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Abstract
Differentially private machine learning trains mod-
els while protecting privacy of the sensitive training
data. The key to obtain differentially private mod-
els is to introduce noise/randomness to the training
process. In particular, existing differentially private
machine learning methods add noise to the train-
ing data, the gradients, the loss function, and/or the
model itself. Bagging, a popular ensemble learn-
ing framework, randomly creates some subsamples
of the training data, trains a base model for each
subsample using a base learner, and takes major-
ity vote among the base models when making pre-
dictions. Bagging has intrinsic randomness in the
training process as it randomly creates subsamples.
Our major theoretical results show that such intrin-
sic randomness already makes Bagging differen-
tially private without the needs of additional noise.
Moreover, we prove that if no assumptions about
the base learner are made, our derived privacy guar-
antees are tight. We empirically evaluate Bag-
ging on MNIST and CIFAR10. Our experimental
results demonstrate that Bagging achieves signifi-
cantly higher accuracies than state-of-the-art differ-
entially private machine learning methods with the
same privacy budgets.

1 Introduction
Machine learning has transformed various areas such as com-
puter vision, natural language processing, healthcare, and cy-
bersecurity. However, since a model is essentially some ag-
gregate of the training data, the model may reveal rich infor-
mation about the training data. For instance, with access to a
model or only its prediction API, model inversion [Fredrikson
et al., 2015] can reconstruct (representative) training data of
the model, while membership inference [Shokri et al., 2017]
can predict whether a given data point is among the model’s
training data or not. As a result, the model may compro-
mise the privacy or confidentiality of the sensitive or propri-
etary training data such as electronic health records, location
traces, and online digital behaviors. Moreover, various coun-
tries have passed laws such as General Data Protection Reg-
ulation (GDPR) [Voigt and Von dem Bussche, 2017] to reg-

ulate and protect data privacy. Therefore, privacy-preserving
machine learning that trains models while protecting privacy
of the training data is gaining increasing attention in both
academia and industry.

(ε, δ)-differential privacy [Dwork et al., 2014] has become
a de facto standard for privacy-preserving data analytics.
Many studies [Hamm et al., 2016; Abadi et al., 2016; Pa-
pernot et al., 2016; Papernot et al., 2018; Jordon et al., 2018;
Xie et al., 2018] have extended (ε, δ)-differential privacy to
machine learning. Roughly speaking, a machine learning
method satisfies differential privacy if the learnt model does
not change much when adding or removing one example in
the training data. The key idea of differentially private ma-
chine learning is to introduce noise/randomness in the train-
ing process. Specifically, existing methods introduce ran-
domness to the training data, the gradients when stochas-
tic gradient descent is used to learn a model, the loss func-
tion, and/or the model itself. For instance, Differentially
Private Stochastic Gradient Descent (DPSGD) [Abadi et al.,
2016] introduces well-calibrated Gaussian noise to the gra-
dient computed from a random batch of the training data
in each iteration when using stochastic gradient descent to
learn a model. Private Aggregation of Teacher Ensembles
(PATE) [Papernot et al., 2016; Papernot et al., 2018] trains
multiple teacher models on pre-defined disjoint chunks of the
sensitive training data. Then, PATE uses the teacher mod-
els to predict labels for examples in a non-sensitive public
dataset, aggregates the labels for each example, and adds
noise to the aggregated labels to achieve differential privacy.
Finally, PATE trains a student model using the non-sensitive
dataset with the aggregated labels predicted by teacher mod-
els. The student model satisfies (ε, δ)-differential privacy.

Our work. Bagging [Breiman, 1996], a popular ensemble
learning framework, randomly creates some subsamples of
the training data, trains a base model for each subsample us-
ing a base learner, and takes majority vote among the base
models when making predictions. Bagging has intrinsic ran-
domness in the training process as it randomly creates sub-
samples. Our major theoretical results have two folds. On
one hand, we show that the intrinsic randomness of Bagging
already makes it differentially private without the needs of
additional noise. In particular, we prove that, for any base
learner, Bagging with and without replacement respectively
achieves

(
N · k · ln n+1

n , 1− (n−1n )N ·k
)
-differential privacy
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and
(
N · ln n+1

n+1−N ·k ,
N ·k
n

)
-differential privacy, where n is

the training data size, k is the subsample size, and N is the
number of base models. Moreover, we prove that if no as-
sumptions about the base learner are made, our derived pri-
vacy guarantees are tight. On the other hand, our theoretical
results indicate that Bagging can only provide differential pri-
vacy with δ ≥ 1/n. According to Dwork and Roth [Dwork
et al., 2014], δ ≥ 1/n provides “just a few” privacy guar-
antee, which is equivalent to protecting the privacy of most
training examples while compromising the privacy of just
a few training examples. We empirically evaluate Bagging
on MNIST and CIFAR10. For instance, Bagging achieves
79.55% testing accuracy on CIFAR10 with privacy budget
ε = 0.2, δ = 0.18 (i.e., k = 10000 and N = 1). With
the same privacy budget, DPSGD [Abadi et al., 2016] only
achieves 30.63% testing accuracy.

Our main contributions can be summarized as follows:

• We derive the (ε, δ)-differential privacy of Bagging.

• We prove our derived (ε, δ)-differential privacy of Bag-
ging is tight if no extra assumptions about the base
learner are given.

• We empirically compare Bagging with state-of-the-
art privacy-preserving machine learning methods on
MNIST and CIFAR10.

2 Background and Related Work
In this section, we first review the concept of (ε, δ)-
differential privacy as well as its composition theorem
and post-processing property. Then, we review Bag-
ging [Breiman, 1996] and existing differentially private ma-
chine learning approaches.

2.1 Differential Privacy
Differential privacy [Dwork et al., 2014] is defined in terms
of adjacent datasets. In machine learning, a dataset consists
of training examples. We call two training datasets adjacent
datasets if there only exists one training example that appears
in one dataset but is absent in the other. With the definition
of adjacent datasets, we can introduce the definition of (ε, δ)-
differential privacy as follows:

Definition 1 ((ε, δ)-differential privacy [Dwork et al., 2014]).
A randomized mechanism M : D → R satisfies (ε, δ)-
differential privacy if for all adjacent datasets D, D′ ∈ D,
and for all S ⊆ R, it holds that:

Pr(M(D) ∈ S) ≤ eε · Pr(M(D′) ∈ S) + δ, (1)

where the randomness is taking over the mechanismM.

In machine learning, the randomized mechanism M de-
notes the algorithm to train a model. (ε, δ)-differential pri-
vacy formalizes that the learnt model does not change much
when adding or removing an arbitrary example in the training
data. ε and δ quantify the upper bound of observable prob-
ability differences between the learnt models conditioned on
adjacent datasets. If δ = 0, we say thatM is ε-differentially
private [Dwork et al., 2014]. Thereby, the additive term δ is

considered as the probability at which the ε-differential pri-
vacy guarantee may be broken.

When several differential privacy mechanisms are com-
posed, the differential privacy guarantee of the composed
mechanism is the sum of the privacy guarantees of the indi-
vidual mechanisms. Formally, differential privacy follows the
standard composition theorem [Dwork et al., 2014] below:
Theorem 1 (Composition theorem of (ε, δ)-differential pri-
vacy [Dwork et al., 2014]). Let Mi : D → Ri
be an (εi, δi)-differentially private algorithm for i ∈
[k]. If M[k] : D → ∏k

i=1Ri is defined to be
M[k](D) = (M1(D), · · · ,Mk(D)) , then M[k] satisfies(∑k

i=1 εi,
∑k
i=1 δi

)
-differential privacy.

Proof. Please refer to the proof of Theorem 3.16 in Dwork
and Roth [Dwork et al., 2014]

The composition theorem is a standard way to obtain pri-
vacy guarantees for repeated application of differentially pri-
vate algorithms. Besides the composition theorem, (ε, δ)-
differential privacy also has the following post-processing
property:
Proposition 1 (Post-processing [Dwork et al., 2014]). Let
M : D → R be a randomized algorithm that is (ε, δ)-
differentially private. If f : R → R′ is an arbitrary ran-
domized or deterministic mapping. Then f ◦ M : D → R′

satisfies (ε, δ)-differential privacy.

Proof. Please refer to the proof of Proposition 2.1 in Dwork
and Roth [Dwork et al., 2014].

The post-processing property ensures that the computation
results of a differentially private mechanism can be safely
released because any post-processing computation of origi-
nally (ε, δ)-differentially private algorithm will also be (ε, δ)-
differentially private. The composition theorem and post-
processing property make (ε, δ)-differential privacy applica-
ble to analyze complex differentially private algorithms.

2.2 Bagging
Ensemble learning [Dietterich, 2000] tries to combine the
base models produced by several learners into an ensemble
that performs better than the original base learners. Bagging
is a popular ensemble learning framework [Breiman, 1996],
which we formally define as follows:
Definition 2 (Bagging (Bootstrap Aggregating) [Breiman,
1996]). Given a training dataset D of size n, Bagging gen-
erates N subsamples Di (i = 1, 2, · · · , N). Each subsample
Di randomly samples k examples from D with or without re-
placement. Then, Bagging trains a base model on each sub-
sample Di using a base learner. When predicting the label
for a testing example, Bagging takes majority vote among the
base models.

If Bagging creates a subsample by randomly sampling k
examples from the training dataset with replacement, some
examples in the training dataset may be chosen multiple
times. If Bagging creates a subsample by randomly sampling
k examples from the training dataset without replacement, an
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example in the training dataset may be selected at most once.
In the following parts of this paper, we distinguish these two
methods as Bagging with replacement and Bagging without
replacement, respectively. In Section 3, our major theoretical
results show that Bagging’s intrinsic randomness brought by
its re-sampling process satisfies (ε, δ)-differential privacy.

2.3 Differentially Private Machine Learning

Many studies [Hamm et al., 2016; Abadi et al., 2016; Paper-
not et al., 2016; Papernot et al., 2018; Jordon et al., 2018; Xie
et al., 2018; Chaudhuri et al., 2011; Kifer et al., 2012; Song
et al., 2013; Bassily et al., 2014; Wang et al., 2017; Jordon et
al., 2018] have extended (ε, δ)-differential privacy to machine
learning. Generally speaking, most studies satisfy differential
privacy by introducing additive-noise mechanisms. Specif-
ically, existing methods introduce noise/randomness to the
training data, the gradients when stochastic gradient descent
is used to learn a model, the loss function, and/or the model
itself. For instance, Chaudhuri et al. [Chaudhuri et al., 2011]
proposed to add noise to the loss function and then minimize
the noisy loss function using a standard optimization method.
Kifer et al. [Kifer et al., 2012] improved the utility of such
loss function based perturbation method. Several other meth-
ods [Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016;
Wang et al., 2017] proposed to add noise to the gradient in
each iteration of gradient descent or stochastic gradient de-
scent. For instance, Abadi et al. [Abadi et al., 2016] proposed
DPSGD, which introduces well-calibrated Gaussian noise to
the gradient computed from a random batch of the training
data in each iteration when using stochastic gradient descent
to learn a model. Moreover, they proposed moments accoun-
tant, which is a stronger accounting method to track the pri-
vacy loss for adding Gaussian noise than the standard com-
position theorem. Jordan et al. [Jordon et al., 2018] pro-
posed a method for the generator in generative adversarial
networks [Goodfellow et al., 2014] to generate synthetic data
for training, which provides privacy guarantee for the original
training dataset.

Papernot et al. [Papernot et al., 2016; Papernot et al., 2018]
developed the PATE [Papernot et al., 2016; Papernot et al.,
2018] framework, which trains multiple teacher models on
pre-defined disjoint chunks of the sensitive training data and
distills the teacher models to a student model using public
non-sensitive data in a privacy-preserving way. The student
model satisfies (ε, δ)-differential privacy. Jordan et al. [Jor-
don et al., 2019] introduced a variant of PATE to improve
the student model’s accuracy by dividing the sensitive data
several times (rather than just once in PATE) and learning
teacher models on each chunk within each division. Note that
PATE and its variant [Jordon et al., 2019] divide the sensitive
training data to chunks, which is different from Bagging that
randomly creates subsamples. Moreover, our results essen-
tially show that if PATE trains the teacher models using ran-
domly created subsamples, then the teacher models (they can
be treated as base models in Bagging) already satisfy (ε, δ)-
differential privacy.

3 (ε, δ)-Differential Privacy of Bagging
In this section, we first intuitively explain why the random-
ness of the re-sampling process in Bagging may satisfy differ-
ential privacy. Then, we formally derive the (ε, δ)-differential
privacy of Bagging in different cases and prove the tightness
of our derived privacy bounds. Due to the space limitation,
we put our detailed proofs in the Supplementary Material.

Roughly speaking, a machine learning method satisfies dif-
ferential privacy if the learnt model does not change much
when adding or removing one example in the training data.
Suppose Bagging randomly samples k examples with re-
placement from the training dataset to create one subsam-
ple and trains one base model. When the size of the training
dataset is large, Bagging is unlikely to sample the example,
which is added or removed from the original training dataset.
Specifically, when the size of the training dataset is n, Bag-
ging with replacement would not select that added or removed
example with probability of

(
n−1
n

)k
when creating a subsam-

ple. Therefore, adding or removing one example in the train-
ing dataset is unlikely to substantially affect the base model,
making Bagging differentially private. In the following, we
formally analyze the (ε, δ)-differential privacy guarantees of
Bagging. Table 1 summarizes our derived (ε, δ)-differential
privacy guarantees for Bagging with/without replacement.
Theorem 2 ((ε, δ)-differential privacy of Bagging with re-
placement when N = 1). Given a training dataset of size
n and an arbitrary base learner, Bagging with replacement
achieves (k · ln n+1

n , 1 − (n−1n )k)-differential privacy when
training one base model, where k is the subsample size.

Proof. Please refer to Supplementary Material for details. In
our proof, we first show the process of subsampling in Bag-
ging with replacement achieves (k · ln n+1

n , 1 − (n−1n )k)-
differential privacy. Then we can view Bagging’s training
of the base model as post-processing of subsampling so that
Bagging with replacement achieves (k · ln n+1

n , 1− (n−1n )k)-
differential privacy.

Note that our results are applicable to any base learner.
One way to obtain the differential privacy guarantee
of Bagging when training N base models is to apply
the standard composition theorem in Theorem 1. In
particular, based on the standard composition theorem
of (ε, δ)-differential privacy, Bagging with replacement
achieves

(
N · k · ln n+1

n , N ·
(
1− (n−1n )k

))
-differential pri-

vacy when trainingN base models. However, this differential
privacy guarantee from the standard composition theorem is
loose. In the following theorem, we show that Bagging with
N base models achieves better differential privacy guarantees
than that indicated by the standard composition theorem.
Theorem 3 ((ε, δ)-differential privacy of Bagging with re-
placement when N>1). Given a training dataset of size n
and an arbitrary base learner, Bagging with replacement
achieves (N · k · ln n+1

n , 1 − (n−1n )N ·k)-differential privacy
when training N base models, where k is the subsample size.

Proof. We first sample N · k examples from the training
dataset uniformly at randomly with replacement. Based
on the proof of Theorem 2, the sampled N · k examples
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Bagging with replacement ε = N · k · ln n+1
n

δ = 1− (n−1
n

)N·k Bagging without replacement ε = ln n+1
n+1−N·k δ = N·k

n

Table 1: Our derived tight (ε, δ)-differential privacy guarantees for Bagging. n is the training dataset size, k is the subsample size, and N is
the number of base models.

achieve
(
N · k · ln n+1

n , 1− (n−1n )N ·k
)
-differential privacy.

Then, we can evenly divide the N · k examples to N sub-
samples and train N base models. Note that we can view
training the N base models as post-processing of the N · k
examples, which does not incur extra privacy loss based
on Proposition 1. Therefore, the entire process achieves
(N · k · ln n+1

n , 1− (n−1n )N ·k)-differential privacy.

If Bagging randomly samples k examples from the training
dataset without replacement to create each subsample, then
Bagging has the following differential privacy guarantee:

Theorem 4 ((ε, δ)-differential privacy of Bagging without re-
placement). Given a training dataset of size n and an ar-
bitrary base learner, Bagging without replacement achieves
(ln n+1

n+1−N ·k ,
N ·k
n )-differential privacy when trainingN base

models, where k is the subsample size.

Proof. Please refer to Supplementary Material.

Next, we show that our derived privacy guarantees of Bag-
ging are tight if no extra assumptions are made on the base
learner. More specifically, if no assumptions on the base
learner are made, it is impossible to derive a δ that is smaller
than ours for Bagging.

Theorem 5 (Tightness of δ for Bagging with replacement).
For any δ < 1 −

(
n−1
n

)N ·k
, there exists a base learner

such that Bagging with replacement cannot satisfy (ε, δ)-
differential privacy for any ε.

Proof. Our proof is based on constructing a counter-example
base leaner that Bagging with replacement cannot achieve
(ε, δ)-differential privacy for any ε when δ < 1 − (n−1n )N ·k.
Please refer to Supplementary Material for details.

Theorem 6 (Tightness of δ for Bagging without replace-
ment). For any δ < N ·k

n , there exists a base learner such that
Bagging without replacement cannot satisfy (ε, δ)-differential
privacy for any ε.

Proof. Please refer to Supplementary Material.

4 Evaluation
We compare Bagging with DPSGD [Abadi et al., 2016] and
PATE [Papernot et al., 2018] in different scenarios. We use
the open-source implementations of DPSGD and PATE from
their authors.

4.1 Experimental Setup
Two cases. Privacy-preserving machine learning aims to
train a model while protecting the privacy of a sensitive train-
ing dataset. Depending on whether we have access to a public
non-sensitive dataset, we consider the following two cases.

• Case I: No access to a public non-sensitive dataset. In
this case, we only have access to the sensitive training
dataset. In this case, PATE is not applicable. Therefore,
we compare Bagging and DPSGD in this case.

• Case II: Access to a public non-sensitive dataset.
In this case, we have access to a public non-sensitive
dataset other than the sensitive training dataset. For in-
stance, the sensitive training dataset could be CIFAR10
while the public non-sensitive dataset could be Ima-
geNet. Therefore, we can leverage transfer learning to
distill knowledge from the public non-sensitive dataset
to boost the accuracy of the privacy-preserving model
trained on the sensitive training dataset. In particular, we
can first pretrain a model on the public dataset. Then,
for DPSGD, we fine-tune the pretrained model on the
sensitive training dataset using DPSGD. For Bagging,
we fine-tune the pretrained model on subsamples of the
sensitive training dataset to obtain the base models. For
PATE, we train the teacher models and student model via
fine tuning the pretrained model. Note that DPSGD and
Bagging do not require the public non-sensitive dataset
to have the same distribution as the sensitive training
dataset. However, PATE further requires a public dataset
that has the same distribution as the sensitive training
dataset to train the student model. We call this pub-
lic dataset same-distribution public dataset. Therefore,
PATE has stronger assumptions than DPSGD and Bag-
ging.

Datasets and models. We discuss our datasets and models
for Case I and Case II separately.

• Case I. We adopt MNIST [LeCun et al., 2010] and CI-
FAR10 [Krizhevsky et al., 2009] as the sensitive train-
ing datasets. On MNIST, we use a simple convolutional
neural network with two convolutional layers, each fol-
lowed by a pooling layer, and a fully connected layer
(Table 4 in Supplemental Material shows the details).
For CIFAR10, we adopt the VGG16 [Simonyan and Zis-
serman, 2014] architecture.

• Case II. We still adopt MNIST and CIFAR10 as the
sensitive training datasets. When MNIST is the sensi-
tive training dataset, we adopt Fashion-MNIST [Xiao et
al., 2017] as the public non-sensitive dataset. When CI-
FAR10 is the sensitive training dataset, we assume Im-
ageNet [Deng et al., 2009] is the public non-sensitive
dataset. PATE further requires a small same-distribution
public dataset. For this purpose, we select the first 1,000
testing examples of MNIST (or CIFAR10) as the same-
distribution public dataset when training PATE’s student
models on MNIST (or CIFAR10). Note that DPSGD,
Bagging, and PATE are all evaluated on the remaining
9,000 testing examples of MNIST (or CIFAR10) in Case
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Privacy Budget Accuracy Parameter Setting

ε δ No Privacy DPSGD Bagging σ k

0.005 0.005 - 16.41% 90.66% 200 300
0.008 0.008 - 19.76% 93.81% 150 500
0.017 0.017 - 39.73% 94.60% 100 1,000
0.083 0.080 - 87.91% 97.68% 19 5,000
0.167 0.154 - 91.95% 98.28% 8 10,000

- - 99.1% - - - -

(a) Comparison results on MNIST in Case I.

Privacy Budget Accuracy Parameter Setting

ε δ No Privacy DPSGD Bagging σ k

0.02 0.02 - 12.74% 41.63% 72 1,000
0.1 0.095 - 15.78% 59.76% 11.5 5,000
0.2 0.181 - 27.86% 65.25% 4.9 10,000
0.4 0.33 - 40.96% 70.75% 2.18 20,000
0.6 0.45 - 46.53% 73.95% 1.4 30,000

- - 80.82% - - - -

(b) Comparison results on CIFAR10 in Case I.

Table 2: Comparison results in Case I.

Method ε δ Accuracy Parameter Setting

No Privacy - - 98.83% -

DPSGD 0.008 0.008 11.17% σ = 150
PATE 0.57 0.008 74.37% Queries to Aggregator = 100

Bagging 0.008 0.008 90.20% k = 500

DPSGD 0.017 0.017 14.46% σ = 100
PATE 0.66 0.017 78.42% Queries to Aggregator = 150

Bagging 0.017 0.017 93.59% k = 1, 000

DPSGD 0.08 0.08 81.43% σ = 19
PATE 0.63 0.08 83.31% Queries to Aggregator = 180

Bagging 0.08 0.08 96.87% k = 5, 000

(a) Comparison results on MNIST in Case II.

Method ε δ Accuracy Parameter Setting

No Privacy - - 87.90% -

DPSGD 0.02 0.02 11.97% σ = 72
PATE 1.12 0.02 37.8% Queries to Aggregator = 100

Bagging 0.02 0.02 62.22% k = 1, 000

DPSGD 0.1 0.095 21.08% σ = 11.5
PATE 1.02 0.095 40.86% Queries to Aggregator = 130

Bagging 0.1 0.095 75.67% k = 5, 000

DPSGD 0.2 0.18 30.63% σ = 4.9
PATE 1.03 0.18 42.55% Queries to Aggregator = 170

Bagging 0.2 0.18 79.55% k = 10, 000

(b) Comparison results on CIFAR10 in Case II.

Table 3: Comparison results in Case II.

II. On Fashion-MNIST, we pretrained a convolutional
neural network, which has the same architecture as the
model in Case I for MNIST. Moreover, we adopt the
pretrained VGG16 model1 [Simonyan and Zisserman,
2014] for the ImageNet dataset. DPSGD, PATE, and
Bagging fine-tune these pretrained models on the sen-
sitive training dataset following the standard fine-tuning
procedure. In particular, we replace the last fully con-
nected layer of a pretrained model as a new one that
has the same number of classes as the sensitive train-
ing dataset. We then fine-tune the model using a learn-
ing rate that is 10 times smaller than that when training
from scratch.

Parameter settings. We set training epochs=100 for both
Bagging and DPSGD in both Case I and Case II. We adopt
Bagging with replacement andN = 1 as the default setting in
Case I and Case II. For PATE [Papernot et al., 2018], we set
the number of teachers to be 250, and both teacher and stu-
dent models are trained for 1,000 epochs. Bagging, DPSGD,
and PATE have different ways to control ε and δ. Next, we
describe how to set their parameters to achieve a target level
of ε and δ.

• Bagging. Given the training dataset size n and subsam-
ple size k, we can calculate the privacy budget (ε, δ) of
Bagging based on Table 1.

• DPSGD [Abadi et al., 2016]. We vary the standard devi-
ation σ of the Gaussian noise used by DPSGD to achieve

1https://github.com/keras-team/keras-applications/blob/master/
keras applications/vgg16.py

a target level of ε and δ.
• PATE [Papernot et al., 2018]. For PATE with the

Confident-GNMax aggregation mechanism [Papernot et
al., 2018], threshold T and noise parameter σ1 are used
for privately checking consensus of the teachers’ predic-
tions. Gaussian noise standard deviation σ2 is used for
the usual max-of-Gaussian [Papernot et al., 2018]. Fol-
lowing the authors of PATE, we set T= 200, σ1 = 150,
and σ2 = 40. We then vary the number of queries an-
swered by the Confident-GNMax aggregator to achieve
a target privacy budget ε and δ. We found that PATE can-
not reach the small ε we set for Bagging and DPSGD, so
we relax its ε to be around 1, which is much larger than
the ε used by Bagging and DPSGD. In other words, we
give additional advantages for PATE.

4.2 Experimental Results
We first compare Bagging with DPSGD and PATE. Then, we
evaluate different variants of Bagging.
Comparison results in Case I. Table 2a and 2b show the
testing accuracies of DPSGD and Bagging (with replacement
andN = 1) for different privacy budgets in Case I on MNIST
and CIFAR10, respectively. The column “No Privacy” corre-
sponds to models without privacy guarantees. First, we ob-
serve that Bagging achieves significantly higher testing ac-
curacies than DPSGD under the same privacy budget. Sec-
ond, increasing the subsample size k in Bagging is equiva-
lent to decreasing the Gaussian noise scale in DPSGD, which
provides weaker privacy guarantees and trains models with
higher accuracies.
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Figure 1: Testing accuracy of Bagging when training N base models, where the privacy budget N · k is fixed.
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Figure 2: Bagging with replacement vs. Bagging without replacement.

Comparison results in Case II. Table 3a and 3b respec-
tively show the testing accuracies of DPSGD, PATE, and Bag-
ging for different privacy budgets in Case II on MNIST and
CIFAR10, respectively. We have two observations. First,
Bagging achieves significantly higher testing accuracies than
DPSGD and PATE, even if PATE has weaker privacy guaran-
tees. Second, via comparing Table 2b and Table 3b, we ob-
serve that Bagging achieves better accuracies in Case II than
Case I for CIFAR10 when the public non-sensitive dataset
is ImageNet, which means that transferring knowledge from
a public non-sensitive dataset does improve accuracy of the
model trained on the sensitive training dataset. DPSGD also
achieves higher accuracies in Case II for CIFAR10 when the
privacy budgets are larger than some threshold (e.g., 0.02).
However, we didn’t observe such accuracy improvement for
MNIST in Case II when the public non-sensitive dataset is
Fashion-MNIST. In fact, based on Table 2a and 3a, testing ac-
curacies of DPSGD and Bagging may even decrease in Case
II. We suspect the reason may be that the pretrained model
for Fashion-MNIST is much simpler than that for ImageNet,
which does not extract meaningful features.

Impact of k andN on Bagging. Figure 1 shows the testing
accuracy of Bagging in Case II as we train more base models.
We fixN ·k in each curve in the graphs, so each curve has the
same privacy budget independent of the number of base mod-
els. We observe that, given the same privacy budget, Bagging
has lower accuracies when training more base models. The
reason is that, given the same privacy budget, training more
base models means that each base model is trained using less

examples and thus less accurate.

Bagging with vs. without replacement. Figure 2 shows
the testing accuracy of Bagging with vs. without replacement
in Case II as we vary the subsample size k, where N = 1.
The same subsample size k has very close privacy budgets
(ε, δ) for Bagging with and without replacement, according
to Table 1. Our results show that with or without replacement
has negligible impact on Bagging.

5 Conclusion

In this work, we study the intrinsic (ε, δ)-differential privacy
of Bagging. Our major theoretical results show that Bag-
ging’s intrinsic randomness from subsampling already makes
Bagging differentially private without the needs of additional
noise. We derive the (ε, δ)-differential privacy guarantees for
Bagging with and without replacement. Moreover, we prove
that if no assumptions about the base learner are made, our
derived privacy guarantees are tight. We empirically evalu-
ate Bagging on MNIST and CIFAR10. Our experimental re-
sults demonstrate that Bagging achieves significantly higher
accuracies than state-of-the-art differentially private machine
learning methods with the same privacy budget.
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