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Abstract

In machine learning we often encounter structured
output prediction problems (SOPPs), i.e. problems
where the output space admits a rich internal struc-
ture. Application domains where SOPPs naturally
occur include natural language processing, speech
recognition, and computer vision. Typical SOPPs
have an extremely large label set, which grows ex-
ponentially as a function of the size of the output.
Existing generalization analysis implies generaliza-
tion bounds with at least a square-root dependency
on the cardinality d of the label set, which can be
vacuous in practice. In this paper, we significantly
improve the state of the art by developing novel
high-probability bounds with a logarithmic depen-
dency on d. Moreover, we leverage the lens of algo-
rithmic stability to develop generalization bounds
in expectation without any dependency on d. Our
results therefore build a solid theoretical foundation
for learning in large-scale SOPPs. Furthermore, we
extend our results to learning with weakly depen-
dent data.

1 Introduction

Structured output prediction (SOP) refers to a broad class of
machine learning problems with a rich structure in the output
space. For instance, the output may be a sequence of tags in
part-of-speech (POS) tagging, a sentence in machine transla-
tion, or a grid of segmentation labels in image segmentation.

A distinguishing property of these tasks is that the loss
function admits a decomposition along the output structures.
For instance, if the output is a sequence of partial labels, the
loss function could be the Hamming distance. The output
structure makes those problems substantially different, both
algorithmically and theoretically, from well-studied machine-
learning methods such as binary classification. Algorithms
specifically targeted at SOPPs have been put forward in [Laf-
ferty et al., 2001; Ciliberto et al., 2016; Taskar et al., 2003;
Tsochantaridis et al., 2005; Vinyals et al., 2015; Lucchi et al.,
2013; Chen et al., 2017], to mention but a few.

Whilst the subject of SOP is well explored from a practi-
cal point of view, existing theoretical analyses have several
limitations. For instance, the results in [Taskar et al., 2003;
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Collins, 2001] apply only to specific factor graphs and bound
errors measured only by the Hamming loss, while other losses
such as edit distance and BLUE scores are more natural in
many applications. [McAllester, 2007] introduced guarantees
that apply to general losses but only to randomized linear al-
gorithms and admit only a square-root dependence on the size
of substructures. In [Cortes et al., 2016], the authors intro-
duced general bounds that apply to general factor graphs and
general losses from the viewpoint of function class capacity.
However, the associated bounds exhibit a square-root depen-
dence on the number d of categories a subset of substructures
can take, which can become vacuous when applied to extreme
multi-class contexts [Lei ef al., 2019] or models that assume
a large dependence between the substructures.

In this paper, we aim to advance the state of the art in the
theoretical foundation of SOP by developing generalization
bounds applicable to large-scale problems with millions of
labels. Our contributions are as follows.

1. We apply the celebrated technique of Rademacher com-
plexity to develop high-probability generalization bounds
with a log dependency on the size of the label set. This sub-
stantially improves the existing state of the art, which comes
with at least a square-root dependency. We achieve this im-
provement by using covering numbers measured by the ¢-
norm, which can exploit the Lipschitz continuity of loss func-
tions with respect to (w.r.t.) the /,-norm. For comparison,
the existing complexity analysis uses the Lipschitz continuity
w.r.t. the ¢5-norm [Cortes et al., 2016], which does not match
the regularity of loss functions in structured output prediction
and thus leads to suboptimal bounds.

2. We leverage the framework of algorithmic stability to fur-
ther remove the log dependency for generalization bounds in
expectation. We consider two popular methods for structured
output prediction: stochastic gradient descent (SGD) and reg-
ularized risk minimization (RRM). We adapt the existing sta-
bility analysis in a way to exploit the Lipschitz continuity
w.r.t. the /,,-norm of loss functions in SOP.

3. We extend our discussion to learning with weakly depen-
dent training examples, which are widespread in SOPPs. For
example, in natural language processing (NLP), a data set
can come in the form of sets of documents, while learning
is performed at the sentence level. While assuming that the
sentences are independent is inaccurate, it is reasonable to as-
sume that the dependency between sentences decreases when
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their distance in a document increases.

The remaining parts of the paper are structured as follows.
We discuss some related work in Section 2 and present the
problem formulation in Section 3. We present our main re-
sults on generalization bounds in Section 4, which are ex-
tended to learning with dependent examples in Section 5. We
conclude the paper in Section 6.

2 Related Work

We first review some work on structured output predic-
tion. Many algorithms have been developed to solve struc-
tured output prediction problems. Early techniques consid-
ered generative probabilistic models (e.g., hidden Markov
models [Rabiner and Juang, 1986]). Motivated by the suc-
cess of support vector machines (SVM), large-margin mod-
els for structured data were proposed in [Taskar et al., 2003;
Tsochantaridis et al., 2005]. To reduce the model complex-
ity, conditional random fields (CRFs) [Lafferty et al., 2001]
model the conditional distribution of the structured outputs
rather than modeling the joint probability of the input and
output. A key property of these models is that their prediction
step can be viewed as maximising a scoring function. Such
a scoring function enjoys a decomposition over the substruc-
ture so that the maximisation can be done efficiently. CRFs
were combined with convolutional neural networks (CNN5s)
in [Chen et al., 2017] to approach semantic segmentation
problems, achieving better performance than CNNs alone.

In [Collins, 2001; Taskar et al., 2003], the authors showed
a generalization bound for their proposed models. However,
they considered restricted models and losses (Hamming loss).
A PAC-Bayesian bound is proved in [McAllester, 2007] for
Bayesian prediction algorithms. In [Cortes et al., 2016] the
authors introduced a more general generalization bound that
applies to general losses and models. Their bound scales as
the square root of the number of classes. This can lead to
vacuous bounds when the number of classes per substructure
and their dependence on each other continue to increase.

[Ciliberto ef al., 2016] introduced the implicit embedding
approach to structured output prediction where the label is
encoded into a vector in some Hilbert space via an encoding
function. A decoding function is also defined so that predic-
tion is performed by composing a regression function and the
decoding function, thus establishing a connection between
structured output prediction and regression. They provided
generalization bounds of the order of O(m’%), where m is
the number of samples, which can be a problem for large
m. Recently, [Ciliberto er al., 2019] introduced the setting
of localized structured output prediction, where they assume
a form of weak dependence between substructures. Their
model utilizes such assumption by treating each part of the
structure as an independent sample. They prove bounds of
the order O((ml)~ %) for their method, where [ is the number
of substructures, under weakly dependent samples.

We now review the related work for multi-class classifi-
cation (MCC), which is a specific case of structured output
prediction. Various capacity measures of function classes
were used to study generalization bounds of MCC, includ-
ing Rademacher complexities [Lei et al., 2015; Maurer, 2016;
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Li et al., 2018; Maximov et al., 2018; Musayeva et al.,
19], covering numbers [Zhang, 2004; Lei er al., 2019;
Ledent et al., 2019] and the fat-shattering dimension [Guer-
meur, 2017]. While initial analyses implied generalization
bounds with at least a linear dependency on the number of
classes [Koltchinskii and Panchenko, 2002], the couplings
among class components were exploited recently to get a de-
pendency that can be as mild as square-root [Cortes et al.,
2016; Li et al., 2018] or even logarithmic [Lei et al., 2019;
Wu et al., 2021].

3 Problem Formulation

SOP refers to machine learning problems with an internal
structure in the outputs (and potentially also in the inputs).
For example in sequence-to-sequence prediction, both the in-
put and output are sequences. In syntax analysis, the inputs
are sequences of words and the output is a parse tree.

Let X be an input space (e.g., sentences in a given lan-
guage) and Y be an output space (e.g., POS tags for the in-
put sentences). In structured output prediction, the output
space can often be decomposed into a number of substruc-
tures. Take POS tags as an example, where each word tag
represents a substructure and the sequence of tags constitutes
the structured output. Formally we define ) = )4 X --- x ),
where ) is the set of possible classes a substructure k can
take. For a point (z,y) € X x ), let y* denote the k-th
elementiny (e, y = (y',...,y")).

We aim to learn a scoring function h : X x Y — R
based on which we can perform the prediction as g(z) =
arg maxy,ey h(z,y). The score function in structured output
prediction can be described via a factor graph G = (V, F, E),
where V' = [I] := {1,...,1} is the set of variable nodes, F
is a set of factor nodes, and F is a set of undirected edges
between a variable node and a factor node. Let N(f) be
the set of nodes connected to the factor f by an edge and
Yy = Hpenr(s)Vr. For brevity, we assume that |V¢| = d
for all f, where |);| denotes the cardinality of JV;. Now we
define the scoring function h(x,y) forz € X andy € Y as

h(fﬂ,y) - Z h/j(l',yf),

fer

where y; := {y’ : j € N(f)}and hy : X x Yy — R. Fig-
ure 1 gives an example of factor graphs and scoring functions.

Let S = {(x;,y:)}, be a training set with (z;,1;) €
X x Y being independently drawn from a distribution D over
X x Y. We use aloss function L : Y x V — R, to measure
the performance of prediction models, based on which we can
define the margin loss [Cortes et al., 2016] as L,: X x)Yx
H— R:

1
Ly(z,y,h) = @ (max{L(y',y) — ~[h(x,y) — h(z,y")]}),
y'#y p
)
where ®*(r) = min(M, max(0,7)), M = max,  L(y,y")
and H C {h : X x Y — R} is some hypothesis class.
Note that L,(z,y, h) > L(§(x),y). Therefore, the obtained
bounds for L, will also hold for L. We then define the pop-
ulation risk R(h) and empirical risk Rg(h) to quantify the
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Figure 1: Examples of factor graphs.
and)if1 = y1 ><y2 X V5 X Ya.

Panel (a) represents a factor graph with only one factor node. Note that N'(f1) = {1,2,3,4
If V; = {1,2,3} for all i, then |Vy,| = 3%

The corresponding scoring function is h(z,y

hy (1: TR T oY ) Panel (b) depicts an example of factor graph that assumes a sequence-like structure. The scoring function in this
case is h(x y) = hp (2,98 9%, 0% + by (2,97, 43, y*) + hyy (2,43, y?, 4°). Panel (c) depicts an example of tree-like factor graph.

performance of a model % on testing and training examples,
respectively as:

m

1
— Ly(xi,yi,h).
mz p(x Y )

=1

R(h) = Ep[Ly(x,y,h)], Rs(h)=

Let ¥ be a feature function which maps an input-output ex-
ample (z,7) € X x Y to RP, where D is the dimension
of feature space. In structured output prediction, the fea-
ture extractor takes a composite form according to the fac-
tor graph G, that is, U(z,y) = > ,cp Vs(2,yy), where
®r: X x Yy — R. We consider a linear scoring function
h*(x,y) = (w,¥(z,y)) indexed by a w € RP. Then the
hypothesis space becomes

Hp = {(z,9) = (w, ¥(z,y)) : [lwll, <A, (z,y) € XXJEQ})’

where |w|, = (Zil |wi|d)% is the {,-norm of w =

(w1, ...,wp). We also define the class of loss functions
Fonp = {(x,y) — L,(x,y,h") : h" € Hp}. 3)

4 Main Results

In this section, we present our main results on generalization
bounds for structured output prediction. We consider two
types of generalization bounds: complexity-based bounds
and stability-based bounds. Our aim is to develop bounds
with a very mild dependency on the size of the label set,
thus laying a solid foundation for structured output predic-
tion, where the size of label set ) is often extremely large
in practice. A key discovery to both our stability-based and
complexity-based analysis is to note the Lipschitz continuity
of loss functions w.r.t. infinity-norm || - || .

Definition 1 (Lipschitz continuity). We say that a loss func-
tion L(x,y, h) is (7, £ )-Lipschitz in the last argument if, for
any h,h € Handall (z,y) € X x ), we have:

|L(z,y,h) —

L(l’,y, B)| < TmaX|h($7y/) - B(x7y/>|
y' ey

The existing analysis [Cortes et al., 2016] uses the (72, {2)
Lipschitz continuity of loss functions:

Ly h) LGB < (3 b)) b))

y' ey
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Note that the Lipschitz continuity w.r.t. f,,-norm is much
stronger than that w.r.t. fo-norm. Indeed, if L is (7, £s)-
Lipschitz then it is also (7, ¢2) Lipschitz since || - [0 < || -
2. As a comparison, a (73, ¢2)-Lipschitz function can be
(724/]Y], oo )-Lipschitz due to the norm relationship || - || <

VIVl - [l (the equality can hold in some cases).

In Lemma 1 we build the £, -Lipschitz continuity of L, for
structured output prediction. A remarkable property is that
the involved Lipschitz constant is independent of |Y|. This
shows that the loss function in structured output prediction is
well behaved in the sense of Lipschitz continuity. However,
the existing analysis based on the (72, £5)-Lipschitz continu-
ity fails to exploit this strong regularity, and therefore only
implies suboptimal bounds with at least a square-root depen-
dency on the size of the label set. The proof of Lemma 1
below is given in the arXiv version.

Lemma 1. The loss function L, is (%, loo)-Lipschitz with re-
spect to the scoring function h for allx € X and y € ).

4.1 Complexity-based Generalization Bounds

We develop generalization bounds with high probability here.
Our basic tool to this aim is the Rademacher complexity.

Definition 2. The empirical Rademacher complexity of a
function class H of real-valued functions is defined as:

Jfsup & Zazf (@:)

ferM

Rs(H) = “4)
where {0;} are random variables w1th equal probability of
being either +1 or —1.

Theorem 1. Let p > 0 be. Then the Rademacher complexity
of the loss class Fy, 5 , is bounded as follows:

144w/q — 11U~ A\F\
pyv/m
where L = \/log(2md|F|[8¥*Am|F|/p + 3] + 1) log(m),

U =suprepyey, aex V(T y)lg and g =p/(p —

The proof strategy is to to relate the complexity of the loss
class Fj, 5., to a complexity of a scalar linear function class
on an extended set of size m|F’|d, thus moving contribution of
d to the complexity from the output dimension to the size of
training set. We then utilize standard bounds [Zhang, 2002]
that admit log dependency on the size of training set. The
detailed proof is given in the arXiv version of the paper.

m(FpJ& p) < E (5)
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Remark 1. We now compare our results with related work.
In [Cortes et al., 2016], the authors bounded the Rademacher
complexity of F, » , by a factor graph Rademacher com-
plexity. Specifically for the loss class (3) they proved

R(Fpa,p) < %ﬁ%g(?{p), where RG (#,,) is defined as

1
—E. [ sup > VIFei gy (w, g (wi,y) } :
m heH . .
i€[m], feEF,yeYy

Here € = (€ fy)icim],reFycy, and each ¢y, is an inde-
pendent Rademacher variable. Combining the result from
Theorem 2 in [Cortes et al., 2016], we get the following
bound for learning with (y-regularization: PR(Fra,) <
O ( AU*|F|Vd

pvm
dence on the number of classes per factor d = |)¢|. Thus it is
vacuous for typical SOPPs, where the number of class labels
grows exponentially w.r.t. the size of the output. For compar-
ison, our bounds enjoy a log dependency on d and therefore
still imply meaningful generalization bounds in this setting.

) . Note the bound exhibit a square-root depen-

As a direct corollary, we use the connection between gen-
eralization and Rademacher complexity to get Theorem 2.

Theorem 2 (Generalization Bounds). For any p > 0, § €
(0,1), and h € H,, with probability at least 1 — & over the
draw of training data S, the following bound holds:

8  288y/q —IU*A|F| - log $
< — L+ My —=.
R(h) < Rs(h) + o PN + om

4.2 Stability-based Generalization Bounds

In this section, we present generalization bounds in expec-
tation for structured output prediction by leveraging the lens
of algorithmic stability. Algorithmic stability is a fundamen-
tal concept in statistical learning theory, which measures the
sensitiveness of output models when the training dataset of an
algorithm A is slightly perturbed. For any algorithm A, we
use A(S) to denote the model produced by running A over
the training examples S.

Definition 3 (Uniform Stability). A stochastic algprithm Ais

e-uniformly stable if, for all training datasets .S, S € Z" that
differ by at most one example, we have

SupEA [Lp(xa yvA(S)) - Lp("myvA(g))} <e (6)

z,Y

Algorithmic stability naturally implies quantitative gener-
alization bounds, as shown in the following lemma [Shalev-
Shwartz et al., 2010].

Lemma 2 (Generalization via uniform stability). Let A be e-
uniformly stable. Then |]E57A [R(A(S)) — RS(A(S))H <e.

We will apply algorithmic stability to study two repre-
sentative algorithms for SOP: regularization and stochas-
tic gradient descent. For brevity, we use the abbreviation
R(w) = R(h™),Rs(w) = Rg(h™), etc. We also write
w* = arginf,, R(w) for the minimizer of the population risk.

2844

Regularized Risk Minimization

RRM is a popular scheme to overcome overfitting in machine
learning. The basic idea is to add a regularizer to the empir-
ical risk and build a regularized empirical risk Rg. Then we
minimize the resulting objective function to obtain a model
wg as follows:

. w wy A
ws = argmin [R3(h") == Rs(h®) + §Hw||%] (7

Here we omit the dependency of wg on the regularization
parameter for brevity. In the following lemma to be proved
in the arXiv version, we show that the above regularization
algorithm is uniformly stable. Let x := sup, , [|¥(z, y)]|2.

Lemma 3. Let A be defined as (7), i.e., A(S) = wg. Then A

1652

Ls mp2\

-uniformly stable.

This lemma is a variant of the stability bound in [Bousquet
and Elisseeff, 2002], which, however, requires the loss func-
tion to be admissible. We adapt their technique to the setting
of structured output prediction and a key step in our analysis
is again the Lipschitz continuity of the loss function w.r.t. the
{s norm. A use of the classical Lipschitz continuity w.r.t. /5
norm would incur a bound with at least a square-root depen-
dency on d. For comparison, the consideration of Lipschitz
continuity w.r.t. the £, norm allows us to get stability bounds
independent of the size of the label set.

We can combine the Lipschitz continuity of loss functions,
the stability of regularization schemes established in Lemma
3 and Lemma 2 together to get the following generalization
bounds for structured output prediction. Let

: w A
w = arg inf [RMw) := R(h") + §Hw||g]

be the minimizer of the regularized risk. We have the follow-
ing result, whose proof is given in the arXiv version.

Theorem 3. Let wg be defined in (7). Then

E[RMws) — RMw")] < 161” (8)
~ mp2\’
. _ 4\/5/4
Furthermore, if we choose \ = Tl s’ then
. A2k w*
E[R(ws)] — R(w*) < ]l ©)

- Ve
Stochastic Gradient Descent

We now turn to the performance of SGD for structured out-
put prediction. SGD is a popular optimization algorithm
with wide applications in learning in a big data setting. Let
w™) be the initial point and {7} be a sequence of positive
step sizes. At the ¢-th iteration, we first randomly select
an index i; according to the uniform distribution over [m],
which is used to build a stochastic gradient L,(z;,, ¥, , hwm)
(L),(2iys Yiy s hw(t)) denotes a subgradient of L,(;,,y;,, h")
at w = w®). Then we update the model along the negative
direction of the stochastic gradient

)
wttD) = (® _ UtL;)(xiwyi“ he

). (10)
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This scheme of selecting a single example to build a stochas-
tic gradient allows SGD to get sample-size independent iter-
ation complexity, and is especially appealing if m is large.
Since we consider a linear scoring function h", the loss func-
tion L, is convex w.r.t. w. In the following lemma to be
proved in the arXiv version, we build the uniform stability of
SGD for structured output prediction. Note here we do not
require the loss function to be smooth [Lei and Ying, 2020].

Lemmad. Let S = {z1,...,2m}and 8" = {z,...,2,,} be
two datasets that differ only by a single example. Let {w")}
and W be two sequences produced by SGD based on S and
S’, respectively. Then

t

Ea [Hw(t+1) _ @(t+1)||§] < 16e(1 + t/m?)K2p 2 anz

j=1

According to Lemma 4, we know that the algorithm be-
comes more and more unstable as we run more and more it-
erations. We can use this stability bound to derive general-
ization bounds of SGD for structured output prediction. The
proof is given in the arXiv version.

Theorem 4. Let{w)} be produced by (10) with 1, =n. Then

1+Tm2772)
Tn ’
(11

E[R(w™)] - R(w*) < O((\/T+T/m)/<a277+

where w(T) = % Zthl w® is an average of iterates.

The upper bound (11) involves two terms. The first term
VT + T /m comes from controlling the generalization error
R(w™) — Rg(w ™), while the second term H}Tnnz comes

from controlling the optimization error Rg (™)) — Rg(w™*).
It is clear the optimization error decreases w.r.t. T', while the
generalization error grows in the learning process. Therefore,
we need to trade-off these two terms by early-stoping SGD as
done by the following corollary. We write B < B if there are
absolute constants ¢ and ¢ such that c1 B < B < ¢3B.

Corollary 1. Let {w!)} be the sequence produced by (10)
with 0y = 0. If we choose T < m? and n < T_%/n, then

E[R(w'™)]

Remark 2. According to Theorem 3 and Corollary 1, we
know that both the regularization method and SGD are able
to achieve the generalization bound O(1//m), which is min-
imax optimal. While RRM requires the objective function to
be strongly convex, SGD only requires the objective function
to be convex. Remarkably, these generalization bounds do
not admit any dependency on the size of the label set, and
provide a convincing explanation on why SOP often works
well even if the problem has more class labels than training
examples. To our best knowledge, these are the first label-
size free generalization bounds. As compared to Theorem 2
on high-probability bounds, our generalization bounds here
are stated in expectation. It should be noted that our bounds
in expectation require the loss functions to be convex, while
the high-probability analysis also applies to nonconvex cases.

— R(w*) < O(km™?).
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4.3 Applications

In this section we discuss applications of our bounds and
compare them to those of [Cortes ef al., 2016].

Example 1. Consider pair-wise Markov networks with fixed
number of substructures [ [Taskar et al., 2003]. Specifically,
we have Y = Vi X ... x Y, and Yy, € [c] for k € [I]. Further,
we have sequence-like connections, i.e., there is an arrange-
ment of output nodes such that if a factor f € F' is connected
to two nodes then they are neighbors in that arrangement.
Therefore we have |F| = [—1 and d = ¢?. We further assume

an unnormalized hamming loss L(y,y’) = 22:1 Ly, 2y, 80
that we normalize later in the bound to get rid of the de-
pendence on | = |F| + 1. For regularized learning with
these Markov networks, the Rademacher complexity of loss
function classes was bounded in [Cortes et al, 2016] as

R(Faon,) < O(ﬁ%) As a comparison, our Rademacher
complexity bound in Theorem 1 reduces to an upper bound

on R(Fh A, ,) that has the form

AV* log m/log(2mc2l[8¥*Am/p+3]+1)
0] .
pm

Therefore, our bound significantly outperforms their bound
by dropping their linear dependency on c to a logarithmic de-
pendency. If we further extend the model so that each factor
f is connected to v nodes instead of 2, their bound grows, as
a function of v, as O(c"/?) while ours increase only O (/).
Furthermore, according to Theorems 3, 4, we can get gener-
alization bounds O(x/+/m) in expectation for both RRM and
SGD, where the log dependency is further removed.

Example 2. As the second example we consider multi-class
classification. In this case we have no substructures and
therefore |F| = 1,1 = Y where Y = [¢], d = ¢. In
[Cortes et al., 2016], the Rademacher complexity for multi-
class learning with /o regularization was shown to satisfy

R(Fan,) < O (L545).

Our analysis instead shows PR(F5 4 ,) is bounded by

0 U*Ay/log(2mc[8¥*Am/p+3]+1) logm
pvm '

It is clear that we drop the square root dependency in c in
[Cortes et al., 2016] to a log dependence. Analogous to Ex-
ample 1, the log dependency can be further removed if we
consider generalization bounds in expectation, as shown in
Theorems 3 and 4.

Example 3. In this example we explore the possibility of
combining SOP models above with a learned feature ex-
traction function ¥ as was practically explored in [Chen et
al., 2017; Hinton et al., 2012]. Consider the case where
¥ is a CNN that takes x as input and outputs different D-
dimensional vector W¢(x,ys) for each factor f and label
yr. Chaining the covers, one can bound the Rademacher

complexity of the combined class as 9] (7”1;15%1\‘1?') +

9] (ﬁ log(é)>, where the notation O hides logarithmic
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factors, D is the number of network parameters and Gisa
product of norms of network weight matrices. The derivation
of this bound is given in the arXiv version.

S Learning Weakly Dependent Sequences

In the above bounds we assumed that the examples are sam-
pled independently from each other. However, this assump-
tion is often violated in practice. For example, consider the
problem of POS tagging. We are usually given a dataset of
documents each of which contains a sequence of sentences.
There are two natural assumptions. (1) We may assume that
each document is a long sequence of dependent words. This
assumption is too pessimistic. The considered sample size
becomes too small, and the prediction complexity increases
while, as sentences get further apart, the dependence between
them decreases, and thus the effective sample size increases.
(2) We may assume that each sentence is independent of the
others within and across documents. This assumption on the
other hand is too optimistic. Sentences following each other
in the same document indeed have some degree of depen-
dence. We formalize this dependence in a hierarchical man-
ner, thus providing a trade-off between these two assump-
tions. Namely, we assume that the documents are indepen-
dent of each other while sentences within a document are only
weakly dependent. We note that the term document here does
not necessarily mean an actual text document but rather any
sequence of examples (e.g., for a dataset of videos, one video
is a document as it is a sequence of images).

We now formalize the idea above. We are given a training
set of independent documents {D;}",. Each document D;

is a sequence of weakly dependent examples D; = (2]) 3-]:1.
Since the structured output prediction framework in the above
section subsumed the usual classification paradigm, we as-
sume that the sequence elements classes follows it. That is,
z; € X x Y =: Z, where X and ) defined as above.

Now we define precisely how the examples within each
document D; are weakly dependent. We assume that each
example within a given document is sampled from a S-mixing
process, defined below, at times 1,2,...,J.

Definition 4 (Stationary S-mixing Stochastic Process). Let
(2%)2°._ . be a stationary stochastic process and o, =
o((zF)f_)) and o4 = o((2%)72 1 .,) be the sigma alge-
bras generated by the random variables Z& = (z!,..., z1)
and 23° , = (z%%* ..., Z*). Define the 3-mixing coeffi-

cient f(a) = sup;=, E [suppe,, . [P(Blow) _p(B)@ .
The process is called S-mixing if lim,—0 B(a) = 0. Ttis
called exponentially mixing if 5(a) < Bgexp (—f1a”) or al-
gebraically mixing if 8(a) < So/a", for positive Sy, f1 and .

Some examples of exponentially mixing process include
a class of Autoregressive Moving Average (ARMA) [Mokka-
dem, 1988] and a class of Markov process [Rosenblatt, 2012].

Now let H be a structured output prediction function class
as defined in the previous section (see (2)). For h € H,
let L, : Z — [0,M] be a loss function over elements of
the sequence z*. An example for such a loss is given in
equation (1). Again we are interested in high probability
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bounds on the difference between two quantities: the empir-

ical risk Rg(h) and the true risk R(h), which are defined as

Rs(h) = 25 S S0 Lu(2)) and R(h) = Es[Rs(h)]
Theorem 5 summarizes the main results of this section.

Theorem 5. Let F), 5 , be the loss class defined in (3) and let
S be a set of independent and identically distributed docu-
ments D;, i = 1,...,m, where each document is a sequence
of examples (z]) j = 1,...,J drawn from a 3-mixing pro-
cess. For any integer a > 0 such that J is a multiple of 2a.
Let § > 2m(3 —1)B(a), then with probability at least 1 —,
the following inequality holds uniformly over all h € H,,

R V2a(qg — 1)U*A|F| -
R(h) <Rg(h)+ O ( Ve L)

2
. M+/ay[log (5—%(%—1)5(@))
vmd ’
where L = \/log(2mJd|F|[8%*AmJ/p + 3] + 1) log(m.J).

Remark 3. Note that the bound unsurprisingly depends on
the same main quantities as the bound in Theorem 2. To bet-
ter interpret it consider the following two extreme cases. (1)
The elements inside each document are independent of each
other. Note that in this case 8(a) = 0, for all a, hence a
can be chosen to be 1 and the bound boils down to the bound
in Theorem 2. (2) The elements inside each document are
strongly dependent. Thus, 3(a) ~ 1 for all a and therefore
selecting a = % leads to the bound in Theorem 2 with only m
training examples. We further note that 5(a) — 0 as a — oo,
therefore, for any process admitting a fast decaying 3(a) the
term 2m( 2 — 1)53(a) approaches 0 fast for moderate a.

(12)

6 Conclusion

In this paper, we advance the state of the art in the gener-
alization analysis of structured output prediction. We con-
sider two types of generalization bounds: complexity-based
and stability-based bounds. Our complexity-based approach
produces bounds with high probability that admit a log de-
pendency on the size of the label set. The stability-based
approach further removes this log dependency for general-
ization bounds in expectation. This significantly improves
the existing bounds, which have at least a square root depen-
dency. We also extend our discussion to the setting of learn-
ing with weakly dependent training examples.

A very interesting question is to investigate whether the
log dependency in the high probability analysis is an artefact
of our analysis or is really essential. Another question is to
extend our generalization bounds in expectation to learning
with nonconvex functions.
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