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Abstract
The Stratification of early-stage cancer patients for
the prediction of clinical outcome is a challenging
task since cancer is associated with various molec-
ular aberrations. A single biomarker often can-
not provide sufficient information to stratify early-
stage patients effectively. Understanding the com-
plex mechanism behind cancer development calls
for exploiting biomarkers from multiple modalities
of data such as histopathology images and genomic
data. The integrative analysis of these biomark-
ers sheds light on cancer diagnosis, subtyping, and
prognosis. Another difficulty is that labels for
early-stage cancer patients are scarce and not re-
liable enough for predicting survival times. Given
the fact that different cancer types share some com-
monalities, we explore if the knowledge learned
from one cancer type can be utilized to improve
prognosis accuracy for another cancer type. We
propose a novel unsupervised multi-view transfer
learning algorithm to simultaneously analyze mul-
tiple biomarkers in different cancer types. We inte-
grate multiple views using non-negative matrix fac-
torization and formulate the transfer learning model
based on the Optimal Transport theory to align
features of different cancer types. We evaluate
the stratification performance on three early-stage
cancers from the Cancer Genome Atlas (TCGA)
project. Comparing with other benchmark meth-
ods, our framework achieves superior accuracy for
patient outcome prediction.

1 Introduction
Cancer is one of the major public health problems worldwide.
The occurrence of cancer is increasing annually due to the ag-
ing of the population, as well as the prevalence of risk factors
such as pollution. During the past decade, precision medicine
approaches have been developed to reduce mortality rate and
increase patient survival time. For precision medicine, the
stratification for early-stage cancer patient into correct risk
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groups is critical for clinical decision-making [Bashiri et al.,
2017]. This process helps to estimate prognosis especially
survival duration as well as response to treatment. To achieve
this goal, advanced statistical and machine learning (ML) al-
gorithms are often needed [Kourou et al., 2015].

Despite the wide applications of ML models in biomedi-
cal problems, there still exists large challenges in predicting
clinical outcome for cancer patients. Firstly, most of the ML
methods only used one specific modality of biomarkers (e.g.,
image or genomic data) for the prognosis of human cancers.
However, such single data modality cannot fully capture the
overall mechanism and development of human cancers and
thus lacks sufficient predictive power. Accordingly, many
researchers have developed integrative analysis pipelines to
combine multi-modal data such as imaging (e.g., histopatho-
logical and CT images) and genomic data (e.g., gene mutation
and gene expression) for cancer outcome prediction [Shao et
al., 2019]. Another challenge is that the collection of multi-
modal data for cancer patients is costly and difficult while
the sample size is often too small to train prediction models
on a specific cancer type. Accordingly, it is of great interest
to examine if the knowledge learned from other cancer types
can be transferred to improve the prediction results on the
target cancer type [Hanahan and Weinberg, 2011]. As one
widely used ML paradigm, transfer Learning (TL) enables
us to leverage knowledge from multiple cancer types and in-
crease the prediction accuracy on the target cancer type. In
recent years, Optimal Transport (OT) has been introduced in
solving TL problems. In comparison with other domain adap-
tion strategies in TL, OT defines a metric (distance) between
probability distributions which can better exploit the geom-
etry of the underlying feature spaces [Flamary and Courty,
2021].

Based on the above consideration, we propose an OT-based
multi-view TL algorithm for the prognosis of early-stage can-
cers by integrating histopathological images with gene ex-
pression profiles from multiple types of cancers. Specifically,
with the help of the OT framework , our proposed TL ap-
proach conducts integrative analysis using non-negative ma-
trix factorization (NMF) techniques and seeking common la-
tent features between two cancer types (e.g., breast invasive
carcinoma and kidney renal papillary cell carcinoma), fol-
lowed by iCluster [Shen et al., 2012], an integrative genomic
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data clustering tool to improve patient stratification perfor-
mance for different cancer types. To the best of knowledge,
this is the first study that utilize the OT framework to solve
the multi-view TL algorithm. The experimental results show
that the proposed method outperforms other benchmark al-
gorithms on both synthetic data and real datasets from The
Cancer Genome Atlas (TCGA). These results not only con-
firm the superiority of our method for clinical outcome pre-
diction, but also suggest that transferring knowledge between
different cancer types has great potential for improving can-
cer precision medicine. Furthermore, this work demonstrates
the advantage of incorporating OT in multi-view TL prob-
lems.

2 Related Works

A large number of biomarkers have been discovered for can-
cer prognosis, such as histopathological images, genetic al-
terations, epigenomic changes, gene, and protein expression
signatures [Liu et al., 2018]. With the recent availability
of large-scale computing resources and the fast development
of digital image technology, we can extract meaningful fea-
tures from the whole slide histopathological images that are
highly associated with the development of cancers. They have
shown great promise for the diagnosis and prognosis of dif-
ferent types of cancers such as breast cancer [Lu et al., 2020].
In addition, some researchers also integrated pathological im-
ages with genomic profiles for the survival analysis of hu-
man cancer, since different biomarkers may provide comple-
mentary information that can improve the prognosis perfor-
mance [Cheng et al., 2017]. However, most of the existing
studies treat the prediction task on different cancer types in-
dependently and they overlook the fact that clinical knowl-
edge derived from one cancer type can also help the predic-
tion task on other cancer types. Recently, the TL approach
has received a lot of attention. Generally, existing TL algo-
rithms can be categorized into the following two strategies:
instance weighting strategy and feature transformation strat-
egy. The instance weighting strategy adopts an instance and
domain weighting strategy to adapt the source distribution
from the source to the target domain [Dai et al., 2007], while
the feature transformation strategy aims at minimizing the
marginal and the conditional distribution differences while
preserving the underlying data structure [Pan et al., 2010;
Long et al., 2013]. Our proposed method belongs to the
second category, which uses the OT framework to align the
distributions of multi-view features between different cancer
types. In comparison with previous related works, our pro-
posed Multi-view TL via OT (MVTOT) method has three
main contributions: 1) we transfer multiple data modalities
from the source to the target domain at the same time with-
out utilizing source domain labels; 2) we design an update
rule which ensures the objective function to decrease mono-
tonically at each iteration and eventually converge to the
Karush–Kuhn–Tucker (KKT) point; and 3) we not only verify
the effectiveness of the proposed MVTOT method on syn-
thetic data but also demonstrate its superiority on multiple
TCGA datasets for stratifying early-stage cancer patients.

3 Proposed Method
3.1 Notations
We first introduce the notations for the proposed unsuper-
vised multi-view transfer learning algorithm. Given a set of
unlabeled source domain instances with two views, Ds =
{xs,vi }v=1,2,i=1,··· ,Ns

, where xs,1i and xs,2i represent the ex-
tracted genomic and pathological image features for the i-
th patient in the source domain, respectively. Similar to
the source domain instance, we also define the examples in
the target domain as Dt = {xt,vj }v=1,2,j=1,··· ,Nt

. In this
study, we have applied the same pre-processing pipelines to
extract features from pathological images and gene expres-
sion data and their corresponding dimensionalities are iden-
tical across different cancer types, i.e. xs,vi , xt,vj ∈ Rdv ,
∀v = 1, 2, i = 1, · · · , Ns, j = 1, · · · , Nt. For the sim-
plicity of calculation, we rewrite the data matrix of the v-th
view of the source and the target domain in a concise form:
Xl,v = [xl,v1 , · · · ,xl,vNl

] ∈ Rdv×Nl , v = 1, 2, l = s, t.

3.2 Non-negative Matrix Factorization for
Multi-view Learning

We firstly define the traditional Non-negative Matrix Factor-
ization problem as follows:
Definition 1 (Non-Negative Matrix Factorization (NMF)).
Given a non-negative input data matrix X = [x1, · · · ,xN ] ∈
Rd×N+ , we can factorize X into a basis matrix W and a
low-rank coefficient matrix H as X ≈ WH, where W =
[w1, · · · ,wK ] ∈ Rd×K+ , H = [h1, · · · ,hN ] ∈ RK×N+ , and
K � min(d,N) (K is the number of basis vectors). To pre-
serve as much information as possible, we need to minimize
the discrepancy defined by the squared Frobenius norm,

min
W,H

‖X−WH‖2F s.t. W ∈ Rd×K+ ,H ∈ RK×N+ . (1)

For the better fusion of multi-view data, our goal is to seek
one common representation across all modalities. Based on
definition 1, we formulate the Non-negative Matrix Factor-
ization problem for multi-view learning as follows:

2∑
v=1

‖Xv −WvHv‖2F + β
2∑
v=1

‖Hv −H∗‖2F , (2)

where the first term aims at factorizing the data of each view
Xv, v = 1, 2 into a dictionary matrix Wv and a low-rank
coefficient matrix Hv . The second term is used to seek a
common representation H∗ and enforce the disagreement be-
tween the representation of each view i.e., Hv as small as
possible.

3.3 Optimal Transportation
By considering the fact that different cancer types share some
commonalities, in this paper, we focus on transferring the
knowledge from the source cancer cohort to improve the pre-
diction performance on target cancer type.

Traditionally, researchers apply metrics such as Maximum
Mean Discrepancy (MMD), Cross Entropy (CE), and Kull-
back–Leibler (KL) divergence to directly measure the dis-
crepancy of feature distributions on different domains. The

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2761



main drawback of CE and KL divergence is that they fail to
utilize the geometric information in the space. MMD sum-
maries the distributional differences using the distance be-
tween weighted feature means from two domains. It can
hardly represent the data distribution unless we have adequate
labels. Compared with these methods, the OT framework can
capture the intrinsic geometry structure of feature spaces in
the setting that no label is available in both domains. In this
section, we will briefly introduce the OT framework, and the
regularized OT problem can be defined as follows,
Definition 2 (Regularized OT). Given two discrete proba-
bility distributions µα =

∑m
i=1 aiδws

i
(on Ds) and µβ =∑n

j=1 bjδwt
j

(on Dt), where δw is the Dirac function at lo-
cation w ∈ Rd, {ai}mi=1, {bj}nj=1 are probability mass asso-
ciated with {ws

i }mi=1, {wt
j}nj=1, the relaxed version of earth

moving distance (EMD) problem seek to find an optimal cou-
pling matrix P ∈ Rm×n+ to minimize the total cost,

LC(a,b) =< P,C >F ,

where C ∈ Rm×n+ is the cost matrix, C(i, j) represents
the cost of moving a probability mass from ws

i to wt
j , P ∈

Π(a,b) := {T ∈ Rm×n+ |T1n = a,TT1m = b}, P(i, j)
represents the amount of mass we move from location ws

i to
location wt

j . Later works [Cuturi, 2013] converted the objec-
tive function into computational effective version by adding
an entropy regularization term. The regularized OT problem
reads,

LεC(a,b) = min
P∈Π(a,b)

< P,C >F −εΩ(P), (3)

where Ω(P) = −
∑
i,j Pi,j log(Pi,j) is the entropy of the

coupling matrix.

3.4 Multi-view Transfer Learning via Optimal
Transportation (MVTOT).

In the previous studies [Ding et al., 2008], they demonstrated
the equivalency of NMF and spectral clustering, matrix fac-
torization and K-means clustering. Specifically, columns of
W represent the clustering centroids while H contains the
cluster membership indicators. Remark that for MMD, the
distance between Ds and Dt is defined by the distance be-
tween weighted sample feature means, which could be inter-
preted as centroids of data distributions in the feature space.
Inspired by MMD, we utilize OT distance to define the dis-
tance between empirical distributions of clustering centers,

µ̂s,v =
K∑
i=1

aiδws,v
i
, µ̂t,v =

K∑
j=1

bjδwt,v
j
, (4)

where a and b are probability mass associated to {ws,v
i }Ki=1

and {wt,v
j }Kj=1, v is the view indicator (v ∈ {1, 2}).

Remark 1. Although we require a common latent dimension
K across different domains, it’s easy to extend our method to
the condition that the number of basis vectors in Ws,v and
Wt,v are different. Another assumption is that weights for
each feature is the same, i.e. a = b = 1K/K ∈ RK (1K is a
K dimensional all one column vector). Nevertheless, it’s not
an intrinsic constraint.

Remark 2. Since we calculate the OT distance between µ̂s,v
and µ̂t,v for each data modality (v = 1, 2) separately, we can
parallelly define two cost matrices {Cv}2v=1 ∈ RK×K . In
our work, we use the squared Euclidean distance as the cost,
i.e. Cv(i, j) :=

∥∥ws,v
i −wt,v

j

∥∥2
2
. We then re-write the cost

matrix in the following matrix function form,

Cv = diag((Ws,v)TWs,v)1K1TK − 2(Ws,v)TWt,v

+ 1K1TKdiag((W
t,v)TWt,v), (5)

where 1K is a K-dimensional all-ones column vector. For a
fixed coupling matrix Pv , we can take derivative of the reg-
ularized OT distance (3) with respect to Ws,v and Wt,v . It
enables us to update the basis matrix based on the gradient
information.

To accommodate more general data matrices with mixed
signs, we adopt the Semi-nonnegative matrix factorization
(Semi-NMF) [Ding et al., 2008], which is an extension of
traditional NMF. The objective function is the same as NMF
but without the non-negative constraint on W. Then, the ob-
jective function of the proposed MVTOT method reads,

J(Wl,v,Hl,v,Hl,∗) =
∑
l=s,t

2∑
v=1

∥∥Xl,v −Wl,vHl,v
∥∥2
F
+

α
2∑
v=1

LεCv (
1K
K
,
1K
K

) + β
∑
l=s,t

2∑
v=1

∥∥Hl,v −Hl,∗∥∥2
F
+

γ1
∑
l=s,t

2∑
v=1

JW(Wl,v) + γ2
∑
l=s,t

2∑
v=1

JH(Hl,v), (6)

where Xl,v,Wl,v,Hl,v(l ∈ {s, t}, v ∈ {1, 2}) indicate the
data, basis and coefficient matrices for the v-th view in the
source or target domain, respectively. Hl,∗(l ∈ {s, t}) de-
notes the common representation for the source or target
domain. The second term is the optimal distance between
µ̂s,v =

∑K
i=1 1K/Kδws,v

i
and µ̂t,v =

∑K
j=1 1K/Kδwt,v

j
.

By defining a = b = 1K/K ∈ RK , Cv follows (5), we
can represent the regularized OT distance defined by (3) as
LεCv (1K/K,1K/K). Finally, JW and JH are two regular-
ization terms with respect to W and H. Here, we use the
squared Frobenius norm in equation (6) to control the magni-
tude of W and H.

4 Description of the Algorithm
Before optimizing the objective function using an alternative
manner, we introduce two lemmas about convergence proper-
ties. They ensure that the value of the objective function will
decrease monotonically after each iteration and the converged
H satisfies the Karush–Kuhn–Tucker (KKT) conditions.

Lemma 1. If a function J : Rn×K+ → R has the following
form:

J(Y) = tr(−2YTB) + tr(YAYT ),

where B ∈ Rn×K , A ∈ RK×K , A is symmetric. By letting
B+
ij = (Bij + |Bij |)/2, B−ij = (|Bij | −Bij)/2, the update
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rule:

Y(t+1) ← Y(t) �

√
B+ + (Y(t)A−)

B− + (Y(t)A+)
, t = 0, 1, 2, · · · (7)

will lead J(·) to decrease monotonically after each iteration.
Lemma 2. When the algorithm converge, the limit solution
of (7) (i.e. Y(t) = Y(t+1) for updating time t large enough)
satisfies the KKT condition.

Proof. Both proofs can be found in the supplementary mate-
rial.

Based on the above two lemmas, we apply an alternative
way to update the coefficient matrix H and basis matrix W
as follows.

4.1 Update the Coefficient Matrix H
When we update Hl,v for a domain l and view v, we fix all
basis matrix Wl′,v′ , l′ = s, t, v′ = 1, 2, the common expres-
sion matrix Hl′,∗, l′ = s, t and Hl′′,v′′ with l′′ 6= l or v′′ 6= v.
Then, we can simplify the objective function by dropping su-
perscripts for domains and views,

J(H) = tr(−2H(XTW + β(H∗)T ))+

tr(HT (WTW + (β + γ2)IK)H) + const,

where IK is a K by K indentity matrix. Let Y = HT , B̃ =
β(H∗)T + XTW, and Ã = WTW + (β + γ2)IK , we can
use (7) to update H,

HT ← HT �

√
B̃+ + HT Ã−

B̃− + HT Ã+
(8)

4.2 Update the Basis Matrix W
When we update the basis matrix Ws,v for the v-th view of
the source domain, since the basis matrix for each view is up-
dated separately, we can drop the superscript for view. We fix
coefficient matrices Hl,v, l = s, t, v = 1, 2, coupling matri-
ces Pv, v = 1, 2, and the basis matrix of the target domain
Wt,v . The object function can be re-formulated as:

J(Ws) = ‖Xs −WsHs‖2F + γ1 ‖Ws‖2F
α < P, diag((Ws)TWs)1K1TK − 2(Ws)TWt >F +const.

Since we impose no constraint on Wl, we can calculate the
stationary point of Ws directly and obtain the following up-
date rule,

Ws � (Xs(Hs)T + αWtPT )(Hs(Hs)T + α̃IK)−1, (9)
where α̃ = (α/K + γ1). Notice that we use the fact that
P ∈ Π(1K/K,1K/K) when we calculate the derivative.
The same technique can be applied to calculate the deriva-
tive of Wt. More details can be found in the supplementary
material.

4.3 Update the Coupling Matrix P
Since we update dictionary matrices for each data modality
separately, the superscript for view is dropped. Notice that
when we fix Ws and Wt, the cost matrix (5) is fixed. Then,
we can solve the regularized OT problem (3) by directly using
the Optimal Transport solver [Flamary and Courty, 2021].

Algorithm 1 Multi-view transfer learning via Optimal Trans-
port

1: Input: {Xl,v}l=s,t,v=1,2 and hyper-parameters K, α, β,
γ1, γ2, ε (regularization weight in (3)).

2: Initialization: Use Semi-NMF algorithms [Ding
et al., 2008] to factorize {Xl,v}l=s,t,v=1,2 and
get {Wl,v}l=s,t,v=1,2, {Hl,v}l=s,t,v=1,2; Initialize
{Cv}2v=1, {Pv}2v=1, and Hl,∗ with regard to (5), (3) and
(10) respectively.

3: repeat
4: For each data view v = 1, 2,

- Update Ws,v with regard to (9); Reconstruct the
cost function Cv with regard to (5); Solve Pv

in (3) using the OT solver [Flamary and Courty,
2021].

- Repeat the same process for Wt,v .
5: Update {Hl,v}l=s,t,v=1,2 with regard to (8); Re-

compute Hl,∗ with regard to (10).
6: until convergence criterion is satisfied.
7: Output: Ht,∗.

4.4 Update the Common Representation H∗

When updating Hl,∗, we fix all other matrices. By taking
derivative of (6) with regard to Hl,∗ and setting it to be zero,
we obtain,

Hl,∗ ← 1

2

2∑
v=1

Hl,v. (10)

Hl,∗ is non-negative since it’s an average of non-negative ma-
trices.

5 Experiments and Results
In this section, we verify our proposed method by two sets
of experiments. The first set of experiments are performed
on a synthetic dataset. By comparing classification accuracy,
Silhouette score and NMI (normalized mutual information)
score for clustering, we demonstrate that our method outper-
forms other benchmark methods. The second set of experi-
ments are performed on the TCGA datasets. We verify the
advantages of our method by comparing P-values of log-rank
tests for survival analysis.

5.1 Results on Synthetic Data
In the first set of experiment, we generate Nc = 3 centroids
with dimension d1 = 20 on the source domain Ds, where
each centroid represents one class. Then, we generate 100
samples following a Gaussian distribution with standard devi-
ation σ1 = 2 around each centroids. In order to generate two
different views of each samples, we project each sample onto
two higher dimensional spaces (d3 = 50, d4 = 100) by mul-
tiplying two random matrices V1 ∈ Rd1×d3 , V2 ∈ Rd1×d4 .
We use a similar strategy to generate samples (latent dimen-
sion d2 = 20) on the target domain, the only difference is that
the standard deviation for each centroid is set as σ2 = 4. Be-
sides the above synthetic dataset, we generate another dataset
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using the same approach but specify d1 = 25, d2 = 18,
σ1 = 2, σ2 = 3.

d1 = d2 = 20 d1 = 25, d2 = 18

Methods ACC Silh NMI ACC Silh NMI
Kmeans 0.70 0.36 0.37 0.44 0.27 0.16

TCA 0.49 -0.05 0.22 0.34 -0.12 0.01
TAB 0.66 0.31 0.73 0.66 0.18 0.73

mSDA 0.33 / 0 0.33 / 0
OKMSC 0.45 -0.03 0.06 0.95 0.15 0.82

MDT 0.28 0.01 0.02 0.23 0.25 0.04
MVTOT 0.91 0.11 0.71 0.97 0.16 0.89

Table 1: The performance on two synthetic datasets. For supervised
benchmark methods, we use 80% labeled target samples and all la-
beled source data as the training set.

We compare our method with other benchmark methods,
including: TCA [Pan et al., 2010], TAB [Dai et al., 2007],
mSDA [Chen et al., 2012], OKMSC [Zhang et al., 2020],
MDT [YANG and Gao, 2013]. From Table 1, we conclude
that our method achieves the highest accuracy and NMI score
among all methods. This indicates that our MVTOT can more
effectively transfer knowledge from the multi-view source
data to promote the prediction task on the target domain. The
reason is that OT directly compares distributions of features
in the source and the target domain while other methods are
not as informative as the OT method. In Figure 1 (a), we
use OT [Flamary and Courty, 2021] to map samples from the
source domain data to the target domain and visualize them
using a principle component analysis (PCA) plot. However,
this mapping is meaningless since all of source domain sam-
ples are mapped to a single point (1st PC ≈ −400, 2nd PC
≈ 0). On the right hand side, by using MVTOT, we extract
low-rank representation Hs and Ht for the source and the tar-
get domain respectively. By using OT to map Hs on the tar-
get feature space, all of source domain samples are mapped
to the center of the corresponding class on the target domain.
It demonstrates that MVTOT can help us to explore common
low-rank structure of datasets from different sources.

Figure 1: The left panel is the PCA visualization of transferring
source samples to the target domain using OT. The right panel repre-
sents the result of using our proposed MVTOT to map source sam-
ples to the target domain. Marker shape represents domain (source,
target) and marker color represents class (0, 1, 2).

5.2 TCGA Patients Stratification
TCGA contains genomic and histopathological image data
for 32 cancer types. We focus on three cancer types includ-
ing breast invasive carcinoma (BRCA), kidney renal papil-
lary cell carcinoma (KIRP), and lung squamous cell carci-
noma (LUSC). For each cancer type, we select early-stage
(stages I and II) patients with matched gene expression data,
histopathological images, and clinical outcomes. We apply
the MVTOT method to integrate eigen-genes and tissue mor-
phological features and transfer knowledge from one cancer
type to the other. Eigen-genes are obtained by clustering
genes into co-expressed modules and summarizing each mod-
ule into an eigen-vector using singular value decomposition
[Cheng et al., 2017]. Finally we get 66 eigen-genes for each
sample. For the tissue morphological features derived from
the histopathological images, we follow the feature extraction
pipeline described in [Cheng et al., 2017]. Using this pipeline
to extract and aggregate cell-level morphological features, we
obtain a 150-dimensional feature for each patient.

For the implementation of the proposed MVTOT method,
we adapt knowledge from the source domain (e.g., BRCA)
to the target domain (e.g., LUSC) and represent target sam-
ples by the low-rank matrix Ht,∗ shown in Eq.(6). Then, We
apply iCluster to cluster early-stage cancer patients based on
Ht,∗. Finally, we test if these two groups have distinct sur-
vival times using the Kaplan-Meier (KM) estimator and log-
rank test. We compare that the prognostic power of different
approaches by stratifying cancer patients into two subgroups
(i.e., the high and low survival risk groups) as shown in Fig.
2. In Fig. 2, cancer 1 � cancer 2 means that we transfer
knowledge from cancer type 1 to cancer type 2 and perform
stratification on cancer type 2. We can observe that most of
the KM curves for low-risk and high-risk patients are separa-
ble. In Fig. 2 (a), (b), (c), (e), and (f), gaps between survival
curves increasing as time goes by, indicating that MVTOT
can stratify patients into groups with distinct survival rates (P-
value = 0.006, 0.008, 0.005, 0.0004, and 0.006 respectively).
The only insignificant (P-value = 0.0758) scenario is transfer-
ring KIRP dataset to LUSC dataset (Fig. 2 (d)). We summa-
rize the proposed methods and ablation study results in Table
2. We observe that the P-values for MVTOT is smaller than
single view TL via OT (SVTOT) in most conditions (except
K � L and L � K). This means combining these two data

Methods B�K B�L K�B K�L L�B L� K

Clinical 0.4569 0.0635 0.8651 0.0635 0.8651 0.4569
MVTOT 0.0062 0.0078 0.0053 0.0758 0.0004 0.0061
SVTOT (g) 0.0143 0.0797 0.0456 0.0899 0.0028 0.0046
SVTOT (i) 0.0189 0.0971 0.0174 0.0390 0.0007 0.0643
MVNMF 0.0106 0.0503 0.0029 0.0503 0.0029 0.0106

Table 2: The performance of stratifying cancer patients into high
and low survival risk groups by MVTOT and its competitors. The
p-values are calculated via log-rank test. B, L, and K represent
breast, lung, and kidney cancers respectively. B → L represents
transferring knowledge from breast cancer to lung cancer. P-values
for clinical is obtained by using the clinical stages of cancer patients.
SVTOT (g) means only use the eigen-gene data modality (g: eigen-
gene, i: image features).
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TL Pairs JDA (g) JDA (i) TCA (g) TCA (i) DSAN (g) DSAN (i) mSDA (g) mSDA (i) RGrad (g) RGrad (i)

B � K 0.212 0.968 0.128 0.986 0.080 0.526 0.064 0.294 0.791 0.533
B � L 0.492 0.032 0.248 0.032 0.774 / 0.178 0.021 0.405 0.527
K � B 0.216 0.318 0.006 0.399 0.373 0.802 0.513 0.638 0.606 0.099
K � L 0.197 0.990 0.366 0.875 0.207 0.782 0.910 0.526 0.155 0.363
L � B 0.572 0.110 0.093 0.110 0.950 0.592 0.681 0.630 0.130 0.186
L � K 0.891 0.656 0.242 0.956 0.047 0.211 0.590 0.316 0.204 0.915

Table 3: The performance of stratifying cancer patients into high and low survival risk groups by different TL benchmarks. The character in
the bracket indicate what data modality we use (g: eigen-gene, i: image feature). Slash line means this method fails to produce two distinguish
classes for the desired target task.

Figure 2: KM curves by applying MVTOT on pair-wise cancer types

modalities with compatible and complementary information
can improve the performance of early-stage cancer stratifica-
tion. We also investigate the condition when TL components
in our model is removed. This multi-view NMF (MVNMF)
model is inferior or equivalent to MVTOT in most conditions
(B � K, B � L, L � K, L�B). It provides superior results
than MVTOT in stratification breast and lung patients with-
out borrowing knowledge from kidney cancer to cluster them.
Nevertheless, its performance on the K � L task is worse than
SVTOT (i). It implies that knowledge from kidney cancer

Methods B�K B�L K�B K�L L�B L�K

LMSC 0.137 0.728 0.050 0.728 0.050 0.137
OKMSC 0.886 0.160 0.837 0.160 0.837 0.886
DMFMV / / 0.190 / 0.190 /
MRAN 0.002 / / / 0.800 /
MDT 0.745 0.957 0.673 0.051 0.196 0.130
MDTM 0.428 0.998 0.821 0.132 0.064 0.021

Table 4: The performance of stratifying cancer patients into high and
low survival risk groups by different Multi-view Learning or Multi-
view TL methods. Slash line means this method fails to produce two
distinguish classes on the desired target task.

may be ineffective for understanding breast cancer.
We also compare our method with other benchmark meth-

ods, including: 1) TL benchmarks: JDA [Long et al., 2013],
TCA [Pan et al., 2010], DSAN [Zhu et al., 2020], mSDA
[Chen et al., 2012], and RevGrad [Ganin and Lempitsky,
2015]; 2) Multi-view clustering benchmarks: LMSC [Zhang
et al., 2018], OKMSC [Zhang et al., 2020], and deepMFMV
[Zhao et al., 2017]; 3) Multi-view TL benchmarks: MRAN
[Zhu et al., 2019], MDT [YANG and Gao, 2013], and MDTM
[He et al., 2019]. Since these TL methods require training
data on the source domain to be labeled, we use the clini-
cal stage (stage I and stage II) as their labels. As shown in
Table 2, 3, 4, MVTOT achieves superior stratification results
(P-value < 0.05) than other methods. Some of these meth-
ods (i.e. JDA (i), TCA (i), mSDA (i), TCA, MRAN, and
MDTM) yield significant stratification results (P-val < 0.05)
on some TL pairs. However, they fail to provide plausible
performances on other TL tasks. The main reason is that
their labels (clinical stage I and II) are less reliable for early-
stage cancer patients stratification (see the first row in Table
2). Furthermore, these benchmarks methods are highly de-
pendent on the choice of training set and hyper-parameters.
These results indicate that our method is more reliable for
making clinical decisions. More numerical experiments for
convergence, stability, and complexity of our methods can be
found in the supplementary material.

6 Conclusion
Our proposed method MVTOT uses NMF and OT to inte-
grate multiple data views and transfer knowledge from one
data domain to another one. Since OT gives us an informa-
tive description of the distance between two empirical distri-
butions, it helps us to compare feature spaces of the source
and the target domain. Although MVTOT is an unsupervised
method, it outperforms all semi-supervised benchmark meth-
ods when we evaluate them on synthetic data classification
task and early-stage cancer patient stratification task. Our
work demonstrated the feasibility and advantage of transfer-
ring knowledge learnt from one cancer type to improve the
accuracy of prognosis to another cancer type.
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