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Abstract
Graph clustering has become an important research
topic due to the proliferation of graph data. How-
ever, existing methods suffer from two major draw-
backs. On the one hand, most methods can not si-
multaneously exploit attribute and graph structure
information. On the other hand, most methods are
incapable of handling multi-view data which con-
tain sets of different features and graphs. In this
paper, we propose a novel Multi-view Attributed
Graph Clustering (MvAGC) method, which is sim-
ple yet effective. Firstly, a graph filter is applied
to features to obtain a smooth representation with-
out the need of learning the parameters of neu-
ral networks. Secondly, a novel strategy is de-
signed to select a few anchor points, so as to reduce
the computation complexity. Thirdly, a new reg-
ularizer is developed to explore high-order neigh-
borhood information. Our extensive experiments
indicate that our method works surprisingly well
with respect to state-of-the-art deep neural network
methods. The source code is available at https:
//github.com/sckangz/MvAGC.

1 Introduction
As the size and scope of graph data has grown, there has
been a corresponding surge of interest in graph-based ma-
chine learning methods. Graph clustering, as a branch of
unsupervised learning, is aiming at dividing the graph nodes
into several disjoint groups, such that each group belongs to
a class [Schaeffer, 2007]. Graph clustering has exhibited sig-
nificant performance in community detection [Wang et al.,
2015], group segmentation [Kim et al., 2006] and many oth-
ers. In practice, real-world data tend to be complex, which
include both node attributes and structural relationship be-
tween different vertexes. In order to exploit the rich infor-
mation from the structure and features, [Pan et al., 2018;
Wang et al., 2019] employ a graph embedding framework,
[Guo et al., 2018] proposes a co-clustering technique, and
[Chang and Blei, 2009] develops a relational topic method to
solve this problem. However, they mainly focus on the sparse
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original graphs, which can not effectively leverage the under-
lying information. Besides, these methods are unable to deal
with multi-view data.

Nowadays, most graph data are typically multi-modal and
multi-relational [Qu et al., 2017]. In other words, the nodes
consist of several feature matrix and each node is interacting
with others through multiple types of relationships. Taking
academic network as an example, one graph view represents
the co-paper relationship, while another graph describes the
co-author relationship; authors themselves also have multiple
features, such as research fields, citation and representative
words. It is desirable to fully exploit the complementary in-
formation in different views.

Existing multi-view learning methods can be roughly clas-
sified into two categories. One type of methods integrate mul-
tiple graphs into a consensus graph and then adopt a single-
view algorithm [Nie et al., 2017]. Another group of meth-
ods learn a sparse and compact representation via graph em-
bedding techniques [Zhang et al., 2018; Liu et al., 2017;
Shi et al., 2018], and then classical clustering methods are
applied. However, they mainly concentrate on one type of
information and ignore the other.

Recently, inspired by the success of graph neural networks
(GNNs), two methods are purposely developed for multi-
view attributed graph clustering task. One2Multi [Fan et al.,
2020] adopts maximum modularity strategy to select the most
informative graph view, and then applies clustering technique
to the embeddings of this view. By contrast, MAGCN [Cheng
et al., 2020] tends to deal with data consisting of two sets of
features and a single graph. As a result, they are only evalu-
ated on either multiple graphs or two-view feature data. Thus,
it is still not straightforward for them to deal with data con-
sisting multiple sets of features and graphs. In fact, GNNs
perform poorly when the graph is incomplete or noisy. In
addition, GNNs lack interpretability and their performance
could be inflated due to over-engineering [Errica et al., 2019].

To overcome the above drawbacks, we propose a novel
clustering method for multi-view attributed graph data, which
works surprisingly well. First, we use graph filtering rather
than deep neural networks to obtain a good feature represen-
tation. Second, we design a node sampling strategy using the
importance of nodes to construct an anchor matrix, based on
which a smaller graph is learned for clustering. Third, we
design a regularizer to flexibly explore the high-order neigh-
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borhood information hidden in original graphs. We hope this
simple method will motivate people to investigate other alter-
natives facing the systematic use of deep learning methods.

Notations Define a non-directed graph as G ={
V,E1, · · · ,EV , X1, · · · , XV

}
, where V denotes the set of

n nodes, evi,j ∈ Ev represents the relationship between node
i and j in the v-th view, and Xv = {xv1, · · · , xvn}

> ∈ Rn×dv
denotes the attribute matrix in the v-th view. The struc-
ture information can be denoted by V adjacency matrices{
Ãv

}V
v=1

, Ãv =
{
ãvij
}
∈ Rn×n, ãvij = 1 if there is

an edge between node i and j and 0 otherwise. Based on
degree matrix Dv , symmetrically normalized affinity matrix
Av is defined as D−

1
2

v (Ãv + I)D
− 1

2
v and graph Laplacian is

Lv = Dv −Av .

2 Methodology
For notation convenience, we first discuss in the context of
single view scenario. Real-world signal is often smooth and
the success of GNNs is mainly attributed to the effect of
low-pass filtering [Xu et al., 2019]. Therefore, graph fil-
tering from classical signal processing is an alternative way
for representation learning [Ma et al., 2020]. By treating d-
dimensional data points as d graph signals, a k-order graph
filter can be applied to data matrix X as:

X̄ =

(
I − 1

2
L

)k
X, (1)

where k is a non-negative integer. The resulting X̄ represents
a smoothed representation. Clustering assumes that nearby
nodes are more likely lying in the same cluster. Thus, X̄ will
facilitate the subsequent clustering task.

Rather than directly applying X̄ for spectral clustering
[Zhang et al., 2019], we utilize the self-expressiveness prop-
erty of data [Kang et al., 2021], i.e., each data point can be
expressed as a linear combination of others and combination
coefficient assesses the similarity between any two points, to
learn a similarity graph. This mitigates the bias introduced
by hand-crafted similarity metric [Kang et al., 2020a]. Math-
ematically, this problem can be modeled as:

min
Z

∥∥X̄> − X̄>Z∥∥2
F

+ αΘ(Z), (2)

where α > 0 is a trade-off parameter and Z ∈ Rn×n is the
similarity graph matrix. The first term measures the recon-
struction error and the second term is a regularization term to
avoid trivial solution, e.g., the nuclear norm, sparse `1 norm.
The shortcoming of Eq.(2) is that Z fails to explicitly encap-
sulate the original graph topology.

In this paper, we design a novel regularizer to further ex-
plore the structure information of A. A only characterizes
the first-order neighborhood information and it is desirable to
extract the neighborhood information at different orders. For
example, a two-step random walk between two nodes depicts
the second-order relation between them. The number of com-
mon neighbors determines the probability value. Similarly, a

random walk from one node to another with P steps charac-
terizes P -order proximity [Cao et al., 2015], which can be
written as:

AP = A ·A · · ·A︸ ︷︷ ︸
P

. (3)

We then define f(A) by adding different orders of neighbor-
hood information, i.e., f(A) = A + A2 + · · · + AP . The
order P will be discussed in the experiment. It is reasonable
to assume that the optimal Z is potentially a small shift from
f(A). Then, (2) can be further formulated as:

min
Z

∥∥X̄> − X̄>Z∥∥2
F

+ α‖Z − f(A)‖2F . (4)

Based on Z, spectral clustering can be applied to achieve
final clustering results. However, its O(n3) computational
complexity and memory usage impede the large-scale de-
ployment.

To address the above challenge, instead of using all sam-
ples to reconstruct X̄ in (4), we only choose m(m � n)
representative points [Kang et al., 2020b], i.e., nodes that
play an important role in the graph, whose attributes con-
struct B = [b1, · · · , bm] ∈ Rd×m. In other words, B is a
subset of X̄ . Correspondingly, we learn a smaller similarity
graph S ∈ Rm×n, which characterizes the similarities be-
tween n nodes and m anchors. According to the indexes of
anchors, we can extract the complex structure relationships
between nodes and anchors from f(A), which is denoted by
C ∈ Rm×n. Hence, our single view attributed graph cluster-
ing model becomes:

min
S
‖X̄> −BS‖2F + α‖S − C‖2F . (5)

For multi-view data, all views share the same S to admit
a unique cluster pattern. Nevertheless, different views con-
tribute differently. Thus, we introduce a weighting mech-
anism to address this problem. Eventually, our proposed
Multi-view Attributed Graph Clustering (MvAGC) model is
formulated as:

min
S,λv

V∑
v=1

λv(
∥∥X̄v> −BvS

∥∥2
F

+ α‖S − Cv‖2F ) +

V∑
v=1

(λv)w,

(6)
where λv is the weight parameter for v-th view, w < 0 is a
smooth parameter, Bv denotes the anchors of v-th view, and
Cv is extracted from f(Av).

2.1 Optimization Strategy
The variables in Eq.(6) are coupled, so we adopt the alternat-
ing optimization strategy to solve them.

Fix λv , Update S
When λv is fixed, we set the first-order derivative of Eq.(6)
with respect to S to zero. It yields

S = (
V∑
v=1

λvBv>Bv +
V∑
v=1

λvαI)−1(
V∑
v=1

λvαCv+

V∑
v=1

λvBv>X̄v>).

(7)
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Algorithm 1 MvAGC

Input: Node set V , adjacency matrix Ã1, · · · , ÃV , feature
matrix X1, · · · , XV , parameters k, α, P , w, cluster number
g.
Output: g partitions
1: Perform graph filtering as (1) and compute f(A).
2: Choose m anchors and denote their indexes as ind.
3: Use the ind to choose m rows from X̄v and f(Av),

which construct Bv and Cv respectively.
4: while convergence condition does not meet do
5: Update matrix S in Eq.(7)
6: Update λv in Eq.(9)
7: end while
8: Normalize S by Ŝ = H−

1
2S, where diagonal matrix H

has entry Hii =
∑n
j=1 Sij .

9: Compute the first g eigenvectors of ŜŜ>, represented by
U . Correspondingly, its eigenvalues are denoted by Σ2.

10: Compute V > = Σ−1U>Ŝ.
11: Apply K-means to V .

Fix S, Update λv
For convenience sake, we denote ‖X̄v> −BvS‖2F + α‖S −
Cv‖2F as jv . When S is fixed, our objective function becomes

H (λv) =
V∑
v=1

λvjv +
V∑
v=1

(λv)
w
. (8)

The solution of λv can be easily obtained by setting its first-
order derivative to zero, which yields

λv =

(
−j

v

w

) 1
w−1

. (9)

After obtaining S, we can construct the similarity graph
Z = S>S, based on which we can compute L and apply
spectral clustering to obtain the eigenvector matrix W . Nev-
ertheless, we could not afford to takeO(n3) time and have to
proceed with a different approach.

We first normalize S by defining Ŝ = H−1/2S, where
diagonal matrix H is the row sum of S. Denote the sin-
gular value decomposition (SVD) of Ŝ as UΣV >, where
Σ = diag(σ1, · · · , σm) and 0 ≤ σm ≤ · · · ≤ σ2 ≤ σ1
are the singular values, U = [u1, · · · , um] ∈ Rm×m and
V = [v1, · · · , vm] ∈ Rn×m are the left and right singu-
lar vectors. It can be shown that V are also the eigenvec-
tors of Z, U are the eigenvectors of ŜŜ>, and σ2

i are the
eigenvalues [Cai and Chen, 2015]. Thus, we can compute
U based on ŜŜ> with O(m3) time. V is easily obtained as
V > = Σ−1U>Ŝ. Finally, we apply K-means on V to obtain
the clustering results. The complete procedures of MvAGC
is outlined in Algorithm 1.

2.2 Time Complexity
In Eq.(7), the inverse operation takes O(m3) and the other
matrix operations in the v-th view take O(m2(n + dv +
1) + mn(dv + 1)). For t iterations, it costs O(m3V t +

m2
V∑
v=1

(n+ dv + 1)t + mn
V∑
v=1

(dv + 1)t). Matrix U and

V can be achieved in O(m3) and O(m2n) respectively. The
cost of the K-means is O(mngt1), where t1 denotes the iter-
ation number. It can be seen that the time complexity is linear
with respect to n.

2.3 Anchor Selecting Strategy
Classical anchor selection strategy mainly adopt K-means or
random sampling. They treat each node equally, which is in
contradiction with graph data. We choose anchors based on
the importance of nodes and define q : V → R+ as the impor-
tance measure function. Inspired by word sampling method
in NLP [Mikolov et al., 2013], we set the probability to pick
each node i ∈ V as the first element of anchor setM as:

pi =
q(i)γ∑

j∈V (q(j)γ)
, (10)

where γ > 0, which helps sharpening (γ > 1) or smoothing
(γ < 1) the distribution. We then samplem−1 distinct nodes
without replacement. More concretely, each remaining node
i ∈ V\M is picked with a probability pi/

∑
j /∈M pj as the

second anchor, and so on until |M| = m. The denominator
is a normalization factor and ensures

∑
j /∈M pj = 1 at each

sampling step. In our experiments, we use the total degree
of each node to depict its importance, which is simply the
sum of connection number of each node in each view, i.e.,

q(i) =
V∑
v=1

∑
j∈V Ã

v
ij . The sampling process takes O(mV ),

which is very efficient.

3 Experiment
3.1 Datasets
To demonstrate the effectiveness of our method, we select
five benchmark datasets to evaluate the performance. Among
them, ACM, DBLP, and IMDB [Fan et al., 2020] consist of
one feature matrix and multiple graphs. Amazon Photo and
Amazon Computer [Shchur et al., 2018] consist of one fea-
ture matrix and one graph. Following [Cheng et al., 2020],
we use Cartesian product to build the second feature matrix.
Table 1 shows the details of above five datasets.

3.2 Experimental Setup
To have a comprehensive evaluation, we compare MvAGC
with a number of representative methods, which vary from
single view to multi-view, shallow to deep methods. In par-
ticular, LINE [Tang et al., 2015] and GAE [Kipf and Welling,
2016] are two classical single view method for graph process-
ing. LINE-avg and GAE-avg simply average the node repre-
sentations learned from each view. MNE [Zhang et al., 2018]
and PMNE [Liu et al., 2017] are multi-view network embed-
ding methods. RMSC [Xia et al., 2014] is a robust multi-
view spectral clustering based on Markov chain. PwMC
and SwMC [Nie et al., 2017] introduce weighting mecha-
nisms to cluster multi-view data. O2MAC and O2MA [Fan
et al., 2020] are attributed multi-view graph clustering meth-
ods based on graph auto-encoder. MAGCN [Cheng et al.,
2020] is a multi-view attributed graph convolution network.
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Dataset ACM DBLP IMDB Amazon Photo Amazon Computer
Node # 3025 4057 4780 7487 13381

Feature # in each view 1830 334 1232 745 767
- - - 7487 13381

Edge # in each view
co-paper (29,281) co-author (11,113) co-actor (98,010) co-purchase(119043) co-purchase(245778)

co-subject (2,210,761) co-conf (5,000,495) co-director (21,018) - -
- co-term (6,776,335) - - -

Cluster # 3 4 3 8 10

Table 1: The statistics of the datasets.

method
ACM DBLP IMDB

ACC F1 NMI ARI ACC F1 NMI ARI ACC F1 NMI ARI
LINE 0.6479 0.6594 0.3941 0.3433 0.8689 0.8546 0.6676 0.6988 0.4268 0.287 0.0031 -0.009

LINE-avg 0.6479 0.6594 0.3941 0.3433 0.875 0.866 0.6681 0.7056 0.4719 0.2985 0.0063 -0.009
GAE 0.8216 0.8225 0.4914 0.5444 0.8859 0.8743 0.6925 0.741 0.4298 0.4062 0.0402 0.0473

GAE-avg 0.699 0.7025 0.4771 0.4378 0.5558 0.5418 0.3072 0.2577 0.4442 0.4172 0.0413 0.0491
MNE 0.637 0.6479 0.2999 0.2486 - - - - 0.3958 0.3316 0.0017 0.0008

PMNE(n) 0.6936 0.6955 0.4648 0.4302 0.7925 0.7966 0.5914 0.5265 0.4958 0.3906 0.0359 0.0366
PMNE(r) 0.6492 0.6618 0.4063 0.3453 0.3835 0.3688 0.0872 0.0689 0.4697 0.3183 0.0014 0.0115
PMNE(c) 0.6998 0.7003 0.4775 0.4431 - - - - 0.4719 0.3882 0.0285 0.0284

RMSC 0.6315 0.5746 0.3973 0.3312 0.8994 0.8248 0.7111 0.7647 0.2702 0.3775 0.0054 0.0018
PwMC 0.4162 0.3783 0.0332 0.0395 0.3253 0.2808 0.019 0.0159 0.2453 0.3164 0.0023 0.0017
SwMC 0.3831 0.4709 0.0838 0.018 0.6538 0.5602 0.376 0.38 0.2671 0.3714 0.0056 0.0004
O2MA 0.888 0.8894 0.6515 0.6987 0.904 0.8976 0.7257 0.7705 0.4697 0.4229 0.0524 0.0753

O2MAC 0.9042 0.9053 0.6923 0.7394 0.9074 0.9013 0.7287 0.778 0.4502 0.4159 0.0421 0.0564
MvAGC 0.8975 0.8986 0.6735 0.7212 0.9277 0.9225 0.7727 0.8276 0.5633 0.3783 0.0371 0.0940

Table 2: Clustering results on ACM, DBLP, IMDB. The ’-’ means that the method raises out-of-memory problem.

We adopt four widely used metrics: Accuracy(ACC), Nor-
malized Mutual Information(NMI), F1-score(F1), Adjusted
Rand Index(ARI). To have a fair comparison, we adopt the
parameter settings in O2MAC [Fan et al., 2020] for other
comparison methods on DBLP, IMDB and ACM. For Ama-
zon Photo and Amazon Computer, we only compare with
MAGCN, which has reported better performance than many
others, including MGAE [Wang et al., 2017], ARVGAE [Pan
et al., 2018], DAEGA [Wang et al., 2019], and GATE [Salehi
and Davulcu, 2020]. For our MvAGC, we set f(A) = A+A2

and tune the parameters to obtain the best results.

3.3 Clustering Results

Tables 2 and 3 show the results. For most measures, our
method outperforms baseline methods on DBLP, IMDB,
Amazon Photo and Amazon Computer. For ACM, our
method surpasses O2MA and is comparable to O2MAC. In
particular, we have the following observations. First, ap-
plying single view method to multi-view data leads to poor
performance. This validates the significance of develop-
ing multi-view method to fully exploit the complementary
information. Second, MvAGC outperforms existing multi-
view methods, including MNE, PMNE, RMSC, PwMC and
SwMC. Though they take all graphs into consideration, they
fail to explore the attribute information. By contrast, MvAGC
leverages both feature and graph structure information. Third,
MvAGC beats MAGCN by a wide margin. This could be
because our method adopts self-expressiveness to explore
global structure and incorporates second-order information.

Figure 1: The evolution of objective function.
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DataBase Info Amazon Photo Amazon Computer
Metric ACC F1 NMI ARI ACC F1 NMI ARI

MAGCN-view1 Graph, X1 0.3922 0.359 0.254 0.345 0.3496 0.353 0.174 0.1275
MAGCN-view2 Graph, X2 0.312 0.3369 0.1474 0.05 - - - -
MvAGC-view1 Graph, X1 0.6249 0.5743 0.4941 0.4153 0.5039 0.5104 0.438 0.2943
MvAGC-view2 Graph, X2 0.6169 0.5743 0.4786 0.3421 0.4701 0.3754 0.3628 0.2729

MAGCN Graph, X1, X2 0.5167 0.4736 0.3897 0.2401 - - - -
MvAGC Graph, X1, X2 0.6775 0.6397 0.5237 0.3968 0.5796 0.4117 0.3957 0.3224

Table 3: Clustering results on Amazon Photo and Amazon Computer.

Method ACM DBLP IMDB Amazon Photo Amazon Computer
O2MAC 524.8 5163.4 4555.24 - -
MAGCN - - - 3783.6 -
MvAGC 5.8 5.19 10.38 72.22 215.33

Table 4: Time costs on five datasets (in seconds).

3.4 Time Comparison
It is known that training deep neural networks is often time-
consuming. Therefore, we compare the running time of our
method with the most competitive O2MAC and MAGCN
methods in Table 4. All methods are conducted on the same
machine with an Intel(R) Core(TM) i7-6800k 3.40GHZ CPU,
an GeForce GTX 1080 Ti GPU and 32GB RAM. As ex-
pected, our method is orders of magnitude faster than com-
petitors. MAGCN encounters an out-of-memory error on
Amazon Computer, which demonstrates that our method is
also memory efficient. The evolution of objective value on
ACM, DBLP, IMDB is depicted in Fig.1. We can find that
our method converges within 10 iterations, which also proves
the efficiency of our method.

Dataset Input View Method ACC F1 NMI ARI

ACM
co-paper

AGC 0.8342 0.833 0.5488 0.5741
MvAGC 0.8813 0.8733 0.4680 0.5799

co-subject
AGC 0.7044 0.68 0.4881 0.4516

MvAGC 0.7276 0.6227 0.1287 0.1645

DBLP

co-term
AGC 0.5405 0.5345 0.2251 0.1785

MvAGC 0.7468 0.7140 0.1495 0.2344

co-conf
AGC 0.9006 0.8949 0.7134 0.7625

MvAGC 0.9206 0.9098 0.6122 0.7037

co-author
AGC 0.6364 0.6406 0.3342 0.2771

MvAGC 0.8932 0.8671 0.4553 0.5144

IMDB
co-actor

AGC 0.5403 0.2525 0.0009 0.0024
MvAGC 0.5416 0.4180 0.0235 -0.0377

co-director
AGC 0.533 0.3044 0.006 0.026

MvAGC 0.5736 0.4179 0.0271 -0.0536

Table 5: Clustering results of AGC and MvAGC on each view of
datasets.

3.5 Parameter Analysis
Compared with deep learning methods, our method only has
several parameters to tune, including the balance parameter
α, sampling parameter γ, filter order k, number of anchors

m, weight parameter w. We found that w has little influence
to the results, so we set−3 for all experiments. Taking DBLP
for example, we show the results under different parameters
in Fig.2. For each plot, we fix two parameters and vary the
others. We find that a smallm could result in sub-optimal per-
formance, which is reasonable since too few anchors can not
well represent the whole nodes. α is also data-specific since
it seeks a balance between feature and structure information.
Neither a small value nor a large one is appropriate. Besides,
it is obvious that the performance is not sensitive to γ, thus
we can fix it. Additionally, we can observe that k = 3 is
good enough to ensure promising results. When k increases,
the performance could decrease because a large k could cause
over-smoothing and make the nodes difficult to distinguish.

4 Ablation Study
In this section, we conduct several experiments to examine
the effectiveness of each component in our model, including
the superiority of graph learning, the advantage of graph fil-
tering, and the influence of high-order information.

• AGC [Zhang et al., 2019] is a recent single view at-
tributed graph clustering method, which learns a good
representation through graph filtering. However, it uses
inner product to compute similarity for spectral clus-
tering. To prove the superiority of our graph learn-
ing approach, we list the clustering results of AGC and
MvAGC on each view in Table 5. It is clear that our
method outperforms AGC in most cases and the im-
provement is significant. This indicates that our auto-
matic approach will be more reliable and stable in prac-
tice. We also find that the performance on different
views varies significantly. Therefore, each view con-
tributes differently and a weighting mechanism is cru-
cial to balance different views. Furthermore, the perfor-
mance of MvAGC on each view is indeed inferior to that
in Table 2. This validates the advantage of multi-view
model.

• To see the effect of graph filtering, we replace X̄v> with
Xv> in (6) and denote the model as Baseline. Com-
paring the results of Baseline in Table 6 with that of
MvAGC in Table 2, we can see that MvAGC consis-
tently outperforms the Baseline. This verifies the advan-
tage of representation learning via graph filtering.

• To analyze the importance of high-order information,
we test different orders of f(A), including f(A) = A,
f(A) = A+A2, f(A) = A+A2 +A3. With respect to
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Figure 2: Sensitivity analysis of parameters for our method on DBLP.

first-order f(A), high-order neighborhood information
improves by 29.53% on average in Table 6. By contrast,
third-order f(A) deteriorates the performance a little bit
on ACM and DBLP. This is perhaps caused by the way
we compute high-order information. Computing it di-
rectly from affinity matrices could destroy the relation-
ship between nodes and produce redundant information
[Zhu et al., 2019]. At least, second-order information
improve the performance.

Dataset Method ACC F1 NMI ARI

ACM

Baseline 0.6674 0.6674 0.2424 0.2698
f(A) = A 0.8846 0.8860 0.6438 0.6910

f(A) = A+A2 0.8975 0.8986 0.6735 0.7212
f(A) = A+A2 +A3 0.8753 0.8769 0.6262 0.6686

DBLP

Baseline 0.5639 0.5570 0.2513 0.1634
f(A) = A 0.9211 0.9163 0.7568 0.8109

f(A) = A+A2 0.9277 0.9225 0.7727 0.8276
f(A) = A+A2 +A3 0.9243 0.9196 0.7678 0.817

IMDB

Baseline 0.5462 0.2367 0.0099 0.0004
f(A) = A 0.5608 0.3329 0.0273 0.0474

f(A) = A+A2 0.5633 0.3783 0.0371 0.0940
f(A) = A+A2 +A3 0.5746 0.4250 0.0647 0.1279

Table 6: Clustering results under different settings.

5 Conclusion
In this paper, we propose a novel graph filter-based multi-
view attributed graph clustering model. It is able to effi-
ciently cluster large-scale multi-view attributed graph data.
Our method employs the classical graph filtering to facilitate
the subsequent graph learning and extracts high-order neigh-
borhood information. The learned graph integrates both the
attribute and structure information in a smart way. Com-
prehensive experimental results based on five graph bench-
mark datasets demonstrate state-of-the-art performance being
achieved, which match or outperform other baselines, includ-
ing the recent deep learning methods.
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