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Abstract

Video-based automatic assessment of a student’s
learning engagement on the fly can provide im-
mense values for delivering personalized instruc-
tional services, a vehicle particularly important for
massive online education. To train such an asses-
sor, a major challenge lies in the collection of suf-
ficient labels at the appropriate temporal granular-
ity since a learner’s engagement status may con-
tinuously change throughout a study session. Sup-
plying labels at either frame or clip level incurs a
high annotation cost. To overcome such a chal-
lenge, this paper proposes a novel hierarchical mul-
tiple instance learning (MIL) solution, which only
requires labels anchored on full-length videos to
learn to assess student engagement at an arbitrary
temporal granularity and for an arbitrary duration
in a study session. The hierarchical model mainly
comprises a bottom module and a top module, re-
spectively dedicated to learning the latent relation-
ship between a clip and its constituent frames and
that between a video and its constituent clips, with
the constraints on the training stage that the aver-
age engagements of local clips is that of the video
label. To verify the effectiveness of our method, we
compare the performance of the proposed approach
with that of several state-of-the-art peer solutions
through extensive experiments.

1 Introduction

The emergence of Massive Open Online Courses (MOOC)
has attracted wide attention and great expectation from the
broad education community. Despite the promising poten-
tial of the new education avenue, poor student retention rates
are recognized as one of its major caveats. To combat the
deficiency, dynamic assessment of individual students’ en-
gagement during their online learning activities can offer just-
in-time instructional intervention to improve retention rates
and personalized learning outcomes, whose effectiveness has
been abundantly supported in the education literature [Dewan
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engagement assessment pipeline.

et al., 2019; Zeng et al., 2020]. Due to the large number
of students frequently seen in a MOOC environment, man-
ually conducting such assessment is prohibitively expensive.
Therefore, it is strongly desirable to develop automated tech-
nologies capable of assessing student learning engagement on
the fly.

The research on the automatic assessment of learning en-
gagement has the following problems: 1) Due to the time-
consuming and laborious work of annotating clip by clip,
most previous methods [Osokin, 2019; Wang et al., 2019]
only solve the problems of assessing the learning engage-
ment of the whole video, although it makes more sense to
assess each short clip. 2) A course in distance education usu-
ally lasts for tens of minutes or even an hour, making it diffi-
cult for assessment. How to obtain effective features that can
represent the entire video and each short clip has become an
urgent problem to be solved.

In response to the problems mentioned above, we construct
anovel hierarchical multiple instance learning (MIL) engage-
ment assessment model as shown in Fig. 1. Based on the
features extracted from video frames, a hierarchical neural
network that consists of a clip-level MIL module and a video-
level MIL module is trained with only video-level labels. The
network can order short clip-level features with their engage-
ments, which is achieved by constraining on a global loss for
the top module and a local loss for the bottom module, to
ensure that the trained network can accurately and reliably
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infer local clip-level labels for a collection of temporally-
sequenced clip-level instances under the supervision of global
video-level labels. In summary, the main contribution of this
paper are threefold as follows:

* We propose a novel temporal multiple instance learning
framework which is trained with video-level labels only
but can both assess the learning engagement of the full-
length video and its constituent short clips.

* We construct a hierarchical neural network which com-
prises a bottom module and a top module with their
tailor-designed loss functions to learn the latent relation-
ship in the frame-clip-video structure.

* A new data set about online course studies is collected
and some ablation experiments and comparative exper-
iments are conducted on it to prove that the proposed
method can effectively assess the learning engagement
of both the whole video and each video clip.

2 Related Work

Learning Engagement Assessment Based on Visual Clues
When a learner is studying, the camera can easily capture
the learner’s images and advanced features associated with
learning engagement can be effectively extract from these
video frames. Some methods assess learning engagement
based on RGB videos due to their easy accessibility. Stud-
ies [Whitehill and Movellan, 2008; Whitehill ez al., 2014]
have found that facial expressions and head poses are di-
rectly related to learning engagement. [Frank er al., 2016]
proposes a framework for engagement assessment, which
uses facial expressions, sound, body poses and movements
acquired through multiple sensors, and then a SVM classi-
fier is used to classify engagement. [Chang er al., 2018;
Yang et al., 2018] uses features such as facial expressions,
eye parameters, gestures and head poses extracted from im-
age sequences to recognize the learner’s cognitive state. Our
work only uses body poses, head poses and face landmarks
as the input features.

Multiple Instance Learning The multiple instance learn-
ing(MIL) method is a solution to the problem of weakly su-
pervised learning, which trains models based on weakly la-
beled data. The MIL is widely used in medical image diag-
nosis and detection [Li ef al., 2019; Campanella et al., 2019;
Rony et al., 2019]. In this problem, the training set consists
of bags labeled as O or 1, and each bag contains many in-
stances without labels. Taking cancer prediction as an exam-
ple here, each image with a cancer/non-cancer label forms
a “bag”, and each pixel or block of pixels that constitutes
the image is called an “instance”. We divide the MIL works
into three categories: the global MIL, which can determine
whether there is a disease [Campanella et al., 2019; Dov et
al., 2019]; the local MIL, which can mark diseased cells on
the image [Xu et al., 2019; Liang et al., 2018]; the global and
local MIL, which can detect whether there is a disease and in-
dicate the diseased cells at the same time [Wang er al., 2020;
Huang and Chung, 2019]. Compared with the above prob-
lems, learning engagement assessment is the same that the
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bag composed of multiple instances has a label, but each in-
stance has no label. But the difference is that there are struc-
tural and temporal correlations between the instances, and the
label of the bag is not limited to O or 1 but any real number
within the label range.

3 Method

3.1 Problem Formulation

In this video-based learning engagement assessment task, we
first divide the video evenly into N clips, and each clip X is
composed of [ video frames, so the whole video can be rep-
resented as its sample clip sequence X = {Xj,Xs, ..., Xy},
where the video is a bag and its sample clip sequence is a
instance sequence. Furthermore, each clip X; can be repre-
sented as X; = {X;1,X;2,...,X;;} and X; ; is the jth frame
of the ith clip, where the clip is a bag and its frames are in-
stances. Based on this frame-clip-video structure, we use the
hierarchical multiple instance learning module from bottom
to top to gradually use frame-level features to aggregate the
clip-level descriptors and then aggregate the video-level de-
scriptor based on them. We first use the model g to extract the
feature sequence F; = {f; 1,f; 2, ....f; ;} from the frames of
ith video clip, where f; ; = ¢ (x; ;). Then the bottom module
Dy, uses F; as the input to learn the clip-level feature C;. The
clip-level feature sequence C = {Cy, Co,...,Cn} is used as
the input of top module D, to learn the video-level feature
V. The video-level feature V and the clip-level feature C; are
respectively sent to the regression function Reg to obtain the

video-level learning engagement Y and the clip-level learn-

ing engagement sequence Y = {1, §2, ..., Un }. The process
can be modeled as follows:

Y/:Reg (Dt (Db (g(X),cp),@),u) (D
and
Yi = Reg (Dy (9 (Xi), ), 1) )

where ¢, 0, p are trainable parameters. The only supervision
information we have is the video-level label Y, and Y is a
decimal between 0 and 1. The framework is shown in Fig. 2.

3.2 Preprocessing

Down-sampling Learners’ head poses and facial land-
marks tend to change gradually and slowly during his/her on-
line studies. Therefore, we down-sample every raw video by
keeping one frame every few frames for more efficient com-
putational processing. In our experiments, 3000 frames for
each video are reserved for assessment.

Segmentation Because the feature has little effect on the
assessment of learning engagement at the time far away from
it, and the network is usually difficult to deal with lengthy
feature sequences, we segment an input video into short video
clips as the basic analysis objects. We set the length of a video
clip to be 30 frames, denoted as [ = 30 in all our experiments
to yield an empirically optimized trade-off between computa-
tional efficiency and accuracy of the proposed approach. The
number NV of video clips extracted from each video is 100.



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

_______________________

Bi-LSTM B-TMIL .
OpenPose LA N L . 1.0, 1.0
Feature [ { I
Fusion :,.:, ,,,,,, o
FC Y [
- Lo @eee @ [ 05 0.5
FSA-NET Vo [
> | — — — — — — —>@- T -r Mean l
: ——d P Eng. @ ‘ I
i Lo PN 0.0 . 0.0
: o TTT1 (- Clip-level Eng. Time
| PLFD LAl L, N . Local
: = 1 [ Supervision
Lf r-
e e V4
. Video-level
FC GT Label
A FC T-TMIL —
B-TMIL l ar
T eee —> —> eee —> — Global 1.0, 1.0
_________________________________________ . Supervision : :
: FC FC 1
1 < L
1
512x1 128 x1 128x1 1281 1
1 ) s o) —
: o2 AR ToxN Sigmoid ToxN PiexN ‘ i eee —> > leee — — — > .9 ‘/045 ‘0»5
1 X
T 1xN l 1x1 -
: 128xN }_ 512x%1 ‘128X1 128 x1 q — - _ — _ Feature F€ OOY
J . 1 Fusi o800
! 64x N 16xN 16 XN Weighted “5 : eee| > ’_) veol > l N usion Video-level Eng. Time
1 sum q
e §4l§1_2_. U U i

"N Clips

Figure 2: The framework of the proposed network. The main structure of the proposed network are both the bottom temporal multi-instance
learning(B-TMIL) and the top temporal multi-instance learning(T-TMIL), which are used to assess video clips and the entire video separately.
In the lower left corner of the figure, we give the specific structure of B-TMIL and T-TMIL.

Feature Extraction According to the previous works
[Wang er al., 2019; Wu er al., 2019], body languages and
facial expressions have a strong correlation with a learner’s
learning engagement. Therefore we use head pose features,
body pose features and facial landmarks as the input to im-
prove the accuracy and robustness of our model. For video
frame x; ;, we use methods proposed by [Yang er al., 2019;
Guo et al., 2019; Osokin, 2019] to extract head pose fea-
tures e; ;, body pose features b; ; and facial landmarks m; ;
respectively. Then for video clip X;, we can get head
pose sequence E; = {e; 1,€;2,...,€;;}, body pose sequence
B; = {b;1,bi2,...,b;;} and facial landmark sequence M; =
{mi,lv m;o,..., mi,l}'

3.3 Hierarchical Temporal Multiple Instance
Learning Module (H-TMIL)

Based on the frame-clip-video structure only with video-level
labels, we propose the hierarchical temporal multi-instance
learning framework composed of a bottom temporal multi-
instance learning module (B-TMIL) and a top temporal multi-
instance learning module (T-TMIL) which respectively ded-
icated to learning the latent relationship between a clip and
its constituent frames and that between a video and its con-
stituent clips. Through this framework, we build the connec-
tion between the underlying video frames and the video-level
label, and can implicitly learn the expression of the middle-
ware, namely the clip-level features which are useful for as-
sessing clip-level learning engagement.

Bottom Temporal Multiple Instance Learning (B-TMIL)
The B-TMIL module acts on sampled video frame sequence
which composes a short video clip, where the frames are
instances and the clip is the bag. We need to obtain the
bag’s valid representation in order to accurately obtain its
label. However, unlike the traditional MIL instances, for a
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short-time frame sequence, there is a strong timing corre-
lation between frames. Some methods [Wang et al., 2019;
Huynh ef al., 2019; Wu et al., 2019] use LSTM to capture
the temporal association and use the hidden state of the last
layer to express the sequence, which will cause the loss of
early information. In response to this problem, we use a self-
attention multi-instance module to act on all hidden layer fea-
tures of the bidirectional LSTM built on instances, and adap-
tively obtain the representation of the bag through trainable
parameters.The body pose feature is taken as an example.

First, we input the body pose feature sequence B; into
the Bi-LSTM to obtain the hidden state sequence H; =
{h; 1,h; 2,...,h; ;}. Inspired by the paper [Ilse et al., 2018],
the clip-level aggregated feature B; can be computed as a
weighted sum of hiT’ ; after dimension reduction:

l
B, = a0 (Wih])) 3)

Here 6 refers to the ReLU function and Wl refers to the full
connection operation which are used to reduce dimension.
The weight ¢&; ; is computed by:

score; ;

l ~
S scorei,

where score; ; is calculated as followed:

“4)

Qij =

5657‘61‘7]‘ = W4 (O’ (W25 (VNVlhIJ)) oT (W35 (VNVlhI]))()S)

where W1, Wy, W3, W, are the weight matrices, ® is an
element-wise multiplication, o is the Sigmoid function and 7
is the Tanh function. Among them, Tanh function is used to
obtain the correlation between features, and Sigmoid function
acts as a gate mechanism. Similar to the aggregation process
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Figure 3: The process of the feature fusion.

of clip-level body pose feature B;, we use the B-TMIL mod-
ule to extract clip-level head pose feature sequence E; and
clip-level facial landmark feature sequence M.

Top Temporal Multiple Instance Learning(T-TMIL)
Similar to B-TMIL, T-TMIL acts between video clips which
can be thought as instances and the full-length video com-
posed of clips is the bag. However, due to the long dura-
tion of each video clip, we believe that there is no longer a
strong temporal relationship between video clips. Previous
work [Wang et al., 2019; Wu et al., 2019] generally believes
that the video-level feature can be expressed as the average
of all clip-level features. These methods treat all video clips
equally, which adversely affects the final assessment accu-
racy. In order to get more robust and flexible representation
of video, we still apply MIL module on the basis of clip-level
features. And the top-level module becomes more similar
to the traditional multi-instance structure. Here we also use
body pose features as an example to describe the process of
the T-TMIL.

The dimension of the clip-level feature is reduced through
the fully connected operation to generate more efficient em-
bedding representation. We construct the weighted combina-
tion of video clips to represent a video which can be calcu-
lated as follows:

N
523 a0 (WiB)
B—i:1 ;0 (WlBZ) 6)

R score;

G = —x @)
Zflvzl score

where score; is calculated as followed:
score; = W4 (O’ <W25 (Wlf}:—)) oT <W35 (Wﬂ?’j)))
8

where W1 , Wg, Wg, W4 are the weight matrices of T-
TMIL. Similar to the above process, we use the T-TMIL mod-
ule to aggregate video-level head pose feature sequence E and
video-level facial landmark feature sequence M.

3.4 Feature Fusion

We use three types of features to assess learning engagement,
while our hierarchical module processes each type of feature
separately. In order to achieve complementary advantages
between different features and increase judgment informa-
tion, we propose a weighted feature fusion method as shown
in Fig. 3 and then obtain the clip-level and video-level fu-
sion features for the assessment. The weight matrix has the

same size as the feature matrix composed of the three fea-
tures and is composed of trainable parameters. Each column
of the weight matrix is first normalized by Softmax function
to obtain different proportions of different features in this di-
mension, and then weighted summed to obtain the weighted
fusion feature.

3.5 Loss Function

In order to train and optimize the proposed framework, we de-
sign two loss functions: the global and the local supervision
loss function. The global supervision loss function uses the
mean square error method to measure the difference between
video-level learning engagement result and the ground-truth.
The local supervision loss function also uses the mean square
error method but measures the difference between the mean
of clip-level learning engagement result and the label of the
video. Through this joint loss function and our hierarchical
temporal multi-instance learning module, we can constrain
both video-level embedding features and clip-level embed-
ding features. The formula of loss is as follows:

Liotai = aLiocar + ﬁLglobal &)

where « and 3 are two hyper-parameters. Each component
of the loss can be formulated as follows:

1 & 1 & ’
Liocat = 75 ) (Yk - % ng) (10)

k=1

and

1 & N2
Lot = 7 3 (vi = Y2) an
where yy; is the clip-level assessment result of ¢-th clip of k-

th video, Y}, is the video-level assessment result of k-th video,
and Y}, is the video-level label of k-th video.

4 Experiments

Due to the lack of annotated long video data sets publicly
available for our study on learning engagement assessment,
we collect and annotate one in-house data set about online
course studies. Using the data set, we explore the perfor-
mance of the proposed network against that of multiple state-
of-the-art methods.

4.1 Online Course Studies (OCS) Data set

This data set carries 236 videos captured of 59 subjects while
they are watching four healthcare topic courses. In order to
obtain more diverse data for the learning engagement, we
have carefully selected courses on four topics: cancer preven-
tion, respiratory diseases, renal system and sleep problems.
The length of each course is about 30 minutes, and all sub-
jects are required to watch the entire content of each course.
Except for a 14-year-old junior high school student, all sub-
jects are undergraduate or graduate students, aged between 20
and 32, majoring in software engineering and digital media.
During the learning period, the performances of all subjects
are according to personal preferences and status. We will not
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Score 0 0.125| 0.25 | 0.375] 0.5
Video#(OCS) 22 18 21 24 12

Score 0.625] 0.75 | 0.875 1
Video#(OCS) 45 53 11 30

Total 236

Table 1: Distributions of scores in the OCS Data set.

place any restrictions on the postures and behaviors of sub-
jects.

Each learning process of the subjects will be given a score
from O to 1 to indicate the level of the learning engagement.
The larger the score, the higher the engagement. The score
of the engagement is based on three factors: the subject’s
self-scoring, the annotator’s score and the testing score. First,
we require each subject to self-score according to the actual
learning state of himself. Secondly, the annotator is required
to carefully watch each learning video and gives the score
of the engagement. We invite three annotators to score the
same video from O to § at the same time. If the difference
between any two labels is less than 2, the final label is the
average of the three labels. Otherwise, the three labelers ne-
gotiate and determine the final label. Thirdly, each subject is
asked to finish all the questions about the courses. Regarding
whether to use test scores, we will make a decision based on
the relationship between score distribution and engagement.
All three scores will be normalized between 0 and 1. Then
the arithmetic average of the three scores is the score of the
engagement. Table. 1 shows the distribution of our data set.

In addition, we have obtained the consent of the subjects
and can use the collected data for the research of this project.
And we will not disclose anyone’s identity information, and
everyone’s eye position will be covered with a black mask to
protect his personal privacy.

4.2 Implementation Details

Data Processing Based on the trained model, we first ob-
tain head pose, body key points and facial key points from
original videos. As shown in Fig. 2, the head pose is com-
posed of yaw, roll and pitch angles and the coordinates of
the center point of head (5D vector). Only the upper body of
each subject appears in the video, thus the body pose features
only need to be composed of the upper body key points(24D
vector). The face landmarks are 23 key points (46D vector)
extracted from the original face model with 98 key points.
The models for feature extraction are light-weight and unsta-
ble, whose outputs are sometimes missing. Therefore we per-
form linear interpolation over N(N < 15, assumed that only
the missing data within 0.5s is caused by the instability of the
model) adjacent vectors with missing values. Then we evenly
extract 3000 frames from the final data as input to the model.
In addition, in order to eliminate the influence of the subjects
at different positions in the screen to the model, we use the
coordinates of the neck as the center point for the body pose,
and subtract the coordinates of the center point from the co-
ordinates of the remaining points. And for face landmarks,
we use the mean value of the coordinates of the key points on
the nose as the center point and also subtract the coordinates
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Figure 4: Performance comparison among our and state-of-the-art
peer methods.

of the center point from other points. In addition, we found
that the number of different types of data in our data set is
quite different. To make the distribution of our data set more
uniform, we randomly add noise to the features and resample
the videos whose type is in a small number in different ways.
And we randomly select three quarters of videos in the OCS
data set as our train set and the remaining quarter as test set.

Training Setting We establish the project based on Pytorch
and train it on Tesla K80G GPU. Our training epoch is set to
200. We initialize the learning rate to 0.001, and use Adam
with a momentum of 0.9 and a weight decay of 1e-4 as the op-
timizer. When the training epoch is 60/100/160, we multiply
the learning rate by 0.1.

Speed Our assessment model’s speed is about 0.014s per
video clip and the feature extraction models whose speeds
are at least 20 FPS can be done in parallel.

4.3 Ablation Studies

TMIL Module We explore the effectiveness of TMIL mod-
ule by replacing the TMIL module used for aggregating
frame-level and clip-level features with the methods proposed
by the previous work [Wu et al., 20191, such as the last hidden
state vector of LSTM and simply mean pooling. The exper-
imental results are shown in the Table. 3. When processing
frame-level features, only using the last hidden state vector of
LSTM performs the worst, which shows that only the final re-
sult of LSTM cannot effectively aggregates enough and effec-
tive information; as for the result using mean pooling is worse
than which using the B-TMIL module, we believe that it is
due to the use of self-attention aggregation which enables the
model to adaptively find more important features and solve
the problem that LSTM can’t deal with long-range depen-
dence effectively. In addition, when using B-TMIL mod-
ule only for frame-level features, it performs better than that
when using T-TMIL module only for clip-level features. This
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Frame

Head

Pose

Frame

Face . . 0.1239
Head 0.0609 0.1970 0.3195 0.0388 0.0572
Pose 0.2656 0.3256 0.2273 0.0362 0.0379

Table 2: The visualization of the B-TMIL attention of face landmarks, head pose and body pose features on each frame.

Method MSE MAE STD
hzp+Mean 0.0241 | 0.1212 | 0.0968
Mean+Mean 0.0238 | 0.1154 | 0.1023
Mean+T-TMIL 0.0200 | 0.1066 | 0.0928
B-TMIL+Mean 0.0189 | 0.0977 | 0.0968
B-TMIL+T-TMIL | 0.0158 | 0.0944 | 0.0830

Table 3: Different methods to aggregate features (A+B means using
method A on frame-level features and using method B on clip-level
features).

can be easily explained as that model can be more effective
only when the basic features, that is, clip-level features are
accurately aggregated. Based on this, we obtain more valid
video-level features. To further prove the effectiveness of our
proposed module, we choose some key frames and visualize
the results of the B-TMIL module acting on the underlying
video frames on the test set. Table. 2 shows the visualization
results of our module on the three features. Since the sub-
jects’ facial expression has not changed much, the attention
weights are almost in the same order of magnitude. As for
the head pose and body pose features, the weights of atten-
tion increase significantly (as shown in the bold part in the
table) when subject’s head and body pose changes. It can be
seen that our attention module has effectively paid attention
to the parts that are important for obtaining results.

Local and Global Supervision The assessment results of
the learning engagement from the entire video can be ob-
tained from a predictor that takes the characteristics of the
entire video as input, or the result of each video clip can be
obtained first and be averaged as the final result. In the model,
in addition to using the loss function for the final video-level
result to achieve global supervision, we also add local super-
vision to constrain the mean of the clip-level results. The
experimental results are shown in the Table. 4. We obtain the
best results with using global supervision and local supervi-
sion at the same time. The result of using global supervision
only is not as good as the result of using local supervision

Method MSE | MAE STD
Only global supervision 0.0234 | 0.1167 | 0.0989
Only local supervision 0.0199 | 0.1089 | 0.0896
Global + Local Supervision | 0.0158 | 0.0944 | 0.0830

Table 4: Effectiveness of local and global supervision

only. This is consistent with our previous description that
more effective advanced features can be obtained only when
effective basic features are obtained.

4.4 Comparison with State-of-the-Art

To explore the advantages of the proposed approachs in the
engagement assessment task, we conduct a series of experi-
ments where benchmarked performance of the new approach
is compared with that of several peer methods on the OCS,
such as BOOT [Wang er al., 2019], ENS-MODEL [Huynh
etal.,2019], MFMI [Wu et al., 2019], MR-GRU [Zhu et al.,
2020] and AMLM [Wu et al., 2020]. In addition, we also op-
timize MR-GRU and AMLM with our TMIL module. Since
there is already an attention mechanism in MR-GRU, we only
add the T-TMIL module to it, while for AMLM, we add the
complete H-TMIL module. All peer methods are reimple-
mented due to the lack of open source alternatives.

For the task of assessing video-level learning engagement,
Table. 5 shows the viedo-level mean absolute error (MAE)
and mean squared error (MSE) on OCS. The original MR-
GRU is better than the original AMLM, but the AMLM with
our complete H-TMIL module has better performance than
the MR-GRU with only the T-TMIL module, which further
proves the effectiveness of our proposed module and the im-
portance of aggregating effective underlying features. Fig. 4
shows the absolute error (AE) between algorithmically gen-
erated results and their corresponding labels using boxplots.

One of our most important contributions is that the pro-
posed network can assess the learning engagement of video
clips relatively accurately only using video-level labels. In or-
der to demonstrate the effectiveness of our model on the task
of assessing clip-level results, we annotate some videos clip
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Figure 5: The visualization of clip-level learning engagement of three videos respectively with label 0.875, 0.5 and 0.125. The frame (a) to

(h) are some key frames.

Method MSE | MAE
AMLM 0.037 | 0.154
ENS-MODEL 0.035 | 0.149
MFMI 0.032 | 0.138
MR-GRU 0.030 | 0.139
BOOT 0.030 | 0.137

Our T-TMIL+MR-GRU | 0.026 | 0.119
Our H-TMIL+AMLM 0.017 | 0.098
OURS 0.0158 | 0.094

Method Video (1) Video (2) Video (3)
ENS-MODEL 0.333/0.493 | 0.097/0.248 | 0.035/0.094
MEMI 0.105/0.314 | 0.035/0.157 | 0.186/0.416
BOOT 0.345/0.531 | 0.094/0.241 | 0.206/0.388
AMLM 0.333/0.528 | 0.064/0.197 | 0.026/0.098
MR-GRU 0.297/0.465 | 0.107/0.253 | 0.020/0.077
H-TMIL+AMLM | 0.047/0.183 | 0.062/0.192 | 0.014/0.092
T-TMIL+MR-GRU | 0.110/0.298 | 0.067/0.191 | 0.016/0.101
Ours 0.018/0.084 | 0.051/0.190 | 0.014/0.069

Table 5: Video-level results on OCS Data set.

by clip. Fig. 5 (1), (2) and (3) respectively represent the clip-
level results and corresponding labels of the five models in
three videos with different learning engagement scores. The
result curve of our method and the label curve basically main-
tains the same trend which fully demonstrates that our model
can effectively learn clip-level features only with video-level
labels provided. Table. 6 further presents the performance
of the proposed approach with that of other five peer meth-
ods and two models improved with our modules in terms of
the mean absolute error (MAE), mean squared error (MSE).
Our model achieves remarkable results except on the video
(2) where the range of labels has a relatively large float. Al-
though the MFMI model has some advantages in overall sta-
tistical results, it does not well reflect the drastic changes of
the engagement, as shown in the pink curve of Fig. 5 (2).
All these results demonstrate the superiority of our approach
compared with all peer methods in assessing clip-level learn-
ing engagement.

5 Conclusion

To solve the problem of assessing the changes of learning en-
gagement of students in the learning process with only video-
level labels, a novel hierarchical temporal multi-instance
learning network is introduced to automatically assess both
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Table 6: Clip-level results on OCS Data set (MSE/MAE).

video-level and clip-level learning engagement from video
streaming data in an end-to-end learning fashion composed of
a bottom and a top module which can respectively learn the
latent relationship between a video and its constituent clips
and that between a clip and its constituent frames.

Future Work Our future work mainly consists of two parts.
1) More effective structure. Unify feature extraction and as-
sessment into an end-to-end model and introduce more ad-
vanced structures to get high-level semantic information more
effectively. 2) Practicality. Build a system that can assess
learning engagement online and prove the versatility of model
in other scenarios, such as evaluating the user’s interest of ad-
vertisements or products and the degree of fatigue in driving.
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