
Two-stage Training for Learning from Label Proportions
Jiabin Liu1,4∗ , Bo Wang2∗† , Xin Shen3 , Zhiquan Qi4† and Yingjie Tian4

1AI Lab, Samsung Research China - Beijing
2University of International Business and Economics

3The Chinese University of Hong Kong
4University of Chinese Academy of Sciences

liujiabin008@126.com, wangbo@uibe.edu.cn, xshen@se.cuhk.edu.hk,
qizhiquan@foxmail.com, tyj@ucas.ac.cn

Abstract
Learning from label proportions (LLP) aims at
learning an instance-level classifier with label pro-
portions in grouped training data. Existing deep
learning based LLP methods utilize end-to-end
pipelines to obtain the proportional loss with
Kullback-Leibler divergence between the bag-level
prior and posterior class distributions. However,
the unconstrained optimization on this objective
can hardly reach a solution in accordance with the
given proportions. Besides, concerning the proba-
bilistic classifier, this strategy unavoidably results
in high-entropy conditional class distributions at
the instance level. These issues further degrade
the performance of the instance-level classification.
In this paper, we regard these problems as noisy
pseudo labeling, and instead impose the strict pro-
portion consistency on the classifier with a con-
strained optimization as a continuous training stage
for existing LLP classifiers. In addition, we in-
troduce the mixup strategy and symmetric cross-
entropy to further reduce the label noise. Our
framework is model-agnostic, and demonstrates
compelling performance improvement in extensive
experiments, when incorporated into other deep
LLP models as a post-hoc phase.

1 Introduction
Learning from label proportions (LLP) is an important
weakly supervised classification problem with only the la-
bel proportions in grouped data available. Still, training
LLP aims to obtain an instance-level classifier for the new-
come inputs. Successfully resolving LLP problems greatly
contribute to many real-life applications: demographic clas-
sification [Ardehaly and Culotta, 2017], US presidential
election [Sun et al., 2017], embryo implantation prediction
[Hernández-González et al., 2018], spam filtering [Kuck and
de Freitas, 2012], video event detection [Lai et al., 2014], vi-
sual attribute modeling [Chen et al., 2014; Yu et al., 2014a],
and traffic flow prediction [Liebig et al., 2015].
∗Equal Contribution
†Corresponding Authors

On the one hand, the learnability of LLP strongly depends
on the instances grouping and the proportions distribution in
the bags. [Yu et al., 2014b] studied the instance-level empiri-
cal proportions risk minimization (EPRM) algorithm for LLP,
w.r.t. the number, the size, and the prior label distribution of
the bags. They proved that LLP is learnable with the EPRM
principle and given the bound of expected learning risk.

On the other hand, EPRM strives to minimize bag-level
label proportions error. Normally, this goal is achieved by
minimizing Kullback-Leibler (KL) divergence between prior
and posterior class distributions in each bag. However, bag-
level proportional information hardly provides sufficient con-
straints to perfectly solve LLP, because too many instance-
level classifiers can satisfy proportional constraints exactly.
In other words, when considering instance-level classifica-
tion, LLP is ill-posed. As a consequence of the underdeter-
mination, despite a number of achievements have been devel-
oped to resolve LLP accurately, it is still of great importance
to design effective instance-level learning scheme to signif-
icantly improve the performance on high-dimensional data,
e.g., images, merely with the proportional information.

In this paper, we challenge this issue through explicit
weakly supervised clustering with proportions, instead of the
inadequate bag-level KL divergence. To be concrete, un-
supervised clustering is expected to discover data clusters
specifically corresponding to classes. However, naı̈vely ap-
plying clustering without supervision will result in a trivial
solution to assign all the instances to one cluster, deviating
from the semantics, i.e., classes. Fortunately, we can avoid
this degeneration by imposing appropriate constraints on the
cluster distribution [Caron et al., 2018]. For example, when
there is no knowledge on labels, we impose discrete uniform
distribution to labels, leading to equal clustering. Besides,
in a semi-supervised learning protocol, the clustering result
can be restricted with the help of labeled instances [Asano et
al., 2020] as well. Similarly, in LLP scenario, we draw in-
spiration from this constrained clustering, to leverage label
proportions to constrain cluster sizes. Specifically, we build
a constrained optimization problem, regarding feasible solu-
tions as pseudo-labels that accurately complying proportions.

In order to properly tackle the weak supervision, we cast
our framework, called PLOT, by considering pseudo label-
ing and the classification within one objective, utilizing label
proportions as the constraints. To implement the proposed
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Figure 1: Illustration of the proposed two-stage LLP training frame-
work. (Best viewed in color)

schema, we alternately update the network parameters and
the pseudo-labels, where optimal transport (OT) [Peyré et al.,
2019] is employed to conduct the pseudo labeling process
and standard cross-entropy minimization is adopted to train
the network parameters. Besides, to recognize the resulting
pseudo-label as noisy label to the unknown clean one, we
spur a new line to propose a two-stage training strategy: Set
our method as a following stage after other LLP solvers, and
train the classification network with symmetric cross-entropy
(SCE) [Wang et al., 2019] along with mixup dataset [Zhang
et al., 2018] to combat the memorization of noisy labels and
inject the robustness into the solution. We illustrate the pro-
posed two-stage framework in Figure 1.

In summary, our main contributions are four-fold:
• We propose a novel LLP framework PLOT, which aims

at meeting the exact proportions with a constrained opti-
mization, and is an essentially orthogonal LLP treatment
to the existing LLP algorithms;

• We conduct an alternate optimization process to solve
the optimization on both the neural network classifier
and pseudo labeling, by applying SCE to learn from the
noisy pseudo-labels obtained with OT;

• Our framework is model-agnostic, and we demonstrate
that it can easily fit for various deep-based LLP models
as a post-hoc stage to further boost their performance;

• With lightly additional hyper-parameter and mixup data
augmentation, our framework achieves state-of-the-art
LLP performance on several benchmark datasets, based
on the neural network pipeline with standard settings.

2 Related Work
To our knowledge, four end-to-end pipelines have been pro-
posed for LLP, with deep neural networks as the backbone ar-
chitecture. Specifically, DLLP [Ardehaly and Culotta, 2017]
is the first end-to-end LLP algorithm, with the KL divergence
of prior and posterior proportions as the objective. Although
DLLP can learn a competent instance-level classifier, it is
hardly in accordance with the proportions in training data, es-
pecially with large bag sizes (e.g., >64). In order to “guess”
instance labels that are consistent to proportions [Yu et al.,

2013], [Dulac-Arnold et al., 2019] perform convex relaxation
to labeling variables and first recognize it as an OT problem.
Aiming at end-to-end training, they instead impose inexact
labeling with KL divergence similar to DLLP, and efficiently
solve the resulting unbalanced OT problem with entropic reg-
ularization. However, the KL divergence results in inaccurate
labeling, thus introduces additional noise to pseudo-labels
compared to accurate labeling. We discuss the differences
between their work and our work in Section 6.

Recently, LLP-GAN [Liu et al., 2019] greatly improves
DLLP with adversarial mechanism. In detail, the discrimi-
nator is designed as a (K+1)-way classifier, where the first
K classes indicate the real ones, and the (K+1)th class ac-
counts for the generated one. The main insight is to produce
better representation with adversarial learning, thus boosting
the downstream discriminative tasks. In spite of substantial
performance improvement compared with previous methods,
LLP-GAN suffers from training instability, which inherits
the characteristics from GANs [Gui et al., 2020]. Besides,
in order to obtain satisfactory results, it requires subtle net-
work design and hyper-parameters selection. Similarly, based
on visual adversarial training [Miyato et al., 2018] in semi-
supervised learning, [Tsai and Lin, 2020] introduce consis-
tency regularization, and propose LLP-VAT, while the KL di-
vergence on the proportions is intact in the loss.

However, KL divergence based methods hardly delivery
classifiers abiding the proportions on training data. When
performing alternate update, this inexact labeling exagger-
ates the label noise, especially with entropic regularization.
In contrast, we address this problem with a constrained opti-
mization to exactly follow the proportions. Furthermore, the
diversity in unlabeled data demonstrates useful behavior for
classification [Lu et al., 2018]. Based on the great capacity of
deep models, unsupervised representation learning is achiev-
able and appealing as a promising step towards discrimina-
tive tasks. For example, aligning the clustering with seman-
tic classes can successfully improve image classification and
segmentation [Ji et al., 2019]. [Asano et al., 2020] apply (en-
tropic constrained) optimal transport (OT) to learn represen-
tation with a self-labeling mechanism. Following their sem-
inal framework, in this paper, we propose an OT based LLP
algorithm, and further develop detailed techniques.

3 Preliminaries
In order to clearly describe how to leverage OT for LLP, we
first introduce several preliminaries for both OT and LLP.
More details are in Appendix due to the space limitation.

3.1 Optimal Transport via Kantorovich
Relaxation

Define two discrete measures on two arbitrary sets X and
Y , respectively: α =

∑n
i=1 aiδxi

, β =
∑m
j=1 bjδyj , where

a = (ai)
n
i=1 ∈ Σn, b = (bj)

m
j=1 ∈ Σm, and Σs is probability

simplex, i.e., Σs = {a ∈ Rs+
∣∣∑s

i=1 ai = 1}, , ∀s ∈ Z+. To
achieve mass splitting in Kantorovich relaxation, instead of
permutation σ or surjective map T , we use coupling matrix
P∈Rn×m+ with Pij as the mass flowing from xi to yj . Ad-
missible couplings give a simpler characterization than maps
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in Monge problem: Suppose a ∈ Σn, b ∈ Σm, we denote
U(a, b) = {P ∈ Rn×m+ | P1m = a, Pᵀ1n = b}, where
1n represents n-dimensional all ones column vector. Hence,
U(a, b) stands for the set of all Kantorovich mappings. Sim-
ilar to Monge problem, let 〈·, ·〉 be the Frobenius dot-product,
given a, b ∈ Σn and a cost matrix C, the Kantorovich’s opti-
mal transport (OT) problem is a linear programming as

LC(a, b) = min
P∈U(a,b)

〈P,C〉 =
∑
i,j

PijCij . (1)

3.2 Entropic Regularization of Optimal Transport
The solution of the original OT problem (1) is non-unique
and tends to be sparse, i.e., arriving at certain vertex of the
polytope U(a, b). To form a more “blurred” prediction, [Cu-
turi, 2013] propose the entropic regularization for OT prob-
lem. To be specific, the discrete entropy of a coupling matrix
P is well-known as H(P) = −

∑
i,j Pij log(Pij).

Remark 1 ([Peyré et al., 2019]). The entropic function H(·)
is 1-strongly concave, due to the negative definite Hessian
matrix: ∂2H(P) = −diag(1./P) and Pij 6 1, ∀i, j.

Note that the rank-1 matrix abᵀ is an admissible coupling,
and H(P)6H(a)+H(b) =H(abᵀ). The entropic regular-
ization of OT adds −H(·) to original OT (1) as:

LεC(a, b) = min
P∈U(a,b)

〈P,C〉 − εH(P), (2)

which is a constrained minimization problem of an ε-convex
function (Remark 1), thus has a unique minimum. More
importantly, the entropic constraint guarantees a computa-
tionally efficient process to find the solution, as a conse-
quence of restricting the search for low cost joint probabilities
within sufficient smooth tables [Cuturi, 2013]. Apparently, if
ε→+∞, the solution of entropic regularized OT (2) is abᵀ.
In addition, the solution of (2) converges to that of the original
OT (1) as ε→ 0.

3.3 Learning from Label Proportions
In LLP problem, because the label proportions are available,
we can restrict the instance-level self-labeling procedure with
these proportional information using an OT framework. Be-
fore further discussion, we fist give the formal formulation
for LLP by directly considering a multi-class problem with
K classes in this paper. With no prior knowledge, we further
suppose that the training data consist of N randomly gener-
ated disjoint bags. Consequently, the training data can be
expressed as D = {(Bi,pi)}mi=1, where Bi = {xi,j}ni

j=1 de-
notes the instances in the ith bag, and Bi ∩ Bj = ∅, ∀i 6= j.
The pi ∈ [0, 1]K and ni are the known ground-truth label
proportions and the bag size of the ith bag, respectively.

4 Approach
4.1 Linking OT to LLP (PLOT)
[Asano et al., 2020] introduce a self-labeling framework to
leverage equal clustering to learn discriminative representa-
tion on unsupervised data and achieve classification. In LLP
problem, although the class distribution is not uniform within
each bag, we can easily modify the admissible couplings in

(1) to fit in the proportional information. Consequently, with
pyi as the proportion of class y in bag i, we have

min
q
BCE(p, q)=−

m∑
i=1

ni∑
j=1

K∑
y=1

q(y|xi,j)
ni

log pφ(y|xi,j)

s.t.

ni∑
j=1

q(y|xi,j) = pyi · ni, q(y|·)∈ [0, 1],

∀y∈JKK={1, 2,· · ·,K}, ∀i∈JmK={1, 2,· · ·,m}.
(3)

Note that (3) is a constrained optimization and the labels
should strictly comply with the proportions in each bag. Nev-
ertheless, (3) will be combinatorial if imposing one-hot label-
ing in q , thus is very difficult to optimize. Fortunately, as we
will point out, (3) is a typical OT problem, thus can be solved
relatively efficiently to arrive at a sparse (one-hot) solution.

For better explanation, we rewrite (3) in a matrix fashion.
Formally, let Qi = (Qijk) ∈ RK×ni

+ , Qijk = q(k|xi,j)/ni,
and Pi = (P ijk) ∈ RK×ni

+ , P ijk = pφ(k|xi,j)/ni. In addi-
tion, denote Q = diag{Qi}mi=1,P = diag{Pi}mi=1, and p =
(pᵀ

1 ,p
ᵀ
2 , · · · ,pᵀ

m)ᵀ, b = (1ᵀ
n1
/n1,1

ᵀ
n2
/n2, · · · ,1ᵀ

nm
/nm)ᵀ.

Define U(p, b) =
{
Q∈RmK×N+ | Q1N =p, Qᵀ1mK = b

}
.

Accordingly, we have an equivalent OT problem for (3) as:

min
Q∈U(p,b)

〈Q,− logP〉 = BCE(p, q) + log
m∏
i=1

ni. (4)

On the other hand, with λ→+∞, we can instead solve the
entropic regularized OT problem to accelerate the process of
convergence, as well as attaining unique non-sparse solution.

L
1/λ
− log P(p, b) = min

Q∈U(p,b)
〈Q,− logP〉 − 1

λ
H(Q). (5)

4.2 Alternating Optimization
In the proposed learning framework, the network parameters
φ = (ϕ, θ) and self-labels Q are alternately updated. Now,
we further describe the details as follows.

Training the Network with Fixed Q. Because the cross-
entropy is differentiable w.r.t. the network parameters φ =
(ϕ, θ), we can directly conduct common optimizer, e.g.,
Adam, on the objective in (3) by fixing Q.

Updating the Labels Q with Fixed φ. When the model is
fixed, the label assignment matrix Q are obtained by OT or
entropic regularized OT. When performing original OT, the
solution Q∗ is with 0/1 binary elements. However, entropic
regularized OT produces Q∗ with all elements in [0,1]. In
practice, we employ two strategies for label update: hard la-
beling and soft labeling. In hard labeling, we update Q as:

Qijs=

{
1, if s=argmax

k
q(k|xi,j)

0, otherwise
, i = 1, 2,· · ·,m. (6)

In soft labeling, we directly use the labels obtained by en-
tropic regularized OT. In the experimental part, we provide
the performance comparison on hard and soft labeling.
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4.3 Two-stage Training for LLP
In practice, we consider to perform the clustering in every
single bag, with the proportions as the constraint for instances
number in each cluster. In detail, we conduct the constrained
OT problem (4) w.r.t. Qi and Pi, with minor revision on
U(p, b), i.e., U(pi, bi), where bi = 1ni/ni. On the other
hand, we can instead solve the entropic regularized OT prob-
lem (5) with the same revision as (7) to accelerate the training,
as well as obtain non-sparse solution to perform soft labeling:

L
1/λ
− log P(pi, bi)= min

Qi∈U(pi,bi)
〈Qi,− logP〉− 1

λ
H(Qi). (7)

Our two-stage training process uses KL-divergence based
LLP training as the first stage, and supervised learning with
pseudo-labels generated by OT as the second stage. In order
to reduce the memorization of corrupt pseudo-labels, we in-
corporate symmetric cross-entropy (SCE) [Wang et al., 2019]
in second stage. Let LCE be cross-entropy H(p, q), we de-
note LRCE as reverse cross-entropy H(q,p) defined as:

LRCE = H(q,p) = −
K∑
k=1

p(k|x) log q(k|x). (8)

Accordingly, the SCE is defined as

SCE = LCE + LRCE = H(p, q) +H(q,p). (9)

To further improve the performance, we apply mixup
[Zhang et al., 2018] to any two pairs (xi,yi) and (xj ,yj),
i.e., x = λxi+(1−λ)xj and y = λyi+(1−λ)yj , to obtain
a new data point (x,y). The detailed training process of the
second stage is shown in Algorithm 1.

5 Numerical Experiments
In order to demonstrate OL-LLP is model-agnostic, in this
section, we conduct quantitative and qualitative studies with
extensive experiments, to show the improvement of former
LLP methods, when using PLOT as the second training stage.
We use two benchmark datasets: CIFAR-10 and CIFAR-100.
The comparisons are performed on three recently proposed
algorithms DLLP [Ardehaly and Culotta, 2017], LLP-VAT
[Tsai and Lin, 2020], and LLP-GAN [Liu et al., 2019].

5.1 Synthetic Datasets Study
We first evaluate our approach with a toy example. In detail,
we choose the well-known “two-moon” dataset to obtain the
performance of DLLP and LLP-GAN, as well as their combi-
nation with PLOT as the second training stage. A 3-hidden-
layer neural network with ReLU activation is employed. We
conduct the experiment with the same bag setting, where 40
bags are generated with each containing 50 points.

The results are visualized in Figure 2, with different classes
in red and green, respectively. For DLLP in Figure 2(a), blobs
of data is mis-classified for both categories, while the por-
tion of errors reduces when incorporating PLOT to DLLP
in Figure 2(b). When it comes to stronger baseline LLP-
GAN in Figure 2(c), only the tails of both categories are mis-
classified. However, only visible two green points are mis-
classified to red at the tail in Figure 2(d), whose results are ob-
tained by conducting OP-LLP training as the second stage to

Algorithm 1 Second Stage Pseudo Labeling with OT (PLOT)

Require:
The LLP training data D={(Bi,pi)}mi=1;
The initialization of the network parameters: φ = (ϕ, θ);
The block diagonal matrix Q = diag{Qi}mi=1 as the
pseudo-labels obtained in the first-stage.

Ensure:
1: for each epoch over D and the pseudo-labels Q do
2: Sample one mini-batch of training bags BD from D

and the corresponding pseudo-labels from Q
3: for each mini-batch do
4: Train network based on SCE with the pseudo-labels

to update the parameters φ = (ϕ, θ).
5: end for
6: Update the pseudo labeling matrix Q = diag{Qi}mi=1

through the OT or entropic regularized OT.
7: end for
8: return The appropriate values of φ = (ϕ, θ).

(a) DLLP (b) DLLP + PLOT

(c) LLP-GAN (d) LLP-GAN + PLOT

Figure 2: Comparison of DLLP, LLP-GAN and their combinations
with PLOT on the “two moons” dataset. (Best viewed in color)

LLP-GAN. It effectively demonstrates that our second stage
can further boost the performance of other LLP solvers. In
practice, solving OT can be regarded as a complementary re-
finement for the solution of minimizing the KL divergence.

5.2 Experimental Setting
Label Proportions Generation. As there is no off-the-
shelf LLP datasets, we first generate LLP datasets with the
label proportions using four supervised benchmark datasets.
Following the setting from [Liu et al., 2019], we construct
four kinds of bags, with bag sizes of 16, 32, 64, and 128,
respectively. In order to avoid the influence of different label
distributions, the bag setting is fixed across different methods.

Training Setting. We choose a conv-based 13-layer max-
pooling network as the backbone for all methods. The archi-
tecture details is given in Appendix A.6. Meanwhile, Adam
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optimizer is used with β1 = 0.5 and β2 = 0.999. The initial
learning rate is 1e−4, divided by 2 every 100 epochs. Random
horizontal flip and random crop with padding to the origi-
nal images is employed as data augmentation. The hyper-
parameters for SCE is the same as [Wang et al., 2019].

5.3 Comparison with the State-of-the-arts
In this section, we provide the overall accuracy comparison
between our approach and three SoTA methods: DLLP, LLP-
GAN, and LLP-VAT, on CIFAR-10 and CIFAR-100. Specifi-
cally, our method divides the training into two phases, where
the first phase is to train the three KL-divergence based mod-
els as the teacher model, and the second stage is to update
the student model based on the pseudo-labels obtained in the
first step, followed by solving the OT with the proportional
information in an alternate manner, described in Algorithm 1.
In practice, note that our approach is model-agnostic, which
means the first stage can be any deep learning based model,
and our model can boost their performance by attaining local
solutions with significantly better performance.

For fair comparison, in Tabel 1 we provide the results on
CIFAR-10 without mixup [Zhang et al., 2018]. For the first
glance, since bigger bag size contains less supervision when
the training data is fixed, the accuracies of all the methods
decrease along with the increase of bag size. Nevertheless,
the performance of all methods can efficiently improve when
combining with the proposed second-stage training. Note
that the improvement is more obvious with bag sizes of 64
and 128, which is more challenging compared with smaller
bag sizes. For example, the accuracy of LLP-GAN + PLOT
with bag size 128 reaches 79.08, even superior to the previous
SoTA result with bag size 64. Furthermore, this combination
can approximately achieve a similar performance to the fully
supervised scenario with small bag sizes, e.g., 16. In general,
we can further draw a conclusion: Algorithm with the best
performance in the first stage consistently results in the best
performance when introducing PLOT as the second stage.

When it comes to harder CIFAR-100 in Table 2, we have
similar results: Our method can considerably boost other LLP
methods to reach new state-of-the-art results. In particular,
our method reaches an accuracy rate of 43.44 with bag size
128, which is much higher than all the previous state-of-the-
arts. This indicates that incorporating the OT based pseudo-
labels mechanism to learn label proportions is of higher effi-
ciency. In practice, the proportion of pseudo labeling can be
intact to the real proportions through the optimal transport,
thus improving the total accuracy of training data.

Note that the improvement for LLP-VAT is relatively lim-
ited compared to DLLP and LLP-GAN when incorporating
our post-hoc training, especially for bag sizes of 16 and 32.
A main reason is the key idea for noise reduction in network
prediction is coincident in both methods, although different
mechanisms are applied: LLP-VAT leverages the prediction
consistency with adversarial samples as regularization, while
our recipe is to obtain pseudo-labels with OT, then employs
SCE and mixup as the post-hoc noise reduction techniques.

The motivation behind our approach is the predicted labels
of training data can be further refined by optimal transport, so
as to fulfill better pseudo labeling. To show this, we provide

Figure 3: Comparison of accuracy on CIFAR-10 and CIFAR-100 in
the training process. (Best viewed in color)

the accuracy curves for CIFAR-10 and CIFAR-100 with bag
size 64 in Figure 3, where TD, TD OT, and TD OT 5 denote
the accuracies without OT, with OT, and with the average of
the last five pseudo-labels with OT (i.e., ensembles), respec-
tively. It demonstrates that the accuracy can significantly im-
prove after involving optimal transport. In particular, the ad-
vantage is more obvious for CIFAR-100, by a larger margin
between TD and TD OT. Meanwhile, the accuracy can fur-
ther improve by using the average of the last five OT pseudo-
labels as the final pseudo-label in every OT labeling phase.

5.4 Ablation Study
In this section, we carry out ablation study on key compo-
nents introduced in PLOT. All the experiments are conducted
on the dataset CIFAR-10 with the bag size 64. More specifi-
cally, our analysis mainly focuses on the difference between
cross-entropy and symmetric cross-entropy. Furthermore, we
evaluate the effect of mixup augmentation to our model when
updating network parameters with above losses.

The final results are shown in Table 3. The baseline is
the performance of DLLP in the first stage. The LCE and
LSCE means that the model is trained without optimal trans-
port, merely using the mean of instance-level predictions in
the previous five epochs as pseudo-labels. This strategy can
also improve the performance slightly. In particular, com-
pared with LCE , LSCE provides a 2% higher performance
improvement. On the other hand, the accuracy can be fur-
ther increased when employing the pseudo-labels generated
by OT. In particular, SCE is considerably effective, in con-
trast to CE, mainly due to its robustness to label noise.

Besides, mixup can further improve the performance sig-
nificantly, which is mainly because of the following two rea-
sons. On one hand, it reduces the memorization of corrupt
labels, similar to SCE. On the other hand, it can impose more
generalization on the network with the convex combination
of a pair of examples, as well as their pseudo-labels.

5.5 Hard-label vs. Soft-label
In our model, we can employ two strategies to update the la-
bel: the hard labeling with the sparse original OT solution and
the soft labeling with entropic regularized OT solution. The
detailed process is shown in (6). In order to better demon-
strate the difference between the hard-labels and soft-labels
in our approach, we adopt CIFAR-10 and CIFAR-100 to con-
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Model Bag Size
16 32 64 128

DLLP [Ardehaly and Culotta, 2017] 87.69 (0.54) 82.88 (0.47) 71.11 (0.56) 46.68 (0.75)
DLLP + PLOT (ours) 90.01 (0.23) 86.87 (0.24) 79.69 (0.44) 55.21 (0.56)

LLP-VAT [Tsai and Lin, 2020] 88.36 (0.29) 83.01 (0.46) 70.53 (0.98) 51.25 (0.88)
LLP-VAT + PLOT (ours) 89.87 (0.31) 87.89 (0.29) 79.33 (0.39) 63.28 (0.43)

LLP-GAN [Liu et al., 2019] 86.97 (0.42) 83.13 (0.43) 77.21 (0.39) 68.37 (1.21)
LLP-GAN + PLOT (ours) 89.15 (0.35) 88.21 (0.23) 84.14 (0.68) 79.09 (0.44)

Table 1: Test accuracy rates and standard deviations (%) on CIFAR10 with different bag sizes. The results are obtained for 5 runs.

Model Bag Size
16 32 64 128

DLLP [Ardehaly and Culotta, 2017] 61.95 (0.54) 55.22 (0.77) 41.21 (1.36) 15.17 (1.07)
DLLP + PLOT (ours) 65.20 (0.41) 61.37 (0.74) 49.55 (0.86) 23.10 (0.29)

LLP-VAT [Tsai and Lin, 2020] 65.21 (0.39) 58.65 (0.43) 45.53 (1.09) 21.25 (0.81)
LLP-VAT + PLOT (ours) 65.39 (0.28) 62.01 (0.30) 52.75 (0.51) 28.23 (0.4)

LLP-GAN [Liu et al., 2019] 61.66 (0.49) 56.78 (0.55) 50.29 (1.12) 33.65 (1.25)
LLP-GAN + PLOT (ours) 65.41 (0.35) 61.68 (0.48) 55.66 (0.41) 43.44 (0.71)

Table 2: Test accuracy rates and standard deviations (%) on CIFAR100 with different bag sizes. The results are obtained for 5 runs.

Method CIFAR-10
baseline 71.11 (0.36)
LCE 72.27 (0.39)
LSCE 74.21 (0.24)

LCE + OT 78.57 (0.32)
LSCE + OT 79.69 (0.44)

LCE + OT + MIXUP 84.39 (0.22)

Table 3: Ablation study on CIFAR-10 with bag size 64: LCE (cross-
entropy), LSCE (symmetric cross-entropy); OT (update pseudo-
labels with optimal transport), MIXUP (mixup data augmentation).

duct comparison on the performance with different bag sizes.
Specifically, the solution of the first stage is fixed for both
hard and soft labeling for fair comparison. The results are
shown in Figure 4, where we provide the convergence curve
of the second stage under different pseudo labelings.

From the result, we observe that it reach a comparable
performance with hard and soft labelings for CIFAR-10 and
CIFAR-100. Intuitively, the soft-labels are more informative
than the hard labels. However, it does not necessarily lead to
better performance due to the potential noisy labeling. On the
other hand, the solution of the original OT tends to be sparse,
and with less noise. We reckon this as the main reason of the
comparable performance of two psuedo labeling strategies.

6 Discussion and Conclusion
In this paper, we study the challenge in existing LLP methods,
and point out the minimization on KL divergence between the
prior and posterior class distributions is inadequate to comply
with the label proportions exactly. From this perspective, we
propose a second stage for existing LLP solver with a frame-
work to combine instance-level classification and pseudo la-
beling, and alternately optimize these two objectives.

Compared with existing LLP solvers, especially [Dulac-

Figure 4: Comparison of hard and soft pseudo labelings on two
benchmarks. (Best viewed in color)

Arnold et al., 2019], our improvements are four-fold. First,
we introduce exact pseudo labeling to convert the uncon-
strained KL divergence minimization into a constrained one,
so that the labeling can strictly meet the proportions and avoid
suboptimal solutions. Second, although the pseudo-labels can
be efficiently found by Sinkhorn’s algorithm for entropic reg-
ularized OT (or linear programming for OT), we instead rec-
ognize the resulting supervised learning with pseudo-labels
as a noisy label problem, due to the uncertainty introduced by
the proportional information. Accordingly, we apply mix-up
data augmentation and use SCE instead of CE as the differ-
entiable loss function, which can be minimized with any line
search optimizer (e.g., Adam). Third, we propose a two-stage
LLP training by integrating PLOT as the second phase, and
elaborately demonstrate that our framework can further im-
prove the performance of DLLP, LLP-VAT, and LLP-GAN
with extensive experiments, thus is model-agnostic. Lastly,
instead of directly using the pseudo-labels, we empirically
study the difference between hard and soft labeling strategies,
and provide suggestions for practical usage.
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González, Inaki Inza, Lorena Crisol-Ortı́z, Marı́a A
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