between the empirical distribution of
particles and the target distribution. However, observations
in the dynamics-based MCMC indicate that OLD is not the
most efficient dynamics although it is simple and easy-to-
analyze. Actually, the error bound in SPOS increases with
the iterations, therefore the step size should be samll in order
to restrict the error in a desirable level.

In this work, we propose an accelerated particle optimiza-
tion sampling method called Stochastic Hamiltonian Particle
Optimization Sampling (SHPOS) by introducing the second-
order Underdamped Langevin Dynamics (ULD) [Jaakkola
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and Jordan, 1997] into the flow of SVGD. Compared with
the first-order OLD, ULD possesses an auxiliary momen-
tum term, and can be regarded as an accelerated second-
order dynamics of OLD. Typically, ULD based methods
have both better theoretical guarantees and more compet-
itive practical performance than their OLD based counter-
parts [Chen et al., 2014; Cheng et al., 2018; Zou et al., 2018;
Zou et al., 2019]. We utilize a variant of the first order ex-
ponential integrator scheme to discretize the corresponding
stochastic differential equation of the augmented flow, which
is obtained by integrating the gradient flow of ULD into the
Vlasov flow. The contributions of our paper are listed as fol-
lows:

• As far as we know, SHPOS firstly introduce second-
order ULD into the Vlasov flow to accelerate particle
optimization sampling. The particles in SHPOS can
be regarded as drifted by the (stochastic-)gradient of
the log-posterior of the target distribution, the repulsive
force between particles, and an extra random standard
Gaussian force. By balancing these forces, particles ex-
plore the high probability space of the target distribution
rapidly and avoid particle-collapsing (refer to the exper-
iment for more details). We also propose a variance-
reduced stochastic gradient variant of SHPOS by using
the historical gradient information to build a recursively
updated gradient estimator. This variant is shown to be
more suitable for Bayesian learning tasks with large-
scale datasets and complex models.

• We establish the non-asymptotic convergence guarantee
of SHPOS. Specifically, we show that the 2-Wasserstein
distance between the particles’ distribution in the k-th
iteration of SHPOS and the target distribution is in the
order of Õ(M−1/2 + exp(−kη) + ηd1/2), where M
is the number of particles, d denotes the dimension of
variable, and η is the step size. The result shows that
the approximation error decreases as the particle number
M and the iteration k increase, while the error bound
Õ(M−1/2 + exp(−kη) + Mηd3/2k1/2) of SPOS in-
creases with particle numbers and iterations. Thus, SH-
POS could use a much larger step size compared with
SPOS to achieve the same sampling accuracy.

We evaluate our method on a list of tasks, including both syn-
thetic and real datasets. The empirical results demonstrate the
superiority of our method over the state-of-the-art.

2 Preliminaries
In this paper, we focus on Bayesian learning tasks, i.e., sam-
pling from the target posterior distribution

p∗ = p(x|D) ∝ exp(−U(x)),

where x ∈ X ⊂ Rd is the model parameter, D = {Di}Ni=1
denotes the dataset and U(x) = − log p(x)− log p(D|x) de-
notes the potential energy function. SVGD and ULD based
MCMC methods are two recently proposed inference meth-
ods for solving Bayesian learning tasks.

2.1 Stein Variational Gradient Descent
SVGD is firstly proposed by [Liu and Wang, 2016] as an ef-
ficient approximate inference method for sampling from the
target distribution. Basically, it simulates the following den-
sity gradient flow

∂φt

∂t
= ∇x · (φtϕφt) , (1)

where φt denotes the evolutionary density at time t and ϕφt

is the evolution function of the following form
ϕφt(x) = Ex′∼φt [−κ(x,x′)F (x′) +∇x′κ(x,x′)] , (2)

with F (x) = ∇U(x) denoting the gradient of the potential
function and κ(x,x′) denoting a kernel function, such as RBF
kernel. Actually, ϕφt

is a direction of steepest descent that
minimize the KL divergence between the evolutionary den-
sity φt and the target distribution p∗ over the unit ball in Re-
producing Kernel Hilbert Space induced by the kernel func-
tion κ [Liu and Wang, 2016]. The density gradient flow (1) is
a special type of Vlasov equation and its stationary distribu-
tion is p∗ under certain regularity conditions [Liu, 2017].

SVGD draws a set of particles {xi,0}Mi=1 from an initial
distribution q0, and updates the particles iteratively according
to the following rule:

xi,k+1=xi,k−
η

M

M∑
j=1

F (xj,k)κ(xi,k,xj,k)−∇xj,k
κ(xi,k,xj,k),

where η denotes the step size. On the RHS of the update rule,
the −F (xj,k)κ(xi,k,xj,k) term pushes particles towards high
probability regions, while the second term ∇xj,k

κ(xi,k,xj,k)
forces the particles to move away from each other. The
stochastic gradient technique, i.e., constructing a stochas-
tic approximation from a mini-batch of data to replace the
full gradient, has been adopted by SVGD to reduce the
per-iteration computational cost in large-scale and complex
Bayesian learning tasks. Moreover, SVGD uses empirical
distribution of the particles to approximate target distribution.
However, Zhang et al.[2020a] pointed out that SVGD has
an unintended particle-collapsing pitfall, i.e., particles tend
to collapse to a local mode under particular conditions.

2.2 Dynamics-Based MCMC
Recently, different dynamics-based MCMC methods have
been proposed by discretizing certain dynamics whose sta-
tionary distribution (or its marginal) is the target distribution.
Two mostly adopted dynamics are the Overdamped Langevin
Dynamics (OLD) and the Underdamped Langevin Dynamics
(ULD). OLD is a first-order dynamics with only one variable,
while ULD involves an extra momentum term, thus can be
viewed as a second-order dynamics. Basically, ULD based
methods usually outperform their OLD based counterparts in
both practice and theory, due to the extra momentum term.
However, their analysis are much more complicated and elab-
orate as their structures are more complex than their OLD
based counterparts.

The Underdamped Langevin Dynamics is described by the
following stochastic differential equation (SDE):

dxt = vtdt,
dvt = −γvtdt− uF (xt)dt+

√
2uγdBt,

(3)
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Method SVGD SPOS UL-MCMC SVGD-WNes SHPOS

momentum acceleration × × ✓ ✓ ✓
repulsive force ✓ ✓ × ✓ ✓
random exploration × ✓ ✓ × ✓

Table 1: Feature-by-feature comparison of different methods.

where γ > 0 is the friction parameter, u is the inverse mass,
xt,vt ∈ Rd denote the position and velocity variables of the
dynamics respectively, and Bt represents standard Brownian
motion. Let zTt =

[
xT
t ,v

T
t

]
, according to the Fokker-Planck

(FP) equation [Risken, 1996], the density gradient flow of z
is as follow:
∂Ψt

∂t
= −∇z ·

(
Ψt

(
vt

−uF (xt)− γvt

))
+ uγ∇v · (∇vΨt) , (4)

where Ψt denotes the density of zt. The stationary distribu-
tion of variable zt is p(z) ∝ exp (−U(x)− ∥v∥22/(2u)), and
the marginal distribution of xt converges to the target distri-
bution p∗.

Directly using the Euler-Maruyama discretization scheme
of ULD (3) gives rise to the Underdamped Langevin MCMC
(UL-MCMC) method [Kloeden and Platen, 1992]:

xk+1 = xk + ηvk,
vk+1 = vk − γηvk − uηF (xk) +

√
2uγηϵk,

(5)

where η > 0 is the step size, ϵk ∼ N(0, Id×d) is a standard
Gaussian random vector, and Id×d is a d× d identity matrix.
To make the algorithm scalable in large-scale tasks, SGHMC
method [Chen et al., 2014] is proposed by replacing the full
gradient with a mini-batch estimator

Gk(xk) =
1

|B|
∑

ξk∈Bk

F (xk, ξk), (6)

where Bk denotes a mini-batch of size |B|, and F (xk, ξk)
is an unbiased estimate of F (xk). Ever since, different
variance-reduced stochastic gradient ULD MCMC methods
has been proposed to reduce the influence of stochastic vari-
ance, e.g. SVR-HMC [Zou et al., 2018], SAGA-HMC [Li et
al., 2019] and HSG-HMC [Zhang et al., 2021].

3 Methodology
In this section, we introduce our Stochastic Hamiltonian Par-
ticle Optimization Sampling method as in Algorithm 1. We
first construct the following mixed density gradient flow by
integrating the gradient flow of ULD into the Vlasov flow:
∂Φt

∂t
=−∇z ·

(
Φtvt

Φt (−uF (xt)−γvt+βϕφt
)

)
+uγ∇v ·(∇vΦt) , (7)

where zTt =
[
xT
t ,v

T
t

]
, Φt denotes the density of zt, φt de-

notes the marginal distribution of variable xt, and ϕφt is de-
fined as in (2).

In the following lemma, we give the corresponding SDE of
flow (7) and show that the marginal distribution φt of variable
xt converges to the target distribution p∗.
Lemma 1. The density flow of the following SDE is exact (7).
dx =vdt,

dv =−γvdt−uF (x)dt−βEY∼φt
[F (Y )κ(x, Y )] dt

+βEY∼φt
[∇Y κ(x, Y )] dt+

√
2uγdBt,

(8)

Algorithm 1 Stochastic Hamiltonian Particle Optimization
Sampling
Input: Initial particles {xi,0}Mi=1 and the corresponding mo-
mentum variable {vi,0}Mi=1. Weight parameter β, friction pa-
rameter γ, inverse mass u, and step size η.

1: for k = 0, 1, ..., T − 1 do
2: Uniformly sample a subset of index Bk ⊂ [n]
3: for i = 1, 2, ...,M do
4: Update xi,k+1 and vi,k+1 as

xi,k+1=xi,k+ηvi,k+ϵxi,k, (9)

vi,k+1=(1−γη)vi,k−uηgi,k+ϵvi,k+
ηβ

M

·
∑
j

[∇K(xi,k−xj,k)−gj,kK(xi,k−xj,k)] , (10)

with gi,k as the full gradient F (xi,k) (or its stochas-
tic estimate Gmini

i,k (14) or Gvr
i,k (15)).

5: end for
6: end for
7: Output:{xi,T }Mi=1.

where Y ∈ Rd is a random sample from evolutionary density
φt but independent of x and v, and Bt represents standard
Brownian motion. The stationary distribution of this SDE is
p(z) ∝ exp (−U(x)− ∥v∥22/(2u)), and its marginal distri-
bution φt converges to the target distribution p∗.

According to the system (8), x and v can be regarded as
the position of a particle and its associated velocity. Besides,
it can be verified that the Vlasov flow endows an repulsive
force on the particle and β controls the magnitude of particle
interaction. As this system contains an extra Hamiltonian ve-
locity part compared to the system used in SPOS, we call our
method a Hamiltonian method. We list a feature-by-feature
comparison of different sampling methods in Table 1 to give
a more intuitive understanding of SHPOS method.

We construct our SHPOS method by simulating system
(8). Note that (8) contains the marginal distribution φt of xt,
which is intractable to calculate. Following the idea in ParVI,
we maintains a set of M particles and use the empirical dis-
tribution to approximate φt in SDE (8). Consequently, we
obtain an multi-particle approximate dynamics of (8), where
the dynamics of each particle is as follow:

dx̃i,t=ṽi,tdt,

dṽi,t=−γṽi,tdt−uF (x̃i,t)dt+
β

M

M∑
j=1

[−F (x̃j,t) (11)

K(x̃i,t−x̃j,t) +∇K(x̃i,t−x̃j,t)] dt+
√
2uγdB̃i,t.

Here, we focus on the RBF kernel κ(x,x′) = exp(−∥x −
x′∥22/h), and replace κ(x,x′) with K(x−x′) = exp(−∥x−
x′∥22/h). Note that this kernel is also adopted in SPOS and
many ParVIs [Liu and Wang, 2016; Liu et al., 2019].

In order to sample from the target distribution, we can ap-
ply numerical integrators to discretize the multi-particle dy-
namics (11). Specifically, we utilize a variant of the first order
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exponential integrator scheme [Zou et al., 2018], which leads
to the following updates for variables xi,k and vi,k:

xi,k+1=xi,k + ηvi,k + ϵxi,k,

vi,k+1=(1−γη)vi,k−uηF (xi,k)+
ηβ

M

M∑
j=1

(12)

[−F (xj,k)K(xi,k−xj,k)+∇K(xi,k−xj,k)]+ϵvi,k,

where γ, u, η, β are tunable parameters, ϵxi,k and ϵvi,k are
Gaussian random vectors with zero mean and covariance ma-
trices satisfy

E
[
ϵvk(ϵ

v
k)

T
]
=u

(
1−e−2γη

)
· Id×d,

E
[
ϵxk(ϵ

x
k)

T
]
=

u

γ2

(
2γη+4e−γη−e−2γη−3

)
· Id×d,

E
[
ϵvk(ϵ

x
k)

T
]
=
u

γ

(
1−2e−γη+e−2γη

)
· Id×d.

(13)

In many real-world Bayesian learning tasks with large-
scale datasets and complex models, obtaining the exact gra-
dient F (x) is computationally expensive or even prohibitive,
and only unbiased estimates F (x, ξ) of F (x) are available.
To deal with this situation, one typical approach is to replace
the full gradient with a mini-batch estimator

Gmini
i,k =

1

|B|
∑

ξk∈Bk

F (xi,k, ξk). (14)

However, this estimator usually suffers from high stochastic
variance, which will degrade the performance of algorithms.
To relieve the influence caused by stochastic variance, we
propose to use the following estimator

Gvr
i,k =(1− ρk)(G

vr
i,k−1 + F̃k(xi,k)− F̃k(xi,k−1)︸ ︷︷ ︸

gb,k

)+

ρk F̃k(xi,k)︸ ︷︷ ︸
gu,k

,
(15)

where F̃k(x) = 1
|B|

∑
ξk∈Bk

F (x, ξk). This estimator has
been widely adopted in the optimization literature [Cutkosky
and Orabona, 2019] and stochastic gradient MCMC meth-
ods [Zhang et al., 2021] to relieve the influence of variance.
Specifically, Gvr

i,k is a combination of two parts, gu,k is an un-
biased stochastic gradient estimator with high variance, while
gb,k is a biased estimator with low variance. This merit lies
in using a proper weight parameter ρk to strike a balance be-
tween bias and variance.

With different gradient estimators, we obtain different vari-
ants of SHPOS. We denote the variant with Gmini and Gvr as
SHPOS-MINI and SHPOS-VR, respectively.

4 Theoretical Analysis
In this section, we provide the non-asymptotic convergence
analysis for the proposed method under 2-Wasserstein dis-
tance W2. Given two probability measures ρ1 and ρ2, the W2

distance is defined as

W2(ρ1, ρ2) =

(
inf

π∈Γ(ρ1,ρ2)

∫
∥x− y∥22dπ(x, y)

)1/2

, (16)

where Γ(ρ1, ρ2) denotes a set of joint distributions on Rd×Rd

with marginal distribution ρ1 and ρ2. In our analysis, we first
provide the approximate error between the stationary distri-
bution ν∞ of x̃i,t in the continuous-time dynamics (11) and
target distribution in terms of W2 distance, then bound the
W2 distance between ν∞ and the density µkη of the discrete-
time iterative xi,k (9), and draw our conclusion by combining
these results together as

W2(µkη, p
∗) ≤ W2(µkη, ν∞) +W2(ν∞, p∗). (17)

If we initialize all the particles with the same distribution,
they would endow the same distribution during the evolu-
tion due to the exchangeability of the particles according to
[Zhang et al., 2020a], and we denote the density of all parti-
cles in the k-th iteration as µkη . We only list the main the-
orems here due to the limit of space. We refer readers to
Appendix for more detailed proofs.

4.1 Assumptions
Following [Zhang et al., 2020a; Zhang et al., 2020b], we
make the following standard assumptions on F and K.

Assumption 1. F satisfies the following conditions:

• F is LF -Lipschitz, i.e., ∥F (x)−F (y)∥2 ≤ LF ∥x−y∥2.

• There exists positive mF such that ⟨F (x) − F (y),x −
y⟩ ≥ mF ∥x− y∥2.

Assumption 1 means that the potential function is smooth
and strongly convex. This assumption is quite standard in
the analysis of existing dynamics-based sampling methods,
including SPOS and many underdamped Langevin MCMC
methods [Cheng et al., 2018; Zou et al., 2018]. It is satisfied
in many Bayesian learning tasks, such as Bayesian Logistic
Regression and Bayesian Ridge Regression. It is techinically
possible to extend our theoretical analysis to the non-convex
setting, and we leave this as future work.

Assumption 2. F (x) is bounded, i.e. there exists an positive
constant HF such that ∥F (x)∥2 ≤ HF , and F (0) = 0.

It is easy to be varified that the first part of this assumption
holds if F is Lipschitz and the domain X of x is a compact
set. Besides, we can make F (0) = 0 by transforming coor-
dinate system.

Assumption 3. The kernel function K is LK-Lipschitz and
L∇K smooth, i.e. ∥∇K(x1 − x2) − ∇K(y1 − y2)∥2 ≤
L∇K∥x1 − x2 − y1 + y2∥2.

Since we focus on RBF kernel in this paper, this assump-
tion can be satisfied by setting the bandwidth h large enough.

Besides, we also assume that the stochastic estimator
F (x, ξ) is unbiased and of bounded variance.

Assumption 4 (Unbiasedness and Bounded Variance). For
all x ∈ Rd, the unbiased estimator F (x, ξ) of F (x) has a
bounded variance E∥F (x, ξ)−F (x)∥22 ≤ σ2, where the sam-
ple variable ξ is drawn from certain fixed distribution (e.g.
the uniform distribution on the indices set or the hyperpa-
rameter prior).
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Figure 1: Results on sampling from a Gaussian mixture distribution.

4.2 Main Theorems
In the following theorem, we establish an upper bound for the
2-Wasserstein distance W2(ν∞, p∗) between the stationary
distribution ν∞ of x̃i,t in the continuous-time dynamics (11)
and the target distribution p∗.

Theorem 1 (Finite Particle Error). Under assumption 1, 2,
and 3, let ν0 = φ0, there exists a positive constant c1 such
that

W2(ν∞, p∗) ≤ c1

λ1

√
M

, (18)

where λ1 = mF

2βLF
− L∇K − 1

2LF −HFLK .

Recall that p∗ is the stationary distribution of the continu-
ous dynamics (8), and (11) is an finite-particle approximation
of (8). This theorem shows that the approximation accuracy
increases with the growth of particle number .

The following theorem spells out the W2 distance between
ν∞ and the density µkη of the discrete-time iterative xi,k (9).

Theorem 2 (Time Discretization and Stochastic Gradient Er-
ror). Under assumption 1, 2, 3, and 4, if we run Algorithm 1
with stochastic gradient estimator (14) and small step size η
such that exp (−λη) + c2η

2 < 1, the 2-Wasserstein distance
W2(µkη, ν∞) is bounded as follow:

W2(µkη, ν∞)≤c3e
−λkη+

η2Ω

1−e−λη
+

√
2η2σ2(1+β2L2

F )

|B|L2
F (1−e−λη)

, (19)

where λ = mF

2LF
− βL∇K − β 1

2LF − βHFLK , (c2, c3) are
positive constants independent of (M,η, k), and Ω is in the
order of Õ(

√
d).

Note that the third term in the RHS of (19) belongs to the
stochastic gradient error, and this term diminishes if we use
the full gradient F in SHPOS.

Based on Theorem 1 and 2, we present our main theorem
about the 2-Wasserstein distance between the density µkη of
particles generated in SHPOS and the target distribution p∗.

Theorem 3 (The Overall Bound). Under the assumptions of
theorem 1 and 2, the 2-Wasserstein distance between µkη and
target distribution p∗ is in the order of

Õ
(
M−1/2+exp (−λkη)+ηd1/2+η1/2|B|−1/2σ

)
. (20)

If we use the full gradient F , the 2-Wasserstein distance be-
tween µkη and target distribution p∗ is in the order of

Õ
(
M−1/2 + exp (−λkη) + ηd1/2

)
. (21)

The error bound of SHPOS in Theroem 3 is better than
that of SPOS under the same condition. In SPOS [Zhang
et al., 2020a], the authors give a bound in terms of 1-
Wasserstein distance between the empirical distribution of
particles and the target distribution p∗, which is in the order
of Õ(M−1/2 + exp (−λ′kη) +Mηd3/2k1/2), where λ′ is a
constant in the same order as λ. This result demonstrates that
the sample accuracy of SPOS decreases with particle num-
bers and iterarions, and a small step size η is needed to restrict
the 1-Wasserstein distance in a desirable level. Note that 1-
Wasserstein distance is a weaker metric than 2-Wasserstein
distance (W1(ρ1, ρ2) ≤ W2(ρ1, ρ2)), thus our results in The-
orem 3 also hold in terms of the 1-Wasserstein distance. Con-
sequently, it can be verified that the bound (21) of SHPOS is
strictly better than the result of SPOS. Futhermore, the sam-
pling accuracy of SHPOS increases as the particle number M
and the iteraion k increase, and a much larger step size can be
used compared with SPOS to achieve the same accuracy.

5 Experiments
We follow the conventions in dynamics-based sampling lit-
erature [Liu and Wang, 2016; Zhang et al., 2020b] and con-
duct empirical studies on one synthetic experiment and two
real-world applications. Three types of methods are se-
lected as baselines: ParVI methods (SVGD, SVGD-WNes),
dynamics-based MCMC method (UL-MCMC), and Stochas-
tic Particle Optimization Sampling method (SPOS). For a
fair comparison, we use a parallel version of the sequen-
tial UL-MCMC method, i.e., maintain M independent chains
simultaneously. We focus on the stochastic gradient meth-
ods in the two real-world applications since it is difficult to
calculate the full gradient. We compare our SHPOS-MINI
and SHPOS-VR methods with the mini-batch estimator based
methods, i.e. SVGD-MINI, SPOS-MINI and SVGD-WNes-
MINI, and the variance-reduced stochastic gradient meth-
ods SVRG-SPOS [Zhang et al., 2020b] and UL-MCMC-
VR [Zhang et al., 2021]. We list the information of datasets
and parameter tuning of different methods in our Appendix.

5.1 Synthetic Experiment
We consider sampling from a 2-D Gaussian mixture distribu-
tion with three modes, whose density is defined as follow:

π(x)∝ exp(−1

2
xTΣ−1x)+

1

2
∗exp(−1

2
(x−a)TΣ−1(x−a))

+
1

2
∗ exp(−1

2
(x+a)TΣ−1(x+a)),

where a = [2, 2]T , and Σ11 = Σ22 = 6 with correlation
Σ21 = Σ12 = −0.98 ∗ 6 = −5.88. We use 1000 particles
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Method SVGD SVGD-WNes SPOS UL-MCMC SHPOS

W2 0.9336 0.8759 0.2174 0.2365 0.2108

Table 2: The W2 distance between the sample distribution and the
target distribution of different methods in the synthetic experiment.

that initialized by drawing from a Gaussian distribution with
mean [−4, 2]T and variance 0.252.

In Figure 1, we report the sampling results generated by
each algorithm. From the results, the particle-collapsing phe-
nomenon can be observed in the deterministic ParVI methods
SVGD and the accelerated SVGD-WNes method. The parti-
cles in these two methods only aggregate near two of the three
modes and fail to explore region near the third mode. For the
methods with stochastic exploration, i.e. SPOS, UL-MCMC
and SHPOS, though SPOS and UL-MCMC could explore all
the three high probability space, our SHPOS method has the
best performance as it contains both an extra momentum term
and a repulsive force to explore the whole space more effi-
ciently. In Table 2, we report the W2 distance between density
of random samples generated by each algorithm and the true
distribution. We use Sinkhorn method with penalty 10−2 to
calculate the W2 distance. The results show that our SHPOS
method achieves the best sampling accuracy.

5.2 Bayesian Logistic Regression
Bayesian Logistic Regression (BLR) is a robust binary classi-
fication task. Given a dataset D = {xi, yi}Ni=1, the likelihood
of the BLR task is Sigmoid(yiwTxi), where xi ∈ Rd de-
notes the sample covariate vector, yi ∈ {−1, 1} denotes the
label, and w is the model parameter with a standard multivari-
ate Gaussian prior N (0, I). Four publicly available bench-
mark datasets from LIBSVM1, a3a, w8a, a8a, and ijcnn1 are
used for evaluation. We report negative log-likelihood versus
the number of data passes with 50 particles on datasets a3a
and w8a in Figure 2, and we refer readers to Appendix for
more results. The experimental results demonstrate that our
variance-reduced SHPOS method SHPOS-VR achieves the
best performance among all the comparisons. Moreover, it
can be verified that the variance-reduced methods outperform
their mini-batch counterparts, and both the particle interac-
tion and the momentum contribute to a better performance.

5.3 Bayesian Neural Network
In this experiment, we study a regression Bayesian poste-
rior learning task with Bayesian Neural Network (BNN) on
6 datasets from UCI2 and LIBSVM. Following the settings
from [Liu and Wang, 2016], we use a Gamma(1, 0.1) prior
for the inverse covariance and adopt a one-hidden-layer neu-
ral network with 50 hidden units. In Figure 3, we report the
root mean squared error (RMSE) versus the number of data
passes with 20 particles, and we refer readers to Appendix
for more results. The proposed SHPOS-VR method achieves
the best performance, which shows its superiority over other
methods. Besides, the results demonstrate that all the stochas-
tic noise, the repulsive force, the extra momentum term, and

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://archive.ics.uci.edu/ml/datasets.php
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Figure 2: Test negative log-likelihood versus number of data passes
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Figure 3: Test RMSE versus the number of data passes.

the variance reduction technique improve the performance.
Note that the SVRG estimator based method SVRG-SPOS
performs badly in this neural network task. Actually, simi-
lar phenomenon has been widely observed in the deep learn-
ing literature, and [Defazio and Bottou, 2019] shows that
the SVRG estimator is not suitable for nonconvex models.
Conversely, the recursive estimator Gvr used in SHPOS-VR
and UL-MCMC-VR has been shown to be a better estima-
tor for nonconvex problem [Cutkosky and Orabona, 2019;
Zhang et al., 2021], which agrees with our results.

6 Conclusion
In this paper, we propose a second-order particle optimization
sampling method called Stochastic Hamiltonian Particle Op-
timization Sampling (SHPOS), which involves an extra mo-
mentum term to achieve acceleration. In SHPOS, the parti-
cles can be regarded as drifted by the (stochastic-)gradient
of the target distribution, the repulsive force between par-
ticles, and an extra random standard Gaussian force. By
balancing these forces, particles in SHPOS explore the high
probability space of the target distribution rapidly and avoid
particle-collapsing. Besides, we also propose a variance-
reduced stochastic gradient variant of SHPOS for large-scale
tasks. We establish the non-asymptotic convergence analysis
for SHPOS, and show that it enjoys a faster convergence rate
than the first-order SPOS. The empirical results also demon-
strate the superiority of our methods over the state-of-the-art.
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