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Abstract

Using the principle of imitation learning and the
theory of optimal transport we propose in this pa-
per a novel model for unsupervised domain adap-
tation named Teacher Imitation Domain Adapta-
tion with Optimal Transport (TIDOT). Our model
includes two cooperative agents: a teacher and a
student. The former agent is trained to be an ex-
pert on labeled data in the source domain, whilst
the latter one aims to work with unlabeled data in
the target domain. More specifically, optimal trans-
port is applied to quantify the total of the distance
between embedded distributions of the source and
target data in the joint space, and the distance be-
tween predictive distributions of both agents, thus
by minimizing this quantity TIDOT could mitigate
not only the data shift but also the label shift. Com-
prehensive empirical studies show that TIDOT out-
performs existing state-of-the-art performance on
benchmark datasets.

1 Introduction
Domain adaptation or covariate shift problem has emerged
from the observation of significant degradation in predictive
performance when there exists a shift between a source do-
main (over which a classifier is trained) and a target domain
(over which the classifier does prediction). Many state-of-
the-art methods have been proposed for both shallow do-
main adaptation [Courty et al., 2017b] and deep domain
adaptation [Ganin and Lempitsky, 2015; Long et al., 2015;
French et al., 2018; Shu et al., 2018; Damodaran et al., 2018].

Imitation learning follows the principle of ‘learning from
demonstration’. In particular, there are two fundamental
components: an expert teacher and a student. The former
component knows how to do its job perfectly, whilst the lat-
ter one tries to imitate the teacher to solve its task. This
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learning principle has been applied successfully in reinforce-
ment learning and sequence prediction [Abbeel and Ng, 2004;
Ross et al., 2011; Ho and Ermon, 2016].

In this work, using the principle of imitation learning and
the theory of optimal transport we propose a novel model for
unsupervised domain adaptation, named Teacher Imitation
Domain Adaptation with Optimal Transport (TIDOT). The
teacher in this scenario is apparently a classifier trained on
the labeled source domain, but two questions naturally arise:
i) which component is the student; and ii) what are the
principle and mechanism to enable the student to mimic
its teacher in this specific application? We address these
two questions by developing a rigorous and intuitive theory
based on the theory of optimal transport (OT) [Villani, 2008;
Santambrogio, 2015; Peyré et al., 2019]. From an abstract in-
terpretation, our theory and mechanism postulate that to pre-
dict an unlabeled target sample the student needs to match
this target sample with a corresponding labeled source sam-
ple so as to conveniently imitate the prediction of the teacher
on this source sample. We summarize our contributions in
this work as follows:

• We propose a rigorous OT-based theory to leverage im-
itation learning and domain adaptation. This paradigm
is sufficiently general to potentially and promisingly ap-
ply to many learning problems including reinforcement
learning. In this paper, we demonstrate its application in
the context of unsupervised domain adaptation.

• We conduct experiments to compare our TIDOT to the
baselines, especially OT-based deep DA, e.g., DeepJ-
DOT [Damodaran et al., 2018], SWD [Lee et al., 2019],
DASPOT [Xie et al., 2019], ETD [Li et al., 2020] and
RWOT [Xu et al., 2020]). The experimental results
show that our proposed method outperforms existing
methods on a variety of benchmark datasets including
Digits, traffic sign, natural scenes, Office-31, Office-
Home, and ImageCLEF-DA.

• We empirically suggest a potential OT-inspired regular-
ization technique for future work. In particular, as an
intriguing side effect of our proposed model, by setting
the target training set as the source validation set, we en-
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force the teacher to not only predict well on the source
training set, but also generalize to predict well on the un-
labeled source validation set. We demonstrate that this
strategy can yield a regularizer to mitigate the overfit-
ting problem. Although this point is not the main claim
of this work and we investigate it as an ablation study,
its promising results reveal that this workaround is po-
tentially a decent OT-inspired regularization technique.

2 Related Work
Deep domain adaptation (DA) has been intensively studied
and shown appealing performance in various tasks and ap-
plications, notably [Ganin and Lempitsky, 2015; Long et
al., 2015; French et al., 2018; Damodaran et al., 2018;
Nguyen et al., 2019; 2020]. The core idea of deep DA
is to bridge the gap between source and target distribu-
tions in a joint space by minimizing a divergence between
distributions induced from the source and target domains.
Popular choices of divergence include Jensen-Shannon di-
vergence [Ganin and Lempitsky, 2015; Long et al., 2015;
French et al., 2018]; maximum mean discrepancy distance
[Long et al., 2015]; and WS distance [Courty et al., 2017b;
Nguyen et al., 2021; Le et al., 2021].

Optimal transport theory has been applied in domain adap-
tation in [Courty et al., 2017b; 2017a; Damodaran et al.,
2018; Redko et al., 2019; Lee et al., 2019; Xie et al., 2019;
Li et al., 2020; Xu et al., 2020]. Particularly, [Lee et al.,
2019] proposes using sliced Wasserstein distance for do-
main adaption, whereas [Xie et al., 2019] introduces SPOT
in which the optimal transport plan is approximated by a
pushforward of a reference distribution, and cast the opti-
mal transport problem into a minimax problem. Recently,
ETD [Li et al., 2020] measures the domain discrepancy by
minimizing attention-aware transport distance while RWOT
[Xu et al., 2020] exploits spatial prototypical information and
intra-domain structure to reduce the negative transfer brought
by the target samples near decision boundaries. Moreover,
[Courty et al., 2017b] proposes a brilliant idea to connect the
theory of optimal transport and domain adaptation [Courty
et al., 2017a], which later inspires an OT-based deep DA
method (DeepJDOT) [Damodaran et al., 2018] and learning
from multiple data sources [Redko et al., 2019]. Different
from [Courty et al., 2017b], our theory originates from OT-
based imitation learning for which we develop a rigorous the-
ory to explain the intuition of OT-based imitation DA and
also theoretically analyze the general loss of OT-based im-
itation deep DA, wherein we employ deep neural networks
for transfer learning. We note that this makes our theory
significantly distinguish from [Courty et al., 2017b] which
only limits in the standard setting of transfer learning. In
terms of modeling, we propose TIDOT which encourages OT-
based imitation learning via a teacher and student in which
the teacher guides and offers pseudo labels to the student,
whereas the student tries to imitate the teacher. Furthermore,
we invoke the clustering view of OT as an intuitive tool to ex-
plain why TIDOT can mitigate the label shift problem. Last
but not least, our OT-based imitation learning viewpoint to-
gether with its developed theory is potential to apply to a

broader context such as adversarial machine learning (AML),
generative models, and imitation learning in reinforcement
learning.

3 Related Background
3.1 OT with Entropic Regularized Duality
Consider two distributions P and Q which operate on the do-
main Ω ⊆ Rd, let d (x,y) be a non-negative and continuous
cost function or metric. Wasserstein distance [Santambrogio,
2015; Villani, 2008] between P and Q w.r.t the metric d is
defined as

Wd (Q,P) := min
γ∈Γ(Q,P)

E(x,y)∼γ [d (x,y)] , (1)

where γ is a coupling that admits Q,P as its marginals.
To enable the application of optimal transport in machine

learning and deep learning, [Genevay et al., 2016] developed
an entropic regularized dual form. First, they proposed to add
an entropic regularization term to primal form (1)

Wε
d (Q,P) := min

γ∈Γ(Q,P)

{
E(x,y)∼γ [d (x,y)] + εDKL (γ‖Q⊗ P)

}
,

(2)
where ε is the regularization rate, DKL (·‖·) is the Kullback-
Leibler (KL) divergence, and Q ⊗ P represents the specific
coupling in which Q and P are independent.

Using Fenchel-Rockafellar theorem, they obtained the fol-
lowing entropic regularized dual form of (2)

Wε
d (Q,P) = max

φ

{∫
φcε (x) dQ (x) +

∫
φ (y) dP (y)

}
= max

φ
{EQ [φcε (x)] + EP [φ (y)]} , (3)

where φcε (x) := −ε log
(
EP

[
exp

{
−d(x,y)+φ(y)

ε

}])
.

3.2 Clustering View of Optimal Transport
This view of optimal transport has been utilized to study a
rich class of hierarchical and multilevel clustering problems
[Ho et al., 2019; 2017]. We now present the clustering view
of optimal transport which assists us to interpret our method
developed in the sequel. Let P and Q be two discrete distri-
butions defined as

P := 1
m

∑m
i=1 δui

andQ := 1
n

∑n
j=1 δvj

,

where δx indicates a Dirac measure centered at x.
The clustering view reveals that if we learn the atoms of Q

to minimizeWd (P,Q) w.r.t the metric d, the optimal atoms
of Q become the centroids of the clusters formed by the atoms
of P or the atoms of Q are moving to find the groups of atoms
of P with the aim to minimize the distortion w.r.t the metric d
(see our supplementary material for more detail).

4 Our Proposed Method
4.1 Optimal Transport Based Imitation Learning
In what follows, we present OT-based imitation learning
which lays foundation for our proposed TIDOT. Consider
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Figure 1: Imitation view explanation. hB (xb) for xb ∼ PB tries to
imitate the prediction of hA (xa) for xa = K∗ (xb) ∼ PA.

two data domains XA and XB with two data distributions
PA and PB respectively, we assume that hA : XA → Y4
(where Y4 :=

{
π ∈ RM : ‖π‖1 = 1 and π ≥ 0

}
and M is

the number of classes), which is a well-qualified classifier that
gives accurate prediction for data instances on XA sampled
from PA. We wish to learn a classifier hB to predict accu-
rately data instances sampled from PB by imitating what is
done by hA on (XA,PA).

To serve the development of OT-based imitation learn-
ing, given two pairs z1 =

(
x1, y

4
1

)
∈ XS × Y4 and

z2 =
(
x2, y

4
2

)
∈ XT × Y4, we define the cost (distance)

function between them as:

d (z1, z2) := λdx (x1,x2) + dy

(
y41 , y

4
2

)
, (4)

where dx is ground metric (cost) defined on XS ×XT and dy
is a divergence defined on Y4.

Based on the data distribution PA and classifier hA, we
define a distribution PA,hA over XA × Y4 including sample
pair (x, hA (x)) by first sampling x ∼ PA and then computing
hA (x). Similarly, we can define another distribution PB,hB

over XB×Y4 using the data distribution PB and the classifier
hB . To allow hB to imitate the behavior of hA, we propose to
inspect Wasserstein distance between PA,hA and PB,hB w.r.t
the cost (metric) function d defined as above. The following
proposition is crucial for us to speculate what it really means
by OT-based imitation learning.
Proposition 1. The WS distance of interest
Wd (PA,hA

,PB,hB
) can be expressed as:

min
L:L#PA=PB

Ex∼PA [λdx (x, L (x)) + dy (hA (x) , hB (L (x)))] =

min
K:K#PB=PA

Ex∼PB [λdx (x,K (x)) + dy (hB (x) , hA (K (x)))] .

According to Proposition 1, when computing
Wd (PA,hA

,PB,hB
), we need to find an optimal trans-

port K∗ : K∗#PB = PA that moves PB to PA so as to
minimize the difference in predictions of hB and hA. This
further implies that given x ∼ PB , the prediction behavior
of hB(x) imitates that of hA (K∗ (x)) for K∗ (x) ∼ PA.
Figure 1 provides an intuitive explanation for our proposed
imitation learning viewpoint based on optimal transport.

In addition, from Proposition 1, it is obvious that

Wd (PA,hA ,PB,hB ) ≥ min
K:K#PB=PA

Ex∼PB [λdX (x,K (x))]

= λWdX (PA,PB) . (5)

Wd (PA,hA ,PB,hB ) ≥
min

K:K#PB=PA
Ex∼PB [dY (hB (x) , hA (K (x)))] . (6)

In the context of unsupervised domain adaptation, PB de-
fined on a latent space via a feature extractor (generator) is
hence an unfixed distribution, whereas hB is a trainable clas-
sifier. Therefore, from Inequalities (5) and (6), when mini-
mizing Wd (PA,hA

,PB,hB
), we minimize WdX (PA,PB) to

reduce the data shift between two data distributions and si-
multaneously find the transport map K to allow hB (x) (tar-
get example x ∼ PB) imitating hA (K (x)) (K (x) ∼ PA)
for mitigating the label shift between two domains.

4.2 OT-based Imitation Learning on Domain
Adaptation

In what follows, we present how to apply our OT-based im-
itation learning mechanism to unsupervised domain adapta-
tion (UDA). The UDA setting include two datasets, a labeled
dataset DS =

{(
xSi , y

S
i

)}NS

i=1
from a source domain with

xSi ∈ Rd and ySi ∈ {1, 2, ...,M} and an unlabeled dataset
DT =

{
xTi
}NT

i=1
from a target domain. We denote PS and PT

as the empirical data distributions for the source and target
domains, i.e., PS = 1

NS

∑NS

i=1 δxS
i

and PT = 1
NT

∑NT

i=1 δxT
i

,
where δx indicates a Dirac measure centered at x.

Following [Ganin and Lempitsky, 2015; Long et al., 2013;
Long et al., 2015], we employ a generator (feature extrac-
tor) G to map both source and target examples into a latent
space. On the latent space, we train a teacher classifier hS
using the labeled source dataset DS and a student classifier
hT using our proposed OT-based imitation mechanism to re-
duce the data and label shifts. More specifically, we propose
minimizing the objective function consisting of the empiri-
cal loss of the teacher hS and an OT-based imitation learning
term involving both the teacher hS and the student hT :

min
hS ,hT ,G

{
LS + αRWS

}
, (7)

where α > 0 is a trade-off parameter and we have defined

LS =
1

NS

NS∑
i=1

`
(
hS
(
G
(
xSi
))
, ySi
)
,

for which ` is a loss function (e.g., the cross-entropy loss) and

RWS =Wd (PT,hT
,PS,hS

) ,

for which PS,hS
is the joint distribution constituted by the

pairs (G (x) , hS (G (x))) where x ∼ PS and PT,hT
is the

joint distribution constituted by the pairs (G (x) , hT (G (x)))
where x ∼ PT . Note that the ground metric (cost) d now
involves the latent space and is defined as:

d (z1, z2) = λdx (G (x1) , G (x2))

+ dy (hS (G (x1)) , hT (G (x2))) , (8)

where z1 = (G (x1) , hS (G (x1))) and z2 =
(G (x2) , hT (G (x2))) and dX (·, ·) is a distance between
two data examples on the latent space.
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Figure 2: The overall structure of the TIDOT method for unsupervised domain adaptation. Our training model consists of three main
components, namely a weight-sharing generator, classifiers of source and target, and Kantorovich potential network (φ). Via the generator,
source and target examples are mapped into a latent space where the classifiers and φ are acted on it. The output of the generator, classifiers
and φ are used for computing losses Lh, RWS and Lclus. Minimizing cross-entropy loss Lh ensures the model predicts well on source
examples, whereas RWS and Lclus significantly contribute to domain adaptation: (a) On the latent space, target samples try to find an
appropriate cluster of source samples with guarantees of OT-based clustering view; (b) Our proposal leverages the cluster assumption to
encourage the classifier to be more confident on target samples lying on the decision boundary. Best viewed in color.

Generally, we train a teacher classifier hS to predict well on
the source domain, while using the OT-based imitation mech-
anism to train a student classifier hT to move target repre-
sentations to source representations on the latent space (i.e.,
reducing data shift), whereas encouraging hT to mimic the
predictions of hS (i.e., reducing label shift). In our experi-
ments, the student classifier hT consistently outperforms the
teacher classifiers. The reason is possibly that though target
representations tend to move to source representations, there
always exists a gap, hence the teacher classifier hS trained
on source examples is hard to predict perfectly target exam-
ples, whereas the student classifier performs better because it
is trained on target examples via imitating the predictions of
hS on relevant source examples.

Clustering View Explanation. We now explain why min-
imizing RWS = Wd (PT,hT

,PS,hS
) can help to mitigate the

data shift and label shift, two thorny issues existing in UDA.
This is intuitively explainable from the clustering view of the
optimal transport (see Section 3.2). More specifically, let us
denote zSi =

(
G
(
xSi
)
, hS

(
G
(
xSi
)))

, ∀i = 1, ..., NS and
zTi =

(
G
(
xTi
)
, hT

(
G
(
xTi
)))

, ∀i = 1, ..., NT . It appears

PS,hS
=

1

NS

NS∑
i=1

δzS
i

andPT,hT
=

1

NT

NT∑
i=1

δzT
i
.

Referred to the clustering view of OT, when minimizing
RWS = Wd (PT,hT

,PS,hS
), we encourage each zTi in the

target domain to find an appropriate group (cluster) of zSj with
j ∈ J for some set of indices J ⊂ {1, ..., NS} so that the total
distortion

∑
j∈J d

(
zTi , z

S
j

)
defined as

∑
j∈J

(
λdx

(
G
(
xTi

)
, G
(
xSj

))
+

dy
(
hT
(
G
(
xTi

))
, hS

(
G
(
xSj

))))

is minimized. This further implies that (i) G
(
xTi
)

moves
toward the group or cluster of G

(
xSj
)
, j ∈ J and (ii)

the predictions of hS for the source data examples in that
group or cluster (i.e., hS

(
G
(
xSj
))
, j ∈ J) need to be

a consensus. The first conclusion (i) is straight-forward
from minimizing dx

(
G
(
xTi
)
, G
(
xSj
))

, whilst the second
conclusion (ii) comes from the fact that the prediction
hT
(
G
(
xTi
))

mimics those of hS
(
G
(
xSj
))

for all j ∈ J ,
hence hS

(
G
(
xSj
))
, ∀j ∈ J should reach a consensus on

their predictions. Eventually, each G
(
xTi
)

is encouraged to
move to a group or cluster ofG

(
xSj
)
, j ∈ J in the source do-

main which shares the same prediction label to imitate their
common prediction. This would help to mitigate the label
shift issue (see Figure 2).

4.3 Entropic Regularized Solution
To tackle the OT-based regularization term RWS , we use
entropic regularized duality form (see Eq. (3)) of op-
timal transport. Specifically, we approximate RWS =
Wε
d (PT,hT

,PS,hS
) which has the following form:

RWS = max
φ

{
1

NT

NT∑
i=1

[
− ε log

(
1

NS

NS∑
j=1

exp

{
1

ε

[
φ
(
G
(
xSj

))

−d
(
zTi , z

S
j

) ]})]
+

1

NS

NS∑
j=1

φ
(
G
(
xSj

))}
, (9)

where d
(
zTi , z

S
j

)
= λdx

(
G
(
xTi
)
, G
(
xSj
))

+

dy
(
hT
(
G
(
xTi
))
, hS

(
G
(
xSj
)))

is the transportation
cost, φ is a neural net named Kantorovich potential network
(see Eq. (3)).

4.4 Ensuring Clustering Assumption for TIDOT
Clustering assumption [Chapelle and Zien, 2005] is a tech-
nique that encourages the classifier to preserve its predictions
for data examples in a cluster. Basically, the clustering as-
sumption enforces the decision boundary of a given classifier
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to lie in the gap among the data clusters and never crosses
over any clusters. We observe that coupling the clustering as-
sumption for the classifiers hS , hT with TIDOT helps to boost
its performance.

The reason for this complementary collaboration is that al-
though minimizing the OT-based regularization term RWS

helps to move the target example G
(
xTi
)

to a group or clus-
ter of the source examples G

(
xSj
)

with the same label, the
prediction of hT

(
G
(
xTi
))

as in Eq. (9) is encouraged to
mimic the predictions of hS

(
G
(
xSj
))

including diverge data
examples of different classes. Therefore, the prediction of
hT
(
G
(
xTi
))

for those lying on the cluster boundary tends to
be possibly less confident and misleading.

With the assistance of the clustering assumption, the clas-
sifier hT is strengthened to predict well the target examples
lying on the clustering boundary. Specifically, this encour-
ages the classifier hT to predict those target examples us-
ing the same label as others in the cluster, hence correcting
the predictions for those examples. To enforce the clustering
assumption, we employ Virtual Adversarial Training (VAT)
[Miyato et al., 2019] in conjunction with minimizing the en-
tropy of prediction [Grandvalet and Bengio, 2005] as in [Shu
et al., 2018; Kumar et al., 2018]

Lclus = Lent + Lvat,
where with H to be the entropy, we have defined

Lent = EPT [H (hT (G (x)))] ,

Lvat =EPS
[
max x′:‖x′−x‖<θDKL

(
hS (G (x)) , hS

(
G
(
x′
)))]

+EPT
[
max x′:‖x′−x‖<θDKL

(
hT (G (x)) , hT

(
G
(
x′
)))]

with which DKL represents a Kullback-Leibler divergence
and θ is a very small positive number.

4.5 Teacher Imitation Domain Adaptation Based
on Optimal Transport

The final optimization problem of our TIDOT is as follows:

min
hS ,hT ,G

{
Lh + αRWS + βLclus

}
, (10)

where β > 0 is a trade-off parameter. Under the cluster-
ing view of OT, it is worth noting that when minimizing
RWS = Wε

d (PT,hT
,PS,hS

) in Eq. (10), we aim to push the
representations of source and target data to be intermingled in
the joint space and encourage each G

(
xTi
)

to find its corre-
sponding G

(
xSj
)

to mimic the prediction of hS . Finally, the
pseudocode for the training process of TIDOT is presented in
Algorithm 1 which is placed in our supplementary material
due to the space limitation.

5 Experiments
5.1 Model Evaluation
In this section, we conduct experiments on four main datasets
to evaluate our TIDOT with state-of-the-art domain adapta-
tion methods: (1) ResNet-50 [He et al., 2016]; (2) DANN
[Ganin and Lempitsky, 2015]; (3) Π-model [French et al.,
2018]; (4) iCAN [Zhang et al., 2018]; (5) CDAN [Long

Method MN US MN SV MN SS CI ST
US MN MM MN SV GT ST CI

DANN - - 81.5 71.1 35.7 88.7 - -
Π-model - - - 92.0 71.4 98.4 76.3 64.2
CDAN 95.6 98.0 - 89.2 - - - -
SWD 98.1 97.1 - 98.9 - 98.6 - -

DeepJDOT 95.7 96.4 92.4 96.7 - - - -
DASPOT 97.5 96.5 94.9 96.2 - - - -
RWOT 98.5 97.5 - 98.8 - - - -

TIDOT teacher 98.1 98.6 97.7 98.9 82.2 98.8 76.5 72.3
TIDOT student 98.3 99.0 98.5 99.0 86.8 99.1 77.4 75.0

Table 1: Classification accuracy (%) on Digits, traffic sign and nat-
ural image datasets.

et al., 2018]; (6) SWD [Lee et al., 2019]; (7) DeepJDOT
[Damodaran et al., 2018]; (8) DASPOT [Xie et al., 2019];
(9) ETD [Li et al., 2020]; (10) RWOT [Xu et al., 2020].
Digits, Traffic Sign, and Natural Scenes Datasets include
MNIST (MN), USPS (US), MNIST-M (MM), Synthetic Dig-
its (SN), Street View House Numbers (SV), Synthetic Traf-
fic Signs (SS), German Traffic Signs Recognition Benchmark
(GT), CIFAR-10 (CI), and STL-10 (ST).
Office-31 contains 3 domains Amazon (A), Webcam (W),
and DSLR (D). There are 31 common classes for all domains
and the total number of images is 4,110.
Office-Home consists of roughly 15,500 images in a total of
65 object classes and belonging to 4 different domains: Artis-
tic (Ar), Clip Art (Cl), Product (Pr) and Real-world (Rw).
ImageCLEF-DA contains three domains: Caltech-256 (C),
ImageNet ILSVRC 2012 (I) and Pascal VOC 2012 (P). There
are total 600 images in each domain and 12 common classes.

Method A→W A→D D→W W→D D→A W→A Avg
ResNet-50 70.0 65.5 96.1 99.3 62.8 60.5 75.7

DANN 81.5 74.3 97.1 99.6 65.5 63.2 80.2
iCAN 92.5 90.1 98.8 100.0 72.1 69.9 87.2
CDAN 94.1 92.9 98.6 100.0 71.0 69.3 87.7

DeepJDOT 88.9 88.2 98.5 99.6 72.1 70.1 86.2
ETD 92.1 88.0 100.0 100.0 71.0 67.8 86.2

RWOT 95.1 94.5 99.5 100.0 77.5 77.9 90.8
TIDOT teacher 94.3 95.1 97.6 99.8 86.6 84.5 93.0
TIDOT student 96.2 96.4 98.1 100.0 88.1 85.9 94.1

Table 2: Classification accuracy (%) on Office-31 dataset using ei-
ther ResNet-50 features or ResNet-50 based deep models.

5.2 Implementation Detail
Architecture. We employ small, medium and large network
architectures whose detail in the supplementary material. To
compare with baselines on Office-Home and Office-31, all
transfer tasks use the pre-trained ResNet-50 [He et al., 2016]
features which have 2,048 dimensions.
Hyperparameters. The specifications of hyperparameters
are described in the supplementary material.

5.3 Result and Discussion
We first evaluate TIDOT on Digits, traffic sign, and natural
scene datasets and report the results in Table 1. The experi-
mental results show that whilst TIDOT teacher outperforms
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Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
RWOT 55.2 72.5 78.0 63.5 72.5 75.1 60.2 48.5 78.9 69.8 54.8 82.5 67.6

TIDOT teacher 55.6 74.3 81.2 65.9 77.4 78.3 60.2 52.8 79.9 70.9 56.8 82.0 69.6
TIDOT student 55.9 77.7 82.5 67.2 78.2 79.7 61.0 54.8 81.4 71.0 58.0 83.4 70.9

Table 3: Classification accuracy (%) on Office-Home dataset using ResNet-50 features.

Figure 3: The visualization ofWε
d (PT,hT ,PS,hS ) on MN→SV dur-

ing the training process.

almost all state-of-the-art baselines, TIDOT student further
enhances the accuracy of TIDOT teacher with various de-
grees of improvement (i.e., from as marginal as 0.1% to as
significant as 4.6%). It is noticeable that although the transfer
task MN→SV is extremely challenging in which the source
dataset includes grayscale handwritten digits whereas the tar-
get dataset is created by real-world digits, our TIDOT is still
capable of mitigating the shift of data and label between do-
mains and outperforms the second-best method by a sizeable
margin (15.4%).

We further testify TIDOT’s performance on Office-31 and
report the classification results in Table 2. In general, our
model achieves 94.1% on average and significantly outper-
forms on challenging adaptation where the source and target
images are dissimilar in the background, i.e., D→A, W→A.

The results on Office-Home are reported in Table 3. TIDOT
student exceeds almost comparison methods and achieves
state-of-the-art performance, experiencing a go up by 3.3%
on average compared with RWOT. More specifically, our
model sees a remarkable improvement on challenging adap-
tation tasks, namely Ar→Pr, Cl→Pr.

The full comparison table for Office-Home and results on
ImageCLEF-DA are shown in the supplementary material due
to the limit of space.

5.4 Ablation Study
An Intuitive OT-based Loss. We further plot the values
of RWS = Wε

d (PT,hT
,PS,hS

) when simultaneously train-
ing teacher and student on the pair MN→SV. As shown in
Figure 3, the cost of the optimal transport plan for moving
from PT,hS

to PS,hS
is minimized, which means the data shift

and label shift tends to be mitigated during the training pro-
cess. Another remarkable advantage of OT-based methods
as our TIDOT is that due to the effect of the envelope theo-
rem, RWS smoothly decreases while losses developed based
on generative adversarial network (GAN) [Goodfellow et al.,
2014] always sees largely fluctuates.
Effect of Clustering Assumption. We investigate the effec-
tiveness of the VAT loss (Lvat) w.r.t. source and target distri-

Lvat Lent I→P P→I I→C C→I C→P P→C Avg
79.5 90.5 96.7 93.5 78.7 95.8 89.1

X 80.2 91.0 96.8 93.2 79.5 96.0 89.5
X 80.7 93.8 96.8 94.0 81.2 96.5 90.5
X X 81.7 93.8 97.5 94.5 81.2 96.6 90.8

Table 4: Accuracy (%) of ablation study on ImageCLEF-DA.

Figure 4: Analysis of model parameter w.r.t. α and β on A→W
(orange line) and I→P (blue line).

bution, and conditional entropy loss w.r.t. target distribution
(Lent) on ImageCLEF-DA. The results in Table 4 show that
by adding VAT loss (fourth row), the model sees a rise av-
eragely by 1.4% compared to the basic setting (second row).
Moreover, the figures are better when Lvat is combined with
Lent (fifth row). Via this ablation study, we find that VAT in
conjunction with minimizing entropy supports our TIDOT to
predict well on target samples lying on the decision boundary,
and hence boots model performance further.
Parameter Sensitivity. We further evaluate the effects of
the trade-off parameters α, β in Figure 4. We search α, β in
the grid of {0.005, 0.01, 0.05, 0.1, 0.5, 1.0} and report the test
accuracy on transfer tasks A→W and I→P. The results show
that the model yields high performances when α from 0.005
to 0.1 and β from 0.05 to 1.0. However, with the other values
of α and β, our model still achieves significant performances,
which demonstrates the robustness and flexibility of TIDOT.

6 Conclusion
In this paper, we leverage the perspective of imitation learn-
ing and the theory of optimal transport to propose Teacher Im-
itation Domain Adaptation with Optimal Transport (TIDOT).
Via two fundamental components of TIDOT, a teacher and a
student, we apply our proposed method to unsupervised do-
main adaptation and conduct comprehensive experiments to
compare TIDOT against the baselines. The experimental re-
sults show that our TIDOT outperforms the existing state-of-
the-art OT-based method. Additionally, as a side effect of our
developed theory, we interestingly discover a novel regular-
ization technique for deep networks based on optimal trans-
port, which is potential for future work.
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