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Abstract
Deep clustering techniques combine representation
learning with clustering objectives to improve their
performance. Among existing deep clustering tech-
niques, autoencoder-based methods are the most
prevalent ones. While they achieve promising clus-
tering results, they suffer from an inherent con-
flict between preserving details, as expressed by
the reconstruction loss, and finding similar groups
by ignoring details, as expressed by the cluster-
ing loss. This conflict leads to brittle training
procedures, dependence on trade-off hyperparam-
eters and less interpretable results. We propose
our framework, ACe/DeC, that is compatible with
Autoencoder Centroid based Deep-Clustering meth-
ods and automatically learns a latent representation
consisting of two separate spaces. The clustering
space captures all cluster-specific information and
the shared space explains general variation in the
data. This separation resolves the above mentioned
conflict and allows our method to learn both de-
tailed reconstructions and cluster specific abstrac-
tions. We evaluate our framework with extensive
experiments to show several benefits: (1) cluster
performance – on various data sets we outperform
relevant baselines; (2) no hyperparameter tuning –
this improved performance is achieved without intro-
ducing new clustering-specific hyperparameters; (3)
interpretability – isolating the cluster-specific infor-
mation in a separate space is advantageous for data
exploration and interpreting the clustering results;
and (4) dimensionality of the embedded space –
we automatically learn a low-dimensional space for
clustering. Our ACe/DeC framework isolates cluster
information, increases stability and interpretability,
while improving cluster performance.

1 Introduction
The collection of massive amounts of complex data like im-
ages, text, video and audio gives rise to ever emerging chal-
lenges for data scientists trying to find patterns within data.

∗Authors with equal contribution
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Figure 1: (a) Impact of shared information on cluster performance.
[top left] A synthetic 2D data set with four clusters, that can be
perfectly clustered by all methods (step 0 on x-axis). [top right]
Adding dimensions, which do not contain cluster specific informa-
tion (e.g., unimodal Gaussian distributed), considerably hurts the
performance of DCN (measured in average NMI and 95% confi-
dence intervals over 20 runs). In contrast, DCN combined with our
ACe/DeC framework remains stable as it can isolate the cluster in-
formation. (b) Our ACe/DeC framework applied to the OBJECTS
data set, which consists of images of cubes, spheres, and cylinders
under different lighting conditions. Our framework allows DCN
to isolate the cluster-specific information (the shape), from shared
information mainly relevant for reconstruction (the lighting). [top]
Input sample. [middle] Cluster information: Reconstructions using
only dimensions of the cluster space show distinct shapes, but have
less light information. [bottom] Shared information: Reconstructions
from the shared space dimensions contain only light information.

Often they work in an unsupervised setting without access
to labels, as these might be very costly or impossible to ob-
tain. We can learn these labels with clustering methods, which
partition the data into similar groups. Unfortunately, clus-
tering high-dimensional data such as images directly works
unsatisfactorily. In such situations it is beneficial to combine
clustering with deep learning [Xie et al., 2016] to automati-
cally learn a high-quality, low-dimensional representation for
clustering. This quite recent field of research is termed deep
clustering (DC). Autoencoder (AE)-based DC approaches,
such as DEC [Xie et al., 2016], IDEC [Guo et al., 2017] or
DCN [Yang et al., 2017], in particular, are well-known and
serve as building blocks for many other methods, see, e.g.,
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the survey by [Aljalbout et al., 2018]. AEs are a common
approach to learn non-linear embeddings of high-dimensional
data. They consist of an encoder network, which maps the
input x to a lower-dimensional space and a decoder network,
which produces a reconstruction x̂ optimized for minimizing
a reconstruction loss Lrec = ||x − x̂||. DC methods learn
a ’cluster friendly’ embedding by adding a clustering objec-
tive to the reconstruction loss. DEC, IDEC or DCN, e.g. are
centroid-based as they use a k-means-like objective for ’mov-
ing’ points closer to their respective centroids. They learn
the reconstruction and clustering in a single embedded space,
which blends the features necessary for clustering and recon-
struction, leading to brittle performance and less interpretable
results.

These drawbacks are due to an inherent conflict between
the reconstruction loss of the AE, that tries to preserve all
details and the clustering loss, that tries to abstract from de-
tails. One might say, ”that an AE wants to learn everything
a [clustering algorithm] wants to forget” [Epstein and Meir,
2019]. An instance of this conflict can be seen in the synthetic
data set in Figure 1a. Adding features that are irrelevant for
the clustering, but important for the reconstruction, hurts the
clustering performance of DCN drastically. DCN and other
DC algorithms that consider all features equally important for
clustering and reconstruction, attempt to solve this issue by
weighing the trade-off between cluster loss and reconstruction
loss with a new hyperparameter λ. Importantly, automatically
tuning λ is very hard if not impossible in the unsupervised
setting and existing work leaves open on how to tune this pa-
rameter without access to ground truth labels. However, as we
can see in Figure 1a DCN performs poorly, for low and high
λ values. This shows that a hyperparameter based approach to
address the balancing of reconstruction and clustering loss in
general is not sufficient. Unfortunately, simply removing Lrec
can lead to arbitrary clustering solutions [Guo et al., 2017],
which is why the reconstruction - clustering - dilemma needs
to be approached differently.

In this work we propose to resolve the mentioned draw-
backs with our novel ACe/DeC framework, that is compatible
with Autoencoder Centroid-based Deep Clustering methods.
We rephrase the DC objective to account for both, cluster and
non-cluster information. We do this by learning an individual
weight for each dimension of the embedded space separating
cluster-specific information from shared information, allowing
us to learn good clusterings while keeping all the details. In
Figure 1a we can see how our ACe/DeC framework removes
the impact of irrelevant dimensions and improves the perfor-
mance of DCN considerably. Another instance of irrelevant in-
formation for clustering is shown in Figure 1b. The OBJECTS
data set consists of images of spheres, cubes and cylinders,
with random lighting, where the light source is mostly relevant
for reconstruction, but not for distinguishing between objects
as it is shared across all images. Our ACe/DeC framework
allows DCN to isolate the cluster-specific features from the
ones that are shared as shown in the middle and bottom row
of Figure 1b, respectively.

In the following, we will first introduce the general frame-
work and how the architecture is designed to achieve the space
separation. Then we apply ACe/DeC to one popular AE

Figure 2: The overall architecture of ACe/DeC with the cluster space
and the shared space. Our ACe/DeC framework extends the AE
by introducing a learnable linear d × d transformation matrix V
and two non-negative weight vectors βcs and βss in the embedded
space of the AE. The two weight vectors indicate which dimensions
are important for clustering (βcs) and which are not (βss). Here
the βcs weights indicate that the first two neurons z0, z1 have high
cluster structure, while the last two neurons z2, z3 do not. In the plot
below, one can see an example of a four dimensional embedded space
split by ACe/DeC into two separate 2D spaces. We can see that the
cluster space contains well-separated clusters, while the shared space
contains only a single Gaussian without cluster structure. The matrix
V aligns the clusters along the axes, based on the β-weights.

centroid-based DC procedure, namely DCN. We show ex-
perimentally the improvement of DCN with the framework
compared to the original DCN algorithm as well as other com-
petitors regarding

(1) cluster performance – on various data sets we outper-
form relevant baselines with increased stability regarding
the choice of learning rate and cluster performance. Fur-
thermore, we propose an optional augmentation proce-
dure for image data, that can be used to further increase
cluster performance and stability.

(2) hyperparameter tuning – most DC algorithms use
cluster-specific hyperparameters that have to be tuned
with ground truth labels. We remove such hyperparame-
ters by rephrasing the DC objective to isolate cluster-
specific information from shared information. This
avoids having any data-specific hyperparameters to quan-
tify the importance of cluster information making our
approach more flexible to use in practice.

(3) interpretability – the isolation of cluster information
leads to a natural separation of the embedded space into
a cluster space and a shared space and enables a look
into the AE blackbox. It is essential for visualizing and
interpreting the clustering.

(4) dimensionality of the embedded space – ACe/DeC au-
tomatically determines the number of dimensions needed
for clustering by removing irrelevant features.

2 Methodology
The AE is a key element of DC. It consists of an encoder
network enc(·), which learns to project an input data point
x ∈ RD from a data set X to an embedded (latent) vector
z = enc(x) and a decoder network dec(·), which learns to
project the embedded data point z ∈ Rd back to the original
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data space, resulting in the reconstruction x̂ := dec(z) of x.
The dimension d of z is often chosen to be smaller than the
input dimension D. This bottleneck architecture avoids that the
AE simply learns to copy the input to the output, which would
be possible for d ≥ D, if no other regularization is added.

2.1 Method
To separate cluster information from non-cluster information
we reformulate the commonly used DC objective L = Lcomp +
Lrec. Lcomp is the compression loss which is responsible for
minimizing the distance of a point z to its closest centroid µk
and Lrec is the AE reconstruction loss. Instead, we propose
the loss function L = Lcluster + Lshared + Lrec, where the term
Lshared is responsible for capturing the shared information by
modelling the distance to the mean of the embedded data µ.
In conjunction with the reconstruction loss this has the effect
that we retain variance within the clusters, but are also able to
model the common overall variance. Lcluster compresses the
clusters similar to Lcomp. In particular we use L =

K∑
k=1

∑
z∈Ck

distβcs(V
Tz,VTµk)︸ ︷︷ ︸

Lcluster

+
∑
z∈C

distβss(V
Tz,VTµ)︸ ︷︷ ︸

Lshared

+
∑
x∈X

dist2(x, dec(VVTz))︸ ︷︷ ︸
Lrec

, (1)

where distβs(·), s ∈ {cs, ss} are generic distance functions,
e.g. for the squared euclidean distance (dist2(·)) and for some
d-dimensional vectors h,g we define

distβs
(h,g) = ||h− g||2βs

=
d∑
i=1

βs[i]
2(h[i]− g[i])2. (2)

Additionally, we have K clusters, with Ck as the set of all
embedded data points in the kth cluster with corresponding
centroid µk. C is the set of all embedded data points in the
single shared space cluster with centroid µ = 1

|C|
∑

z∈C z.
We can now compute the assignment of objects to the given
cluster centers in the cluster space by assigning them to their
closest center argmink∈[1;K] ||VT z−VTµk||2βcs

.
We introduced new learnable parameters above. A linear

d× d transformation matrix V and two non-negative weight
vectors βcs and βss. We explain the intuition behind them in
Figure 2. To learn which dimensions are relevant for clustering,
we need the βs-weights to indicate which dimensions contain
cluster structure, e.g. according to the k-means model, and
which are not. Therefore, we use a trainable d-dimensional
parameter b that is constrained by a sigmoid function βcs[i] =
sigmoid(b[i]) := 1

1+exp(−b[i]) and βss[i] = 1− βcs[i], where
[i] refers to the ith component of a vector. Each component
weighs one dimension of the embedded space. The two non-
negative weight vectors βcs and βss are constrained by βcs +
βss = ~1, because the sigmoid function is between 0 and 1.
These vectors represent a soft-assignment mechanism to the
cluster space (cs) and shared space (ss), respectively.

The linear transformation matrix V can be seen as a linear
layer which, ’guided’ by the β-weights, axis-aligns the cluster
structure along the most important cluster dimensions. With
the above we can measure distances in two separated spaces
using our weighted distances distβs

(·), while still being differ-
entiable. Altogether our ACe/DeC framework is lightweight
requiring only d2 + d trainable parameters for the matrix V
and weights βs, where d is usually much lower than the origi-
nal data dimensionality D. Before we apply ACe/DeC to DCN
we first state the loss function of DCN L = λ

2Lcomp + Lrec

=
λ

2

K∑
k=1

∑
z∈Ck

dist2(z, µk) +
∑
x∈X

dist2(x, dec(z)) (3)

=
λ

2

K∑
k=1

∑
z∈Ck

‖z− µk‖22 +
∑
x∈X
‖x− x̂‖22, (4)

with the trade-off hyperparameter λ > 0. To integrate
ACe/DeC into DCN, we adjust their loss function with our
two new learnable parameters V and b. We can then compute
L = Lcluster + Lshared + Lrec as

K∑
k=1

∑
z∈Ck

‖VTz−VTµk‖2βcs
+

∑
z∈C
‖VTz−VTµ‖2βss

+
∑
x∈X
||x− dec(VVTz)||22, (5)

where we can now learn which dimensions are important to the
k-means clustering and which are not, without any potentially
crucial hyperparameters. To further motivate this loss, one
can think about the βs-weighted euclidean distance from Eq.2
as rescaling the dimensions based on the cluster structure.
If in the ith dimension the k-means centroids represent the
embedded data points better than a single centroid, βcs[i]
will increase and βss[i] will decrease accordingly in the next
update step in order to lower the loss. We show this with a
mathematical analysis by considering the gradient of the loss
function with respect to b[i], which determines the update of
the βs[i]-weights. We present this and further analysis in the
Supplement (SP) [Miklautz et al., 2021] (Sec. 1.1 - 1.5).

Another motivation for combining ACe/DeC with DCN
comes from SubKmeans [Mautz et al., 2017]. We show in the
SP (Sec. 1.6) that for a linear AE both methods optimize the
same objective, because the reconstruction error will then force
V to be orthogonal. With the ACe/DeC+DCN loss function
we only update V and the space weights βs; the update of
centroids and cluster assignments for DCN is done separately.
The original update procedure for DCN is alternating between
the update of the AE parameters with fixed centroids and
updating the cluster assignments and centroids with fixed AE
parameters. We implemented another strategy, which allows
for an update without alternation using mini-batch k-means
[Sculley, 2010], for details see SP (Sec. 1.7).

2.2 Initialization and Augmentation Procedure
We initialize V as a random orthogonal matrix and randomly
assign each dimension to one of the two spaces. We then
perform k-means in the cluster space to get the initial centroids
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µk. As the shared space is modeled with a single cluster, we
initialize its centroid with the mean of the embedded data.
This adds only little overhead and is similar to other k-means
based DC algorithms. We then train V and b while holding
everything else constant to get an initial estimate.

Optionally, our ACe/DeC framework allows to leverage do-
main knowledge in the form of data augmentation to increase
clustering performance. For this we use xaug = f(x), where
the function f augments the input data, e.g., by rotating it.
We then minimize the distance of the embedded augmented
data point zaug = enc(xaug) to the centroid of the original
data point µk, with distβcs

(VTzaug,V
Tµk). This forces the

clusters to be invariant to the augmentation. Additionally, we
make use of our cluster and shared space. We reconstruct
the augmented data point xaug from the shared space and
the original x from the clustered space. With this we ’move’
information unnecessary for clustering to the shared space.

3 Related Work
There are two clustering approaches, which are conceptually
related to ACe/DeC through the idea of separating features
containing clustering structure from features without cluster-
ing structure. The algorithms FOSSCLU [Goebl et al., 2014]
and SubKmeans [Mautz et al., 2017] search for a single op-
timal subspace in the k-means sense, but are bound to linear
relationships and do not scale well to high-dimensional data.
In addition, their objectives are non-differentiable due to dis-
crete subspace assignments making them unsuitable for DC
with gradient-based optimization. Furthermore, they cannot
be optimized jointly together with the AE, limiting their repre-
sentational power and clustering performance.

AE-based DC methods are arguably the most prevalent ones
[Aljalbout et al., 2018; Min et al., 2018]—whether the AE
is only used for an initial representation of the data as in the
DEC algorithm [Xie et al., 2016], or the reconstruction and
clustering objective is jointly optimized as in methods like
IDEC [Guo et al., 2017], DCN [Yang et al., 2017], JULE
[Yang et al., 2016], DualAE [Yang et al., 2019] or DEPICT
[Dizaji et al., 2017]. DEPICT is one of the few methods
that does not introduce a cluster-specific hyperparameter. It
uses a convolutional AE and leverages noise augmentation
for a more robust clustering. IDEC combines a reconstruc-
tion loss with an auxiliary target distribution to minimize the
Kullback-Leibler divergence such as in the DEC algorithm,
weighing the trade-off with a hyperparameter. For DCN, net-
work parameters, (hard) cluster assignments and centroids are
updated in alternation. In each step of DCN the full data set
is passed and a carefully weighted k-means loss is optimized
together with the reconstruction loss. Recently, more power-
ful techniques that combine data-specific architectures with
several cluster-specific hyperparameters have been introduced.
These hyperparameters have to be tuned with ground truth
labels, leaving open how to set them in an unsupervised set-
ting. JULE combines a recurrent convolutional AE with a
joint clustering objective, leveraging a well-tuned triplet loss.
DualAE combines AE-based deep spectral clustering with
mutual information maximization and noise augmentation.

A recently proposed probabilistic DC method is Cluster-

GAN [Mukherjee et al., 2019], which combines a generative
adversarial network (GAN) [Goodfellow et al., 2014] with
a clustering prior. While not an AE-based method, it uses
similar to other existing methods the same space for captur-
ing cluster and non-cluster information, leading to a trade-off
between losses and less interpretable results. In contrast to
our method, ClusterGAN can not distinguish features shared
between all clusters from the ones that are cluster-specific,
as can be seen in Figure 4 of [Mukherjee et al., 2019]. All
of these methods need three cluster-specific hyperparame-
ters tuned by ground truth labels to balance the different loss
terms, but they do not account for the situation that different
dimensions might be less important to the clustering as we
motivated in Figure 1a. This is in contrast to our approach, as
we learn the importance of each dimension and assume that
we have no access to ground truth labels, which is usually the
case for clustering in practice. ACe/DeC shares its idea of soft-
assigned feature spaces with [Ji et al., 2017; Zhang et al., 2018;
Zhang et al., 2019; Miklautz et al., 2020]. However, in con-
trast to these (deep) subspace clustering methods, which find
a separate subspace for each cluster or multiple clustering
subspaces, we find a single cluster subspace for all clusters
and a single non-cluster space for shared information. To our
knowledge we are the first to introduce this idea to DC for re-
solving the clustering/reconstruction trade-off. Our framework
is developed for centroid-based DC methods, which is why we
do not compare to algorithms outside of this family. There are,
of course, powerful classical clustering methods, e.g. HDB-
SCAN [Campello et al., 2013]. However, the clustering notion
is very different (density-based vs centroid-based).

4 Experiments
We evaluate all algorithms with six different data sets focus-
ing on common DC benchmarks like MNIST [LeCun et al.,
1998], Fashion-MNIST [Xiao et al., 2017] and USPS. Ad-
ditionally, we use a data set based on real world images of
traffic signs (GTSRB) [Houben et al., 2013], recorded un-
der different camera angles and daylight conditions, and two
synthetic data sets to show the impact of irrelevant infor-
mation on DC performance. The OBJECTS data set con-
sists of 10, 000 synthetically generated gray scale images of
spheres, cubes and cylinders with 4, 096 dimensions. The
SYNTH-25 data set consists of 12, 000 data points with four
well-separated Gaussian clusters in two dimensions and 25
independent, unimodal Gaussian distributed dimensions with-
out cluster structure (27 dimensions in total), corresponding
to step 25 of the x-axis in Figure 1a. Further explanations
about the experiments, data sets, information on our hardware
setup, compared methods, and all additional experiments are
in the SP (Sec. 2). We uploaded our code and supplement at
https://gitlab.cs.univie.ac.at/lukas/acedec public.

4.1 Quantitative Experiments
In this section we show that by using our ACe/DeC framework,
we can achieve stable cluster performance across data sets with
varying degree of non-cluster information, without tuning of
the hyperparameter λ and using less dimensions for clustering.
For the image data sets we use for all methods 10 pretrained
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Methods SYNTH-25 FMNIST MNIST-Full MNIST-Test OBJECTS USPS GTSRB
ACe/DeC+DCN 1.00 ±0.00 0.62 ±0.00 0.89 ±0.01 0.87 ±0.02 1.00 ±0.00 0.71 ±0.02 0.52 ±0.04
DCN (λ = 0.1) 0.17 ±0.24 0.62 ±0.02 0.87 ±0.01 0.86 ±0.02 1.00 ±0.00 0.71 ±0.03 0.19 ±0.05
DCN (λ = 1.0) 0.22 ±0.21 0.55 ±0.03 0.86 ±0.03 0.83 ±0.03 0.99 ±0.01 0.65 ±0.03 0.16 ±0.07
DCN (λ = 10.0) 0.29 ±0.22 0.55 ±0.04 0.70 ±0.08 0.66 ±0.05 1.00 ±0.00 0.56 ±0.04 0.24 ±0.19
k-means 0.90 ±0.16 0.51 ±0.01 0.50 ±0.00 0.50 ±0.00 1.00 ±0.00 0.61 ±0.00 0.22 ±0.01
SubKmeans 0.84 ±0.13 0.52 ±0.00∗ 0.48 ±0.01∗ 0.48 ±0.02∗ - 0.61 ±0.00 -
AE + SubKmeans 0.11 ±0.10 0.59 ±0.02 0.80 ±0.01 0.79±0.01 0.98 ±0.02 0.65 ±0.02 0.47 ±0.02
AE + k-means 0.11 ±0.10 0.59 ±0.01 0.80 ±0.01 0.79±0.01 0.98 ±0.02 0.65 ±0.02 0.46 ±0.03

Methods + Aug SYNTH-25 FMNIST MNIST-Full MNIST-Test OBJECTS USPS GTSRB
ACe/DeC+DCN N/A 0.64 ±0.01 0.94 ±0.00 0.94 ±0.00 1.00 ±0.00 0.86 ±0.02 0.66 ±0.02
DCN (λ = 0.1) N/A 0.60 ±0.02 0.94 ±0.00 0.95 ±0.01 1.00 ±0.00 0.83 ±0.02 0.64 ±0.02
DCN (λ = 1.0) N/A 0.57 ±0.03 0.94 ±0.00 0.95 ±0.01 1.00 ±0.00 0.84 ±0.03 0.65 ±0.06
DCN (λ = 10.0) N/A 0.57 ±0.03 0.92 ±0.02 0.94 ±0.02 1.00 ±0.00 0.78 ±0.05 0.65 ±0.06

Table 1: NMI averages and standard deviations over 10 (20 for SYNTH-25) pretrained AEs. We compare the results with and without image
augmentation in the upper and lower tables, respectively. The upper table shows that the performance of DCN depends in general quite heavily
on λ. For SYNTH-25 and GTSRB the performance of DCN does not improve considerably for any of the considered λ values. This is mainly
due to the AE, which focuses too much on reconstructing the irrelevant dimensions instead of preserving the cluster information as can be seen
when comparing k-means and AE+k-means for GTSRB and SYNTH-25. This can also be seen for the OBJECTS data set, but the effect is
much smaller. In contrast, ACe/DeC allows DCN to perform stable across all data sets. The lower table shows the performance of ACe/DeC
and DCN leveraging image augmentation (random rotation and shifts). Unsurprisingly, both methods improve through domain knowledge in
the form of augmentation, but DCN still depends on λ for FMNIST and USPS, where the learned augmentation invariances might not be as
relevant. Importantly, image augmentation can not solve this problem for non-image data sets like SYNTH-25.

Methods MNIST-Full MNIST-Test FMNIST # HPs
ACe/DeC+DCN 0.94 0.94 0.64 0
DEPICT 0.92 0.92 0.39 0
DEC 0.74 0.75 0.57 0
IDEC 0.80 0.77 0.61 1
JULE 0.91 0.92 0.61 3
C-GAN 0.89 0.89 0.64 3
DualAE 0.94 0.95 0.65 3

Table 2: Average NMI comparison among recently proposed tech-
niques on common benchmarks. DEC and IDEC have been rerun
based on our re-implementations and other results taken from the
literature. Even though the comparison methods have an unrealistic
advantage—hyperparameters (HP) tuned with access to labels—our
performance is equally strong.

Method MNIST FMNIST USPS GTSRB
SubKM 10∗ 10∗ 10 -
AE + SubKM 9 9 9 9
ACe/DeC+DCN 6 5 5 4

Table 3: Average number of dimensions found for all ten pretrained
AEs with d = 10. The joint non-linear optimization allows our
method to reduce the dimensionality by a factor of two compared to
the linear method SubKmeans (SubKM).

fully connected AEs with an embedding size of d = 10 ac-
cording to the procedure in [Xie et al., 2016]. We use this
basic architecture, because all methods would profit from a
more powerful AE. We benchmark two implementations of
our ACe/DeC framework with DCN. One which leverages
augmentation invariances (random rotation and shifts) and
one which does not. We compare this to DCN with different
values of λ. We used the same settings for the training of all
DC methods (training budget, learning rate, optimizer, etc.,
see the SP (Sec. 2.4) for details). Additionally, we compare

to SubKmeans [Mautz et al., 2017] (AE + SubKmeans), k-
means (AE + k-means) and included the results of k-means
and SubKmeans on the raw data sets as well. Results marked
with ∗ were run on a subset of 10, 000 objects, empty results
were stopped due to run time constraints. Additionally, we
compare our results against a reimplemented DEC/IDEC using
the same pretrained AEs and recently introduced state of the
art DC methods that leverage augmentation and data-specific
architectures, namely DEPICT, JULE, ClusterGAN (C-GAN)
and DualAE where we report the results from the respective
papers. For SYNTH-25 and the experiments in Figure 1a, we
trained for each setting 20 single layer linear AEs with d = D.

Stable cluster performance without hyperparameter tun-
ing. Table 1 shows the Normalized Mutual Information
(NMI) [Vinh et al., 2010] results of the considered methods
and data sets, where an NMI close to 1 indicates perfect clus-
tering and 0 a random one. Our method performs stable across
different data sets, while DCN alone fails for a data set like
GTSRB, that contains several features unrelated to clustering.
In our synthetic SYNTH-25 data set, where the number of
irrelevant dimensions overtakes the number of dimension with
cluster information, we can see that DCN’s performance is
considerably worse independent of its λ value. Augmentation
improves the performance of our method and of DCN, but
DCN still depends on λ for data sets where the learned in-
variances might not be as important, like FMNIST and USPS.
We show that the cluster performance of DCN highly depends
on the choice of λ and its learning rate in Figure 4, while
ACe/DeC stabilizes DCN across different learning rates and
data sets. In Table 2 we compare our method against recently
reported results in the literature that use augmentation and
data-specific neural network architectures. We outperform
DEC, IDEC, DEPICT, JULE and ClusterGAN (C-GAN) and
perform close to DualAE, despite being at a disadvantage as
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Figure 3: Latent space traversal. (Left) Plotting the dimension
with most cluster structure (highest βcs[i]) of ACe/DeC+DCN along
the y-axis, we see that the digits 4,7 and 8 can be easily separated
using a single dimension (colors indicate ground truth labels). The
x-axis shows the direction of most variance in the shared space aka
its first principal component (PC1). The equidistantly spaced markers
(×) along the PC1 axis indicate the traversal along this component.
(Right) Each image shows the reconstructed data point with the
corresponding coordinates in the embedded space plot on the left
side, e.g., the top left image of the digit 4 is the reconstruction of
the data point with the coordinates ’white cross’ and ’yellow star’.
Each row shows the traversal along PC1 for a fixed cluster space
coordinate. Therefore, the cluster identity does not change, while
the style varies as one moves from left to right, e.g., digit seven with
and without horizontal bar. As style is a shared feature for digits, it
is not contained in the cluster dimension, but can be captured in the
shared space. These effects transfer to the other digits as well and
other principal components reflect other features like rotation and
thickness, showing that the shared space can capture multiple sources
of variation at once, see SP (Sec. 2.1) for more details.

we do not exploit ground truth labels.
Dimensionality of embedded space. Table 3 shows
the average dimensions found with SubKmeans and
ACe/DeC+DCN. The flexibility to learn a non-linear represen-
tation allows ACe/DeC to decrease the dimensionality needed
for clustering by a factor of two. See SP (Sec. 1.4 and 2.2) on
how to harden the soft assignments and more experiments.

4.2 Interpretability Experiments
In this section we show how we can use ACe/DeC to interpret
which features are important for clustering and which are not.
Using our framework, we gain three modes of understanding.
First, we can separate the cluster and non-cluster information,
as shown in Figure 1b. Second, we can traverse the latent
space separately from the cluster space. With this we can view
the change of varying information that is shared by all clus-
ters. The analysis of the shared space of our algorithm when
applied to MNIST can be seen in Figure 3. Here the direction
of most variance of the shared space represents variation in
style of MNIST digits. Note, that such an analysis is not pos-
sible for existing DC methods alone, which blend cluster and
non-cluster information in a single space (see SP (Sec. 2.1)
for examples). Third, by selecting the most discriminative di-
mensions based on βcs, we can visualize the embedded space
without the need of an additional dimensionality reduction
technique like t-SNE [Maaten and Hinton, 2008], making our
approach more faithful to the learned embedding as can be
seen on the y-axis of Figure 3. We show another example for
the OBJECTS data set in the SP (Sec. 2.1).

(a) DCN on GTSRB

(b) ACe/DeC on GTSRB (c) ACe/DeC on other DS

Figure 4: Figure 4a shows the average NMIs with 95% confidence
intervals over 10 runs of DCN on GTSRB. We look at the stability of
cluster performance w.r.t. different values of λ and different learning
rates. We vary the learning rate with 10−3γ for γ ∈ {0.1, 0.5, 0.9},
where the start value of 10−3 is based on the pretraining. We can
observe, that the performance of DCN becomes very brittle. Its
performance highly depends on different λ parameter and learning
rate combinations. Furthermore, standard deviation is high for all
parameter combinations. Using DCN with ACe/DeC does not need
the λ hyperparameter, but we analyzed the performance for different
learning rates in Figure 4b. The average NMIs are stable for all γ
values with a standard deviation in a moderate range. The same holds
for the other data sets (DS) as well, see Figure 4c.

5 Conclusion

Sometimes details matter, sometimes they don’t. Current AE-
based DC methods need a priori knowledge about the data in
the form of augmentation invariances or ground truth labels,
to improve clustering results. However, this is an unrealistic
setting for clustering and does not resolve the conflict between
the autoencoder and clustering objective. We introduced our
ACe/DeC framework that enables existing centroid-based DC
algorithms to separate clustering information from shared in-
formation allowing the algorithm to preserve details for re-
construction and to abstract from details for clustering. Fur-
ther, our framework improves interpretability, dimensionality
reduction and performance stability, without a—in practice—
impossible to tune hyperparameter. There are multiple promis-
ing directions to extend our framework, including but not
limited to: integrating ACe/DeC into other centroid-based DC
methods; replacing the reconstruction error with other self-
supervised losses; or making our framework (semi-)supervised
by combining it with a supervised AE [Le et al., 2018].

Acknowledgments

This work was supported by the German Federal Min-
istry of Education and Research (BMBF) under Grant No.
01IS18036A and the Federal Ministry of Education, Science
and Research of Austria (project: Digitize! Computational So-
cial Sciences). The authors of this work take full responsibility
for its content.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2831



References
[Aljalbout et al., 2018] Elie Aljalbout, Vladimir Golkov,

Yawar Siddiqui, and Daniel Cremers. Clustering with
deep learning: Taxonomy and new methods. CoRR,
abs/1801.07648, 2018.

[Campello et al., 2013] Ricardo JGB Campello, Davoud
Moulavi, and Jörg Sander. Density-based clustering based
on hierarchical density estimates. In Pacific-Asia confer-
ence on knowledge discovery and data mining, pages 160–
172. Springer, 2013.

[Dizaji et al., 2017] Kamran Ghasedi Dizaji, Amirhossein
Herandi, Cheng Deng, Weidong Cai, and Heng Huang.
Deep clustering via joint convolutional autoencoder embed-
ding and relative entropy minimization. In ICCV, pages
5747–5756, 2017.

[Epstein and Meir, 2019] Baruch Epstein and Ron Meir. Gen-
eralization bounds for unsupervised and semi-supervised
learning with autoencoders. CoRR, abs/1902.01449, 2019.

[Goebl et al., 2014] Sebastian Goebl, Xiao He, Claudia Plant,
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