
Minimization of Limit-Average Automata

Jakub Michaliszyn and Jan Otop
University of Wrocław

{jmi, jotop}@cs.uni.wroc.pl

Abstract
LimAvg-automata are weighted automata over in-
finite words that aggregate weights along runs with
the limit-average value function. In this paper,
we study the minimization problem for (determin-
istic) LimAvg-automata. Our main contribution
is an equivalence relation on words characterizing
LimAvg-automata, i.e., the equivalence classes of
this relation correspond to states of an equivalent
LimAvg-automaton. In contrast to relations char-
acterizing DFA, our relation depends not only on
the function defined by the target automaton, but
also on its structure.
We show two applications of this relation. First,
we present a minimization algorithm for LimAvg-
automata, which returns a minimal LimAvg-
automaton among those equivalent and structurally
similar to the input one. Second, we present an
extension of Angluin’s L∗-algorithm with syntac-
tic queries, which learns in polynomial time a
LimAvg-automaton equivalent to the target one.

1 Introduction
Automata have a wide range of AI-related applications, such
as natural language processing, verification, compiler con-
struction and others [Rich, 2008]. In many of these applica-
tions, the size of the constructed automaton has a far greater
impact on performance than the time spent on construction of
the automaton. Therefore, it is desirable to develop tools that
reduce the number of automata states.

There are various minimization algorithms for (determin-
istic) finite-state automata over finite words [Nerode, 1958],
deterministic weighted automata over finite words [Beimel
et al., 1999] or deterministic finite tree automata [Brainerd,
1968]. They are typically based on the right congruence re-
lation of a given language, which characterises the minimal
automaton, i.e., the minimal automaton can be constructed
over the equivalence classes of the right congruence relation.
This approach does not extend to infinite-word automata as
the right congruence relation does not characterize determin-
istic Büchi automata [Maler and Staiger, 1997]. Furthermore,
the minimization problem for deterministic Büchi automata is

NP-complete [Schewe, 2010], thus establishing a simple re-
lation characterizing languages of these automata is elusive.

In this paper, we study the minimization problem for
(deterministic) LIMAVG-automata [Chatterjee et al., 2010],
which are weighted automata over infinite words. In these
automata, each transition has a rational weight. The run over
an infinite word w produces an infinite sequence of weights
and the value of w returned by the automaton is the limit of
the partial averages of this sequence of weights.

While typical infinite-word automata (e.g. Büchi automata)
express properties regarding finite or infinite occurrences of
specified events, LIMAVG-automata return more precise an-
swers regarding the long-run frequency of specified events.
This makes LIMAVG-automata an attractive specification for-
malism capable of expressing quantitative system proper-
ties [Cerný et al., 2013; Henzinger and Otop, 2017], stream
properties [Alur et al., 2017], or even population dynamics in
evolutionary games [Miekisz, 2008]. In all these applications,
the size of the automaton has a far greater impact on the per-
formance than the time spent on its construction. Therefore,
implementations involving LIMAVG-automata would greatly
benefit from employing minimization of these automata. Yet,
to the best of our knowledge, there is no work on the mini-
mization of LIMAVG-automata.

1.1 Plan and Contributions
This paper is the first work on minimization of LIMAVG-
automata. We begin with basic definitions (Section 2) fol-
lowed by the discussion on various sources of difficulty in
minimization of LIMAVG-automata (Section 3). Next, we
present our main contributions.

In Section 4, for a given LIMAVG-automaton T , we define
the relation ∼=T on words that characterizes T , i.e., we con-
struct a LIMAVG-automaton equivalent to T , whose states
are equivalence classes of ∼=T . Unlike the right-congruence
relation, which is defined for the language of an automaton,
the relation ∼=T depends on the structure of T . Therefore,
the automaton obtained by minimization with respect to ∼=T
is not only semantically equivalent to T , but also has simi-
lar structural properties as T . The latter property facilitates
explainability of the minimized automaton.

Then, we show two applications of ∼=T . In Section 5, we
employ∼=T to minimize an LIMAVG-automata in polynomial
time. In Section 6, we propose an active learning framework

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2819

for LIMAVG-automata and develop an active learning algo-
rithm LIMAVG-automata utilizing ∼=T .

1.2 Related Work
As mentioned above, this is the first paper on minimizing
LIMAVG-automata. The most closely-related work to this
is [Michaliszyn and Otop, 2020], where an algorithm for
learning deterministic Büchi automata is presented. The com-
mon ingredient is the syntactic approach: the learning algo-
rithm of [Michaliszyn and Otop, 2020] is based on queries re-
garding a syntactic function called loop-index. This is similar
in principle to the algorithm we present in Section 6. How-
ever, the key property of deterministic Büchi automata that
makes the algorithm of [Michaliszyn and Otop, 2020] work
is that a word that does not belong to the language is a proof
that all the states it visits infinitely often are non-accepting.
We discuss in Section 3 that this kind of argument fails in the
LIMAVG case, and thus the algorithm of [Michaliszyn and
Otop, 2020] cannot be simply adapted.

For other types of infinite-word automata, it has been
shown that deciding, given k and a Deterministic Büchi au-
tomaton (DBA) A, whether A admits a language-equivalent
DBA A′ of at most k states, is NP-complete [Schewe, 2010].
It follows that there is no polynomial-time minimization al-
gorithm for DBA, and no learning algorithm for DBA that
returns a minimal-size DBA. To bypass this hardness, vari-
ous techniques have been employed. To learn an ω-language
L, [Calbrix et al., 1993] considers learning languages of fi-
nite words of the form L$ = {u$v | uvω ∈ L}, where the
word u$v is intended to represent the word uvω . However,
the size of the constructed deterministic finite automaton can
be exponential in the size of the minimal DBA. In [Calbrix
et al., 1993], it has been shown that ω-regular languages that
can be recognized with a DBA and with a deterministic co-
Büchi automaton can be learned in polynomial time. Another
approach [Angluin et al., 2018] is to learn DBA into some
different formalism, called Families of DFA (FDFA) [An-
gluin and Fisman, 2016]. Such FDFA can be transformed to
deterministic parity automata, but with an exponential blow-
up [Angluin et al., 2018].

2 Preliminaries
A word w over a finite alphabet Σ of letters is a finite or in-
finite sequence of letters. An ultimately periodic word is a
word of the formwvω . The sets of all finite and infinite words
over Σ by denoted by Σ∗ and Σω respectively.

For any sequence w, including words, we define w[i] as
the i-th element (letter) of w, and we define w[i, j] as the
subsequence (subword)w[i]w[i+1] . . . w[j] ofw. We assume
that sequences start with 0 index.

Deterministic finite-state and ω-automata. A determin-
istic finite-state automaton (DFA) is a tuple 〈Σ, Q, q0, F, δ〉
consisting of the alphabet Σ, a finite set of states Q, the ini-
tial state q0 ∈ Q, a subset F ⊆ Q of accepting states, and a
transition function δ : Q× Σ→ Q.

An (deterministic) ω-automaton is a DFA such that all
states are accepting. DFA and deterministic ω-automata dif-

fer in semantics. In this paper, we consider only deterministic
automata and hence we omit the word “deterministic”.

The size of an automaton A, denoted by |A|, is its number
of states.

Semantics of automata. We extend δ to δ̂ : Q × Σ∗ → Q

inductively: for each q, we set δ̂(q, ε) = q, and for all w ∈
Σ∗, a ∈ Σ, we set δ̂(q, wa) = δ(δ̂(q, w), a). Given a finite
word w, the run π of a DFA A on w is the sequence of states
δ̂(q0, ε)δ̂(q0, w[0])δ̂(q0, w[0, 1]) The run is accepting if
the last state belongs to F . The language of A, dented by
L(A), is the set of words having an accepting run.

An ω-automaton processes infinite words and a run over an
infinite word is defined as for DFA.

Deterministic LIMAVG-automata. A (deterministic)
LIMAVG-automaton A is a pair 〈B,wt〉 such that B is an
ω-automaton and wt : Q×Σ→ Q is a labeling of transitions
of A with rationals, called weights. As for ω-automata, we
consider only deterministic LIMAVG-automata and hence we
omit the word “deterministic”.

A run π of a LIMAVG-automatonA on a word w is the run
of B on w. Every run π of A on an infinite word w defines
a sequence of weights wt(π) of successive transitions of A,
i.e., wt(π)[i] = wt(π[i− 1], w[i]). The value of the run π is
then defined as LIMAVG(π) = lim supk→∞ AVG(π[0, k]),
where for finite runs π we have AVG(π) = SUM(π)/|π|,
where SUM if the sum of the weights of the run. The value of
a word w assigned by the automaton A, denoted by A(w), is
the value of the run of A on w.

A LIMAVG-automaton A defines the function
L(A) : Σω → R such that L(A)(w) = A(w). We say
that LIMAVG-automata A1,A2 are equivalent if and only if
they define the same function, i.e., L(A1) = L(A2). Check-
ing equivalence can be done in polynomial time [Chatterjee
et al., 2010], and the if two deterministic automata are not
equivalent, then there is an ultimately-periodic word wvω ,
where |w|, |v| are of polynomial length, distinguishing them.

ω-generators and factorizations. A run of an ω-
automaton on an ultimately periodic word is an ultimately pe-
riodic sequence, but the cycle in the run can start in a different
position than the cycle in the word. We define factorization
of a given word to capture that.

An ω-generator is a pair (w, v) ∈ Σ∗ × (Σ∗ \ {ε}). For
an ω-generator (w, v), we say that (u0, u1) is a factorization
of (w, v) with respect to an ω-automaton A if and only if
(i) wvω = u0u

ω
1 , and (ii) there is a number c > 0 such that in

the run π on wvω for all i > |u0| we have π[i] = π[i+ c].
Note that in the definition of a factorization we do not re-

quire minimality and hence every ω-generator has infinitely
many factorizations. Furthermore, if (u0, u1) is a factoriza-
tion w.r.t. A, the automaton A does not necessarily have a
cycle over u1; it can be over some power uk1 .

3 Challenges
We discuss various sources of difficulty that appear in at-
tempting to minimize LIMAVG-automata.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2820

q0 qbqa
a,0 b,0

a,0; b,1 a,1; b,0

Figure 1: The automaton Aab

3.1 The Right Congruence Relation Is Insufficient
The minimization of DFA is based on the right congruence
relation ∼L⊆ Σ∗ × Σ∗ of L. For v, u ∈ Σ∗ we have u ∼L v
if and only if for all w ∈ Σ∗ it holds that uv ∈ L ⇐⇒ vw ∈
L. The Myhill-Nerode theorem [Nerode, 1958] states that
L is regular exactly when ∼L has finitely many equivalence
classes. Moreover, the relation ∼L defines the minimal DFA
recognizingL; equivalence classes of∼L correspond to states
of the minimal DFA, while transitions can be defined in a
natural way. The Myhill-Nerode theorem has its counterparts
for various types of automata such as tree automata [Brainerd,
1968] or weighted automata [Beimel et al., 1999].

We define the counterpart of ∼L for LIMAVG-automata.
For a LIMAVG-automaton T we define ∼T over Σ∗ in the
following way: for all u, v ∈ Σ∗ we have u ∼T v if and only
if for all w ∈ Σω it holds that T (uw) = T (vw).

However, the Myhill-Nerode theorem does not hold for
LIMAVG-automata. Consider the automaton Aab presented
in Figure 1 with q0 being the initial state. It has two equiva-
lence classes of ∼T : the class [ε]∼T containing all the words
with even length and [a]∼T containing all the remaining
words. To see that the classes are different, consider words u
of odd length and v of even length. ThenAab(u(aabb)ω) = 1

2
and Aab(v(aabb)ω) = 0. All the words of even length are in
the same equivalence class because after reading them, the
automaton is in the state q0. The most interesting part is that
all odd length words are in the same equivalence class: this
is because after reading such a word, the automaton can be in
qa or qb, but, after reading any letter, it will be in q0. Since
LIMAVG does not depend on finite prefixes, for any v, v′ of
odd length and w ∈ Σω we have Aab(vw) = Aab(v

′w).
Observe that there is no equivalent LIMAVG-automaton

based on these equivalence classes. Such an automaton would
require two states, q′0 and q′a, such that δ(q′0, a) = δ(q′0, b) =
q′a and δ(q′a, a) = δ(q′a, b) = q′0. To define the weights wt,
observe that the following equations need to be satisfied:

wt(q′0, a) + wt(q′a, a) = 0 wt(q′0, b) + wt(q′a, b) = 0

wt(q′0, b) + wt(q′a, a) = 1 wt(q′0, a) + wt(q′a, b) = 1

By adding top two equations and subtracting the bottom
two, we obtain 0 = −2, a contradiction.

In Section 4 we present a relation refining the right congru-
ence relation characterizing LIMAVG-automata.

3.2 Minimal Automata Are Not Unique
We present two examples of ambiguity, which we generalise
later on.

Consider automataAa,Ab resulting from changing the ini-
tial state in the automaton Aab from Figure 1 to qa and qb
respectively. Observe that for every infinite word w, the runs
in Aa and Ab over w differ only in the first transition to q0,

q0 qbqa
a,X b,Ya,0

b,1
a,1
b,0

Figure 2: The automaton AX,Y parameterized by X,Y

q0 qaa,0

b,X

a,1b,-X

Figure 3: The automaton A±X parameterized by X

while the whole infinite suffix is the same. Therefore, the
word w has the same value in both automata and hence Aa

and Ab are equivalent.
Consider automata Aab,L and Aab,R defined as an exten-

sion of Aab in the following way. Both automata have an
additional state s0, which is initial and has a self-loop over a
of the weight 0. The automatonAab,L moves with the weight
0 to qa from Aab, while Aab,R moves on b with the weight 0
to qa from Aab. Observe that both automata are equivalent

More generally, in any LIMAVG-automaton T , changing
the initial state q0 to another state q equivalent w.r.t. the right
congruence (i.e., the state q such that for every u if δ̂(q0, u) =
q, then ε ∼T u) preserves equivalence of automata. Further-
more, it follows that transitions between strongly-connected
components are not unique as long as the target states are
equivalent w.r.t. the right congruence.

3.3 Weights Are Ambiguous
Now, we discuss why the weights in LIMAVG-automata are
not uniquely defined. First, consider automata AX,Y from
Fig. 2. These automata are minimal and all pairwise equiva-
lent, since LIMAVG does not depend on finite prefixes.

We further argue that even the values of edges that are on
some cycles are not uniquely defined. Consider any X ∈ Q
and the automatonA±X presented in Figure 3. Then, this au-
tomaton is equivalent to A±0. This is because for any word
w, the difference between the partial sum for any prefix of the
runs of A±X and A±0 on w is bounded by X , and thus the
limits are the same. The same thing can happen in virtually
every automaton with more than one state: if we take an au-
tomaton A, a state q and a number X ∈ Q, and define AX

as a copy of A, expect that all the incoming edges (except
for self-loops) to q have weights increased by X , and all the
outgoing edges (except for self-loops) from q have weights
decreased by X , then A and AX are equivalent. We call this
”pushing weights”. It demonstrates that every single weight
of an automaton, except self-loops, can be set arbitrarily.

A more general issue regarding weights is called non-
locality. In the deterministic Büchi automata case, a word
that does not belong to the language is a witness that all the
states it visits infinitely often are rejecting. This is the funda-
mental idea of [Michaliszyn and Otop, 2020]. In the LIMAVG
case, a single ultimately-periodic word only defines the av-
erage value of its ultimately-periodic cycle, but the values of
the particular edges can be “pushed”, as showed above. Thus,
computing weights for the automaton has to be done globally.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2821

4 Characterization of Automata
In this section we introduce a relation ∼=T on words, which
characterizes a given LIMAVG-automaton T . This relation
is an intersection of two relations: ∼T , which is a counter-
part of the classical right-congruence relation (as discussed
in the previous section), and ≡T , which is a syntactical re-
lation. This in turn, can be used to construct a LIMAVG-
automaton equivalent to T , whose states correspond to equiv-
alence classes of ∼=T .
Definition 1. Given a LIMAVG-automaton T , we define the
right-congruence relation∼T , the cycle-equivalence relation
≡T and the mixed relation ∼=T on Σ∗ as follows:
u ∼T v ⇐⇒ T (uw) = T (vw) for all w ∈ Σω ,
u ≡T v ⇐⇒ for all c, d ∈ Σ∗, (uc, d) factor-

izes to (uc, d) iff (vc, d) factorizes to
(vc, d),

u ∼=T v ⇐⇒ u ∼T v and u ≡T v.

Note that ∼T , ≡T and ∼=T are equivalence relations.
Observe that relation ∼T is semantic, i.e., it depends only

on the function defined by T . In particular, it is invari-
ant under equivalence, i.e., swapping T with an equivalent
LIMAVG-automaton does not change this relation. In con-
trast, relation≡T depends on the structure of T , while it does
not depend on weights of T . In other words, u ≡T v holds
if for all words c, d ∈ Σ∗, either from both states δ̂T (qT0 , uc)

and δ̂T (qT0 , vc), the automaton T has cycles labeled by some
powers of d, or from none of them.
Definition 2. For the relation ∼=T of T , we say that an ω-
automaton B = 〈Σ, Q, q0, δ〉 is consistent with ∼=T if it satis-
fies the following conditions: (1) Q is the set of equivalence
classes of ∼=T , (2) q0 = [ε]∼=T is the equivalence class of the
empty word ε, and (3) for all q ∈ Q and a ∈ Σ, there exists u
s.t. [u]∼=T = q such that δ(q, a) = [ua]∼=T .

A consistent automaton clearly exists. We show that it is
unique and can be extended to an automaton equivalent to T .
Theorem 3. For every LIMAVG-automaton T , there exists a
consistent ω-automaton B, which is (a) unique, and (b) there
exists labeling wt of transitions of B with rational numbers
such that the resulting LIMAVG-automaton (B,wt) is equiv-
alent to T . Such a labeling wt can be computed in polyno-
mial time in |T |.

The proof of (a) follows from the fact that ∼=T is a con-
gruence. Based on this, we create B in the straightforward
way. To show (b), we pick an automaton T , an equivalence
class [u]∼=T and define Su as the set of states s such that if
δT (qT0 , v) = s then u ∼=T v. States Su can be contracted
to a single state qS and the resulting LIMAVG-automaton Au

is equivalent to T . Relations ∼=T and ∼=Au coincide. We it-
erate this process until we obtain a LIMAVG-automaton A∗
such that each state of A∗ corresponds to a single equiva-
lence class of ∼=T . The automaton A∗ is equivalence to all
its predecessors and in particular T and it is isomorphic to B.
Therefore, the weights wt of A∗ can be transferred to B.

To compute wt, we can create in polynomial time a system
of linear equations whose solution defines wt. The details
can be found in the extended version of this paper.

s0

s1

s3 s4

s5 s6

s7

s8

a,0

b,0

a,0 b,0

b,2 a,4

b,0 a,0 b,3
a,0

b,3

a,0 a,0
b,1

a,2
b,3

q0 q1 q2a,0
b,0 a,0; b,0

a, 1; b,2

Figure 4: An example of an input and an output of the minimization
procedure. Notice that the minimal semantically equivalent automa-
ton has 2 states (q1 can be removed).

5 Minimization Algorithm
In this section we present a minimization algorithm for
LIMAVG-automata. For a given LIMAVG-automaton T the
presented algorithm constructs an automaton whose states are
the equivalence classes of ∼=T . This automaton has at most
as many states as T . However, it does not need to be minimal
among all LIMAVG-automata equivalent to T . Indeed, if T
has a complex structure, its cycle-equivalence is likely non-
trivial. However, if it has only 0 weights, then it is equivalent
to a single-state LIMAVG-automaton. Figure 4 is an example
of how the algorithm works: it reduces an 8-states automa-
ton to a 3-states automaton, while the minimal semantically
equivalent automaton has 2 states.

The relation ∼=T is defined over words. This is a typical
choice for such relations, and this will prove handy in the au-
tomata learning process (Section 6), where the automaton T
is concealed and can be only queried. However, in this sec-
tion, we assume the full access to the automaton T . In such
a scenario, it is convenient to define relations on states rather
than words. We present a canonical way to lift an equivalence
relation from words to states.

Let ./T be one of the symbols among ∼T , ≡T and ∼=T .
We define the relation ./Q, which is a counterpart of ./T , as
follows. For each state q of T , let Wq be the set of words
w that lead to q, i.e., δ̂T (qT0 , w) = q. For all q, s ∈ QT it
holds that q ./Q s if and only if for some words u ∈ Wq and
v ∈ Ws we have u ./T v. Observe that if u, u′ ∈ Wq (resp.,
Ws), then u ./T u′. Therefore, the choice of words u ∈ Wq

and v ∈Ws is irrelevant.
The main step of the minimization algorithm is to compute

the relation ∼=Q. Observe that for states q, s ∈ QT we have
q ∼=Q s if and only if q ∼Q s and q ≡Q s. The algorithm
works in two steps: first it constructs ∼Q, and then for each
equivalence class of∼Q, it refines the partition w.r.t. ≡Q. We
discuss these two steps below.
Computing relation ∼Q. Consider q, s ∈ QT . To decide
whether q ∼Q s, we construct the product automaton A× =
T × T with the initial state (q, s) and the weight of each
transition being the difference between weights of transitions
in the components, i.e., for all q1, s1 ∈ T and a ∈ Σ we

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2822

define wtA×((q1, s1), a) = wtT (q1, a)−wtT (s1, a). Then,
we check whether A× has a reachable cycle of non-zero sum
of weights, which can be done in polynomial time [Cormen et
al., 2009, Chapter 24]. If there is no such cycle, then the limit-
average of weights along every run in A× is 0, and hence for
every word w, we have Tq(w) = Ts(w), i.e., the automaton
T starting from q onw returns the same value as starting from
s. Thus, q ∼Q s. Otherwise, the cycle of a non-zero sum of
weights corresponds to a word w such that Tq(w) 6= Ts(w)
and hence q 6∼Q s.

Imporved complexity. The above procedure can be opti-
mized two work in O(|Q|4|Σ|). The idea is to compute ∼Q

for all pairs of states at once. We construct the automatonA×
as previously, but we drop the initial state and labels of let-
ters. We obtain a weighted graph G over vertexes QT ×QT .
We partition G into strongly connected components (SCCs).
Next, for each SCC we check whether it has a cycle of a
non-zero sum of weights [Cormen et al., 2009, Chapter 24].
We label all pairs of states (q, s) in SCCs with a non-zero
sum cycle as non-∼Q-equivalent, and all pairs of states (q, s)
from which non-∼Q-equivalent SCCs are reachable as non-
∼Q-equivalent as well. Finally, from any pair (q, s) of states,
which are not labeled as non-∼Q-equivalent, only cycles of
total sum 0 are reachable, and hence q ∼Q s. Careful anal-
ysis shows that the obtained complexity of this approach is
dominated by the cost of finding non-zero cycles, which is
quadratic in the number of states of the product automaton
(and the number of such states is quadratic), resulting in the
above-mentioned complexity.

Computing relation ≡Q. We say that q and s and not im-
mediately cycle-equivalent if there is a word d such that for
some words vq, vs ∈ Σ∗ that lead to q and s respectively we
have (vq, d) factorizes to (vq, d), while (vs, d) does not fac-
torize to (vs, d) (or the same with q and s swapped). Observe
that q 6≡Q s if and only if there is a word c such that δ̂(q, c)
and δ̂(s, c) are not immediately cycle-equivalent. We argue
that the following conditions are equivalent:

(i) q and s are not immediately cycle-equivalent,

(ii) there is a word u ∈ Σ∗ such that T has a cycle over
some uk from q, but for every n > 0, there is no cycle
over un from s (or the same with q and s swapped), and

(iii) there is a word u ∈ Σ∗ and a state s′ 6= s such that T has
a cycle over some u from q (δ̂(q, u) = q), δ̂(s, u) = s′,
and δ̂(s′, u) = s′ (or the same with q and s swapped).

The equivalence between (i) and (ii) follows from the
definition. Condition (iii) clearly implies condition (ii).
For the converse, consider a word d satisfying (ii). Then,
d′ = dk satisfies δ̂(q, d′) = q and for all n > 0

we have δ̂(s, d′) 6= s. Then, there are a, b > 0 such
that δ̂(s, (d′)a) = δ̂(s, (d′)a+b), and hence δ̂(s, (d′)ab) =

δ̂(s, (d′)ab+b). Therefore, δ̂(s, (d′)ab) = δ̂(s, (d′)ab+ab) and
dkab satisfies condition (iii).

Condition (iii) can be checked in polynomial time. We can
try all states as s′. For a fixed s′ we construct the product
automaton consisting of three copies of T starting from the

state (q, s, s′) and check whether it is possible to reach the
state (q, s′, s′). This can be done in time O(|V |4|Σ|).

We mark all pairs q and s that are not immediately cycle-
equivalent as not ≡Q-equivalent and back propagate, i.e., if
q′, s′ are such that δ(q′, a) = q and δ(s′, a) = s then we
mark q′ and s′ as not ≡Q-equivalent. The back-propagation
can be done in time O(|V |4|Σ|).
The minimization. The intersection of ≡Q and ∼Q yields
∼=Q . We construct an automaton A = 〈Σ, Q, q0, δ, Q,wt〉
in the following way. The set Q ⊆ QT is any selector of
equivalence classes of ∼=Q, and q0 is the representative of the
equivalence class of qT0 . The transition relation is defined
as follows: for q ∈ Q and a ∈ Σ we define δ(q, a) as the
representative from Q of the equivalence class of δT (q, a).
Observe that the ω-automaton 〈Σ, Q, q0, δ, Q〉 is consistent
with∼=T . Therefore, by Theorem 3 we can compute wt : Q×
Σ→ Q in polynomial time such that the LIMAVG-automaton
A = 〈Σ, Q, q0, δ, Q,wt〉 is equivalent with T .

Theorem 4 (Minimization w.r.t. ∼=T). Given a LIMAVG-
automaton T , we can compute in polynomial time in |T | a
LIMAVG-automaton A, which is equivalent to T , and each
state ofA corresponds to a different equivalence class of∼=T .

6 Learning Algorithm
We present an active learning algorithm for (deterministic)
LIMAVG-automata base on L∗-algorithm [Angluin, 1987].

We construct the relation ∼=T iteratively. We start with
defining a relation ∼=TC , which is a version of the relation ∼=T
parametrized by a set of ω-generators C. The relation∼=TC ap-
proximates its non-parameterized counterpart. We show that
there is a parameter C of polynomial size in T such that ∼=TC
and∼=T coincide. The learning algorithm will learn such a C.

The equivalence classes of ∼=T can be characterized by
means of the following function TLVTu . Let TLVTu (c, d) be
defined as the pair (T (ucdω), e), where e is the boolean value
representing whether (uc, d) factorizes to (uc, d). It can be
easily shown that for all words u, v we have TLVTu = TLVTv
if and only if u ∼=T v.

A natural approach would be to consider queries regarding
TLVT . Here, we show that even a simpler function suffices
for learning: LVTu . Let LVTu (c, d) be defined as T (ucdω) if
(uc, d) factorizes to (uc, d), and ⊥ otherwise.
Definition 5 (Parameterized word relations). Given
a LIMAVG-automaton T and a set of ω-generators C, we
define the relation ∼=TC on Σω as follows: u ∼=TC v iff for all
(c, d) ∈ C we have LVu(c, d) = LVv(c, d).

Observe that for a LIMAVG-automaton T and any two dif-
ferent equivalence classes [u]∼=T , [v]∼=T of ∼=T either there is
an ultimately periodic word w witnessing that u 6∼T v, or fi-
nite words c, dwitnessing that u 6≡T v. We can pick the word
w to factorize in at least one of the words u, v. Therefore,
there is C with at most |T |2 elements such that relations ∼=TC
and ∼=T coincide. Furthermore, a pumping argument shows
that we can pickC whose elements are of length at most |T |3.
Lemma 6. For every LIMAVG-automaton T , there is a finite
set of ω-generators C such that ∼=TC coincides with ∼=T .

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2823

An ω-automaton B = 〈Σ, Q, q0, δ〉 is partially consistent
with ∼=TC if it satisfies the following conditions: (1) Q is a
subset of the equivalence classes of∼=T , (2) q0 = [ε]∼=T is the
equivalence class of the empty word ε, and (3) for all q ∈ Q
and a ∈ Σ, there exists u ∈ q such that δ(q, a) = [ua]∼=T .
The framework. For the remainder of this section we fix a
target LIMAVG-automaton T . We consider the active learn-
ing setting, in which the learning algorithm asks queries to an
oracle called the teacher. The teacher answers queries about
the target automaton T , which is concealed from the learning
algorithm. We consider the following types of queries:

LV-value query

Input word u ∈ Σ∗ and ω-generator (c, d)

Output LVTu (c, d)

LV-equivalence query

Input ω-automaton A
Output Consistent if for all u, v such that

δ̂A(qA0 , u)=δ̂A(qA0 , v) we have
LVTu =LVTv , a counterexample otherwise

We assume that a counterexample to an LV-equivalence
query is a tuple 〈u, v, c, d〉 of words such that δ̂A(q0, u) =

δ̂A(q0, v) and LVTu (c, d) 6= LVTv (c, d).
The algorithm. Let T be the target automaton. The learn-
ing algorithm works in two stages. First, it learns an ω-
automaton A consistent with ∼=T . Having the automaton B
it finds the labeling wt such that 〈B,wt〉 is equivalent to the
target automaton T . We discuss these two stages below.
Learning a consistent automaton. To learn an ω-
automaton consistent with ∼=T , we adapt the L∗-
algorithm [Angluin, 1987]. The algorithm maintains
two sets: a set of finite words S, called selectors, and a set
of ω-generators C, called test words. It works by saturating
S and C until (i) ∼=TC coincides with ∼=T , and (ii) every
equivalence [u]∼=T contains exactly one word from S. The
main body of the algorithm is presented as Algorithm 1,
where T.LVEQUIVALENCE(A) is the LV-equivalence query.

For S,C, s ∈ S and a ∈ Σ, let δMAY
S,C (s, a) = {s′ ∈ S |

sa ∼=TC s′} be the set of possible values of δ(s, a). Observe
that testing the membership of δMAY

S,C (s, a) can be done ef-
fectively: s′ ∈ δMAY

S,C (s, a) if and only if for all (c, d) ∈ C
we have T.LVVALUE(s′, (c, d)) = T.LVVALUE(sa, (c, d)).

The procedure EXTEND(S,C, 〈u, v, c, d〉), defined in Al-
gorithm 1, extends S,C to S′, C ′ via a fixed-point computa-
tion that makes sure that for every selector s ∈ S and every
letter a ∈ Σ there is a selector s′ ∈ S such that sa ∼=TC′ s′.
If such a selector is not in S, then it extends S with sa. It
terminates in polynomial time; |S| is bounded by the number
of equivalence classes of ∼=TC′ , which is bounded by |T |.
Lemma 7. The procedure EXTEND(S,C, 〈u, v, c, d〉) works
in polynomial time and returns S′, C ′, A such that A is par-
tially consistent with ∼=TC and either S′ ⊃ S or S′ = S and
δMAY
S′,C′ ⊂ δMAY

S,C .

Algorithm 1 The learning algorithm.

1: procedure LEARN-STRUCTURE(T)
2: S := {ε}, C := ∅
3: A := the one state automaton
4: while true do
5: e := T.LVEQUIVALENCE(A)
6: if e = Consistent then return A
7: S, C, A := EXTEND(S, C, e)
8: procedure EXTEND(S,C, 〈u, v, c, d〉)
9: C := C ∪ {(xc, d) | x is a suffix of u or v}

10: δ = ∅, Done = ∅
11: while S 6= Done do
12: for all s ∈ S \Done, a ∈ Σ do
13: if there is s′ ∈ δMAY

S,C (s, a)

14: then δ(s, a) = s′

15: else S := S ∪ {sa}, δ(s, a) = sa

16: Done := Done ∪ {s}
17: return S,C, 〈Σ, S, ε, δ〉

The algorithm LEARN-STRUCTURE(T) iterates the main
loop at most polynomially many times and each iteration
takes polynomial time. Therefore, it works in polynomial
time. The termination condition implies that the returned au-
tomaton is consistent with ∼=T .
Learning weights. Consider an ω-automaton B consistent
with ∼=T . We assign with each transition ei a variable xi
corresponding to its weight. Suppose that transition e1 occurs
in a cycle e1e2e3 labeled with aba and u leads to e1 cycle
from q0. Then, the LV-query (u, aba) returns α, which is the
mean of weights in the cycle e1e2e3. We express this with the
equation: x1 + x2 + x3 = 3 · α.

Based on the structure of B, we can construct in polyno-
mial time a maximal linearly independent system of linear
equation characterizing weights of transitions e1, . . . , ek. It
follows that every solution to that system gives rise to the
labeling wt defined by wt(ei) = xi such that 〈B,wt〉 is
equivalent to T .
Lemma 8. Given an ω-automaton B, we can compute a sys-
tem of linear equations A~x = ~b in polynomial time such that
any solution ~x defines wt by wt(ei) = xi such that 〈B,wt〉
is equivalent to T . Furthermore, the matrix A is defined
based only on B and the vector ~b is computed as the result
of LV-value queries.

Linear equations over the rational numbers can be solved
in polynomial time, thus we can effectively learn LIMAVG-
automata:
Theorem 9. Active learning deterministic LIMAVG-
automata with teacher answering LV-value queries and
LV-equivalence queries can be done in time polynomial in
the size of the target automaton and the size of teachers’
responses.

Acknowledgments
This work was supported by the National Science Centre
(NCN), Poland under grant 2017/27/B/ST6/00299.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2824

References
[Alur et al., 2017] Rajeev Alur, Konstantinos Mamouras,

and Caleb Stanford. Automata-based stream processing.
In ICALP 2017, volume 80 of LIPIcs, pages 112:1–112:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[Angluin and Fisman, 2016] Dana Angluin and Dana Fis-
man. Learning regular omega languages. Theor. Comput.
Sci., 650:57–72, 2016.

[Angluin et al., 2018] Dana Angluin, Udi Boker, and Dana
Fisman. Families of DFAs as acceptors of ω-regular lan-
guages. LMCS, 14(1), 2018.

[Angluin, 1987] Dana Angluin. Learning regular sets from
queries and counterexamples. Information and computa-
tion, 75(2):87–106, 1987.

[Beimel et al., 1999] Amos Beimel, Francesco Bergadano,
Nader Bshouty, Eyal Kushilevitz, and Stefano Varricchio.
Learning functions represented as multiplicity automata.
Journal of the ACM, 47, 10 1999.

[Brainerd, 1968] Walter S Brainerd. The minimalization of
tree automata. Information and Control, 13(5):484–491,
1968.

[Calbrix et al., 1993] Hugues Calbrix, Maurice Nivat, and
Andreas Podelski. Ultimately periodic words of rational
w-languages. In MFPS 1993, pages 554–566, 1993.

[Cerný et al., 2013] Pavol Cerný, Thomas A. Henzinger, and
Arjun Radhakrishna. Quantitative abstraction refinement.
In POPL 2013, pages 115–128. ACM, 2013.

[Chatterjee et al., 2010] Krishnendu Chatterjee, Laurent
Doyen, and Thomas A. Henzinger. Quantitative lan-
guages. ACM Trans. Comput. Log., 11(4):23:1–23:38,
2010.

[Cormen et al., 2009] Thomas H Cormen, Charles E Leiser-
son, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

[Henzinger and Otop, 2017] Thomas A Henzinger and Jan
Otop. Model measuring for discrete and hybrid systems.
Nonlinear Analysis: Hybrid Systems, 23:166–190, 2017.

[Maler and Staiger, 1997] Oded Maler and Ludwig Staiger.
On syntactic congruences for omega-languages. Theor.
Comput. Sci., 183(1):93–112, 1997.

[Michaliszyn and Otop, 2020] Jakub Michaliszyn and Jan
Otop. Learning deterministic automata on infinite words.
In ECAI 2020 - 24th European Conference on Artificial
Intelligence, volume 325 of Frontiers in Artificial Intel-
ligence and Applications, pages 2370–2377. IOS Press,
2020.

[Miekisz, 2008] Jacek Miekisz. Evolutionary game theory
and population dynamics. In Multiscale problems in the
life sciences, pages 269–316. Springer, 2008.

[Nerode, 1958] Anil Nerode. Linear automaton transforma-
tions. Proceedings of the American Mathematical Society,
9(4):541–544, 1958.

[Rich, 2008] Elaine Rich. Automata, computability and com-
plexity: theory and applications. Pearson Prentice Hall
Upper Saddle River, 2008.

[Schewe, 2010] Sven Schewe. Beyond hyper-
minimisation—minimising DBAs and DPAs is NP-
complete. In FSTTCS 2010, pages 400–411, 2010.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2825

	Introduction
	Plan and Contributions
	Related Work

	Preliminaries
	Challenges
	The Right Congruence Relation Is Insufficient
	Minimal Automata Are Not Unique
	Weights Are Ambiguous

	Characterization of Automata
	Minimization Algorithm
	Learning Algorithm

