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Abstract
With increasing prosumers employed with dis-
tributed energy resources (DER), advanced energy
management has become increasingly important.
To this end, integrating demand-side DER into
electricity market is a trend for future smart grids.
The double-side auction (DA) market is viewed as a
promising peer-to-peer (P2P) energy trading mech-
anism that enables interactions among prosumers
in a distributed manner. To achieve the maxi-
mum profit in a dynamic electricity market, pro-
sumers act as price makers to simultaneously opti-
mize their operations and trading strategies. How-
ever, the traditional DA market is difficult to be ex-
plicitly modelled due to its complex clearing algo-
rithm and the stochastic bidding behaviors of the
participants. For this reason, in this paper we model
this task as a multi-agent reinforcement learning
(MARL) problem and propose an algorithm called
DA-MADDPG that is modified based on MAD-
DPG by abstracting the other agents’ observations
and actions through the DA market public informa-
tion for each agent’s critic. The experiments show
that 1) prosumers obtain more economic benefits
in P2P energy trading w.r.t. the conventional elec-
tricity market independently trading with the util-
ity company; and 2) DA-MADDPG performs bet-
ter than the traditional Zero Intelligence (ZI) strat-
egy and the other MARL algorithms, e.g., IQL, ID-
DPG, IPPO and MADDPG.

1 Introduction
Power systems are undergoing a significant transition from
the fossil fuel resources to the decarbonlization of renewable
energy resources (RES), providing the environmental energy
challenges [Haller et al., 2012]. However, the less control-
lable and predictable output of RES introduce the new chal-
lenges to the power system planning and operation. In this
respect, there has been a significant increase in developing
small-scale distributed energy resources (DER) that are con-
nected to the end consumers and provide flexibility toward to
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Figure 1: Paradigms of (a) traditional electricity market and (b) P2P
energy trading.

a more reliable system. The key categories of DER include
distributed generation, energy storage (ES) and demand re-
sponse [Jiayi et al., 2008]. In this context, traditional con-
sumers evolve to prosumers, who can manage their energy
consumption, production and storage of electricity through a
home energy management system (HEMS) targeted to mini-
mize their cost of energy bills and provide the system flexi-
bility [Parag and Sovacool, 2016].

With the change of system structure, the electricity market
will have to accommodate a large number of small-scale re-
newable energy prosumers. Feed-in Tariff (FiT) scheme has
been introduced as the most common production subsidies
across the world in which prosumers receive payments for
the energy exported to the grid at FiT offered by the upstream
utility company [Qiu et al., 2020]. This scheme allows pro-
sumers to make use of the flexibility of their self-generated
PV electricity and feed the surplus into the grid. Neverthe-
less, this subsidy may not recover the installation and opera-
tion cost of flexible DER. On the other hand, consumers who
want to import energy from the grid may complain about the
expensive Time-of-Use (ToU) price offered by the upstream
utility company [Qiu et al., 2020]. Furthermore, with the tra-
ditional electricity market in Figure 1 (a), prosumers and con-
sumers under such an independent and uncoordinated fashion
only benefit from their own DER flexibility to ensure the self-
temporal balancing of generation and consumption, but do
not benefit from their sufficient energy flexibility interacted
with each other to satisfy the overall system energy balance
[Morstyn et al., 2018].

To this end, we introduce a peer-to-peer (P2P) energy
trading paradigm that enables prosumers and consumers to
trade locally independent of the upstream utility company
[Morstyn et al., 2018], as illustrated in Figure 1 (b). In order
to coordinate this energy trading activity, double-side auction
(DA) is set up as an incentive-driven market mechanism to
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attract prosumers and consumers to cooperatively participate
in local trading with the application of information and com-
munication technologies (ICTs), and is validated as a highly
efficient market mechanism [Friedman, 2018]. In DA market,
buyers (consumers) and sellers (prosumers) strategically bid
and offer their willing price and corresponding energy quan-
tity, respectively. The market dynamics are expected to max-
imize the market clearing efficiency by shifting demand to
the periods of PV generation and/or low prices as well as en-
abling sellers with PV and/or ES to sell their self-generated
energy to buyers. We use multi-agent reinforcement learn-
ing (MARL) to learn individual trading strategies and energy
schedules of flexible DER to minimize the energy bills. The
experiments on a real-world scenario demonstrate that 1) the
above effects in P2P energy trading can potentially result in
economic benefits for all the market participants as well as
higher balance of local demand and generation; and 2) the
proposed DA-MADDPG obtains the superior performance
over the Zero Intelligence (ZI) strategy [Friedman, 2018] and
the other MARL algorithms (e.g., IQL [Watkins and Dayan,
1992], IDDPG [Lillicrap et al., 2016], IPPO [Schulman et al.,
2017] and MADDPG [Lowe et al., 2017]).

2 Related Work
An appropriate market mechanism is required to facilitate the
P2P energy trading among prosumers and consumers. [Alam
et al., 2019] proposed a central coordinator that directly man-
ages the energy schedules of all participants by maximiz-
ing the overall economic benefits. In this setting, the cen-
tral coordinator has to require all participants’ economic and
technical parameters, violating their security and privacy is-
sues of energy preferences and usage behaviors [Aitzhan and
Svetinovic, 2018]. In this contrast, the introduced DA mar-
ket under a decentralized manner has shown its market effi-
ciency [Guerrero et al., 2019], and only a small amount of
information is delivered to participants at relatively low com-
putational costs.

In DA market, buyers and sellers are faced with a com-
plex quotation decision process. Thus, an appropriate trad-
ing strategy is challenging to select in such a complicated
market environment. Zero Intelligence (ZI) is a fundamental
and popular trading strategy adopted by traders in DA mar-
ket [Friedman, 2018]. ZI traders set their order price as a
random surplus offset from its valuation, based on a uniform
distribution from a specified range (e.g., FiT and ToU) with-
out considering market transactions. In particular, the extant
ZI strategy has been typically developed assuming that the
market is static and all participants’ energy availability is pre-
optimized by solving a day-ahead energy planning with per-
fect information, which means there is no change in demand
and generation at the beginning of each trading day [Guer-
rero et al., 2019]. However, the real market is typically very
dynamic considering that all participants’ strategies are ad-
justed in real time as well as the information of price signals,
PV generation and energy usage behaviors are stochastic.

To address this challenge, reinforcement learning (RL) is
a framework to study sequential decision-making problems
of agents (prosumers and consumers) gradually learning the

optimal trading strategies by utilizing experiences acquired
from its repeated interactions with the environment (P2P en-
ergy trading in DA market) [Sutton and Barto, 2018], which
has been applied in many smart grid applications [Zhang et
al., 2018]. Specifically, for DA market, [Nicolaisen et al.,
2001] applied a modified Roth-Erev RL algorithm to help en-
ergy traders determine their price-quantity strategies in each
auction round. Authors in [Sun et al., 2015] presented a
general RL bidding strategy for controlling and coordinating
HVAC (heat, ventilating, and air conditioning) systems in a
DA market. Authors in [Pedasingu et al., 2020] applied DQN
to adjust the price-quantity strategies in a day-ahead DA mar-
ket. However, the majority of them only consider discrete
state and/or action spaces by simply discretizing the origi-
nal continuous spaces. Thus, the naı̈ve discretization throws
away valuable information regarding the structure of the state
and action domain, which may be essential to achieve opti-
mal trading strategies. To this end, this paper has employed
the deep MARL algorithm based on DDPG [Lillicrap et al.,
2016] method to obtain multi-dimensional and continuous
state and action spaces.

3 Energy Trading in DA Market
In this section, we define the energy trading rules in DA mar-
ket and then formulate them into Markov Games.

3.1 DA Market Mechanism
The DA market matches multiple buyers (consumers) and
sellers (prosumers) who are interested in (energy) trading,
and is deemed as highly efficient mechanism. They are
widely used in the trading of various types of commodities,
such as stocks and electricity. A DA market lasts a fixed pe-
riod of time, known as the auction period (e.g., hourly reso-
lution in electricity market). It allows traders to submit their
bids/offers at the beginning of an auction period, then the auc-
tioneer (e.g., market operator) clears the market and publishes
the public market outcomes (e.g., trading prices and quan-
tities) at the end of each auction period [Friedman, 2018].
More specifically, a DA market comprises:

• A set of buyers B, where each i ∈ B defines its trad-
ing price pbi and the amount of energy to buy qbi , which
means the buyer i would like to buy the qbi amount of
energy at the price pbi .

• A set of sellers S , where each j ∈ S defines its trad-
ing price psj and the amount of energy to sell qsj , which
means the seller j would like to sell the qsj amount of
energy at the price psj .

• A public order book managed by an auctioneer, where
the accepted bids and offers are listed, respectively. Buy
orders queue in order book kb(i, pbi , q

b
i ) and are sorted by

decreasing submitted buy prices, while sell orders queue
in order book ks(j, psj , q

s
j ) and are sorted by increasing

submitted sell prices.
The pseudo-code of the matching process in DA market is

given in Algorithm 1. Once an auction period begins, traders
submit their order information with a trading price and a cor-
responding energy quantity to the market. All submitted or-
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Algorithm 1 DA market clearing algorithm

1: Allocate order book kbt and kst at auction period t
2: Initialize i = j = 1
3: while pbi,t ≥ psj,t do
4: match the trading energy: qlt = min(qbi,t, q

s
j,t)

5: calculate the trading price: plt = (pbi,t + psj,t)/2

6: update buy order book qbi,t ← qbi,t − qlt
7: if qbi,t = 0 then
8: i← i+ 1
9: update sell order book qsj,t ← qsj,t − qlt

10: if qsj,t = 0 then
11: j ← j + 1
12: break if
13: i > length of kbt or j > length of kst
14: end while
15: Balance the unmatched quantity at ToU λbt and FiT λst

ders are allocated in the order book (step 1). The matching al-
gorithm iterates down the order books and attempts to match
each buy order with sell order (steps 4-11) until the buy price
is less than the sell price or no unmatched sell/buy order ex-
ists anymore (steps 12-13). Specifically, when two orders get
matched, the auctioneer calculates the market clearing price
between the matched buy price and sell price, using the tra-
ditional mid-pricing method [Friedman, 2018] (step 5), while
the transaction quantity is equal to the minimum quantity be-
tween the matched orders (step 4). Due to the sorting prin-
ciple and clearing algorithm, the clearing results promise the
social welfare maximization [Friedman, 2018]. Finally, at
the end of the auction period, the remaining quantity of en-
ergy and the unmatched orders are balanced by the auctioneer
with the utility company at the grid prices of ToU and FiT. It
should be noted that the pricing strategies of all traders are
bounded between FiT and ToU to ensure the economic bene-
fits.

3.2 Numerical Example of DA Market Mechanism
To better illustrate the DA market clearing algorithm, we take
the scenario in Figure 2 as an example.

Order Books
There are six agents participating into DA market. They are
divided into three buyers and three sellers corresponding to
the sign of their submitted quantities (positive for buyer, neg-
ative for seller). Then, the auctioneer allocates the order
books according to the principle of price first (i.e., the quotes
of buyers are in high-to-low order, whereas the quotes of sell-
ers are in low-to-high), as presented in the left table.

Market Transactions
Transaction 1: the first transaction occurs when the first
bid price ($0.12/kWh) is higher than the first ask price
($0.06/kWh), the matched quantity is the minimum quan-
tity of buyer i1 and seller j1 (i.e., 2kWh) and the trans-
action price is the average of $0.12/kWh and $0.06/kWh
(i.e., $0.09/kWh). In this transaction, buyer i1 is completed
matched and should be removed, and buyer i2 is updated on

Quantity (kWh)

Pr
ic

e 
($

/k
W

h)

DA Oder Book before Clearing
ID price quantity
i1 0.12 2
i2 0.08 3
i3 0.07 2
j1 0.06 - 4 
j2 0.10 - 2 
j3 0.12 - 1 

DA Oder Book after Clearing
ID price quantity
i2 0.08 1
i3 0.07 2

j2 0.10 - 2 
j3 0.12 - 1 

bu
y

se
ll

bu
y

se
ll

ToU

FiT
0.04

0.13

j1: 4kWh @ 0.06$

j2: 2kWh @ 0.10$

j3: 1kWh @ 0.12$i1: 2kWh @ 0.12$
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0.07
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0.11
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0.05

21 3 5 6 70

DA Market Clearing Algorithm

Figure 2: Example case of DA market clearing algorithm.

the top of buy order book. On the other hand, the quotes of
sellers do not change but the quantity of seller j1 is reduced
to 2kWh.
Transaction 2: the second transaction occurs when the first
bid price ($0.08/kWh) is still higher than the first ask price
($0.06/kWh), the matched quantity is the minimum quantity
of buyer i2 and unmatched seller j1 (i.e., 2kWh) and the
transaction price is the average of $0.08/kWh and $0.06/kWh
(i.e., $0.07/kWh). In this transaction, seller j1 is completely
matched and should be removed, while seller j2 is updated on
the top of sell order book. The quantity of buyer i2 is reduced
to 1kWh accordingly.
Transaction ends: this matching process stops when the
first bid price ($0.08/kWh) is lower than the first ask price
($0.10/kWh). Finally, the unmatched quantities in the or-
der book (right table) are balanced via ToU ($0.13/kWh)
for buyer i2 at 1kWh and buyer i3 at 2kWh while FiT
($0.04/kWh) for seller j2 at 2kWh and seller j3 at 1kWh.

Market Outcomes
After all transactions occur in the DA market, the auctioneer
publishes the market clearing outcomes that comprises: 1)
the local trading price ($0.09/kWh for buyer i1 & seller j1,
$0.07/kWh for buyer i2 & seller j1); 2) the cleared quantity
in DA market for each agent; 3) the remaining/unmatched
quantity traded with the utility company for each agent; and
4) the updated order books for all agents, as presented in the
right table.

3.3 P2P Energy Trading as Markov Games
The DA market clearing algorithm outlined above can be
formulated as a multi-agent coordination problem in the
form of a finite Partially Observable Markov Game (POMG)
[Shoham and Leyton-Brown, 2008] with discrete time steps.
The POMG is defined by N agents with a set of state S
describing global state, a collection of private observations
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{O1:N}, a collection of action sets {A1:N}, a collection of re-
ward functions {R1:N} and a state transition function T . The
time interval between two consecutive steps is one auction
period (∆t = 1 hour). At time step t, each agent n chooses
an action an,t according to its policy µn(on,t) based on its
private observation on,t. The environment then moves into
the next state according to the state transition function con-
ditioned on the actions of all agents. Each agent n obtains
a reward rn,t and a private observation for next step on,t+1.
Each agent n aims to maximize its cumulative discounted re-
ward Rn =

∑T
t=0 γ

trn,t, where γ ∈ [0, 1) is the discount
factor and T is the time horizon of the coordination problem
(24 hours). The components of the POMG are detailed as:

Observation. Agent n at time step t has its observation on,t
= [P infn,t , E

es
n,t, λ

b
t , λ

s
t ], which comprises: 1) the local infor-

mation of its inflexible load P infn,t
1, ES battery energy content

Eesn,t; and 2) the grid information of ToU λbt and FiT λst .

Action. Agent n at time step t controls its action an,t =
[apn,t, a

q
n,t], which comprises: 1) the price decision apn,t ∈

[0, 1] representing the magnitude of willing price submitted
to DA market as a ratio of FiT and ToU price differentials
(pn,t = λst+apn,t(λ

b
t−λst )); and 2) the energy decision aqn,t ∈

[−1, 1] representing the magnitude of charging (positive) and
discharging (negative) power of ES as a ratio of its power
capacity P

es

n .

State Transition. The state transition from time step t to
t + 1 is governed by a function: st+1 = T (st, a1:N,t, ωt). It
can be observed that the transition is influenced partly by all
agents’ actions a1:N,t and partly by the environment stochas-
ticity ωt. In the examined problem, this corresponds to the ex-
ogenous state features [P d, P pv, λb, λs], which are decoupled
from agent’s actions and are characterized by inherent vari-
ability and uncertainty. In this context, it presents significant
challenges to identify suitable probabilistic models which can
fully capture such randomness since it is influenced by many
exogenous factors, such as energy usage behaviors, solar radi-
ation, and utility pricing mechanism. RL remedies this prob-
lem in a data-driven approach thta does not rely on accurate
mathematical models of the underlying uncertainties.

By contrast, the state transition for the endogenous state
features Eesn,t is determined by the action aqn,t adopted at step
t. Let Cesn,t and Des

n,t denote the charging and discharging
power of ES, respectively. The mutually exclusive quantities
Cesn,t and Des

n,t (as the charging and discharging activity of ES
cannot occur simultaneously at a given step) are managed by
action aqn,t, and are also limited by Eesn,t and the ES oper-
ating parameters: 1) minimum and maximum energy levels
Eesn , E

es

n ; 2) charging and discharging efficiencies ηescn , ηesdn .

Cesn,t = min
(
an,tP

es

n , (E
es

n − Eesn,t)/(ηescn ∆t)
)

(1)

Des
n,t = min

(
an,tP

es

n , (E
es
n − Eesn,t)ηesdn /∆t

)
(2)

1for consumers: inflexible load equals to inflexible demand P inf
n,t

= P d
n,t; for prosumers: inflexible load equals to the difference be-

tween inflexible demand and PV generation P inf
n,t = P d

n,t− P pv
n,t.

Based on Cesn,t and Des
n,t, the state transition of Eesn,t can be

expressed as:

Eesn,t+1 = Eesn,t + Cesn,t∆tη
esc
n +Des

n,t∆t/η
esd
n (3)

Consequently, the quantity submitted to DA market qn,t of
agent n at step t can be expressed as the summation of in-
flexible load and ES charging / discharging power, where the
positive value represents the net demand to buy while the neg-
ative value represents the net generation to sell in DA market:

qn,t = P infn,t + Cesn,t +Des
n,t (4)

After collecting the price-quantity strategies (pn,t, qn,t) of
all agents, the auctioneer allocates the order book kbt and
kst , clears the market (Algorithm 1) and publishes the market
clearing outcomes [λln,t, q

da
n,t, q

grid
n,t , k

b
t , k

s
t ], which comprises:

the local trading price λln,t, the cleared quantity in DA market
qdan,t, the remaining/unmatched quantity traded with the utility
company qgridn,t , and the updated public order books kbt , k

s
t .

Reward Function. Agent n at step t obtains its reward rn,t
as the negative cost of energy bills developing from the DA
market clearing outcomes. Specifically, for these agents who
are successfully cleared in DA market will receive the local
price λln,t and its cleared quantity qdan,t, then each agent n can
calculate its corresponding cost in DA market and the remain-
ing/unmatched quantity qgridn,t will be bought or sold through
the utility company at ToU λbt or FiT λst . For these agents
who are unsuccessfully cleared in DA market, their quantity
qgridn,t = qn,t will be directly traded at ToU λbt or FiT λst .

rn,t = −(λln,tq
da
n,t∆t+ λbt [q

grid
n,t ]+∆t+ λst [q

grid
n,t ]−∆t) (5)

where [·]+/− = max /min{·, 0}.

4 MARL Method
Directly applying single-agent RL methods to the multi-agent
setting by treating other agents as part of the environment is
problematic as the environment appears non-stationary from
the view of any one agent, violating Markov assumptions re-
quired for convergence [Shoham and Leyton-Brown, 2008].
Specifically, this non-stationary issue becomes more severe
in the case of deep RL with neural networks as function ap-
proximators. To this end, we propose an extension of MAD-
DPG [Lowe et al., 2017], namely DA-MADDPG that learns
a centralized Q-function for each agent (to alleviate the non-
stationary problem and stabilize training) by abstracting the
other agents’ observations and actions through the DA market
information (to promise the scalability and protect the private
information). The general architecture of DA-MADDPG is
illustrated in Figure 3.

Concretely, we consider a game of N agents with policies
parameterized by θµθµθµ = {θµ1:N}, and let µµµ = {µ1:N} be the
set of all agents’ policies. Then the gradient of the expected
return for agent n with policy µn(on|θµn), Jn = Eµn [Rn] is
written as follows:

∇θµnJn = Ex,a∼D
[
∇θµnµn(on|θµn)

∇anQn(x, a1:N |θQn )|an=µn(on|θµn)
] (6)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2916



𝑎1𝑜1

training

𝑄1

execution𝜇1

𝑎𝑁 𝑜𝑁

𝑄𝑁

𝜇𝑁

DA market

order books
෠𝑘𝑁
𝑑𝑎෠𝑘1

𝑑𝑎

Figure 3: Architecture of DA-MADDPG.

here Qn(x, a1:N |θQn ) parameterized by θQn is a centralized
action-value function that takes as input all agents’ actions
a1:N , in addition to some state information x (e.g., all agents’
observations o1:N ) and outputs the Q-value for agent n.

The conventional approach in MADDPG involves train-
ing all agents using a centralized critic estimator which takes
as input the observations and actions of all agents. How-
ever, it is evident that the input dimension of such centralized
critic grows exponentially with the number of agents, quickly
rendering the problem intractable. Furthermore, driven by
prosumers/consumers’ privacy concerns, they are not will-
ing to exchange their local observations (inflexible demand
and/or PV generation) and actions (ES energy behaviors)
with each other. Motivated by [Yang et al., 2019], this pa-
per assumes the DA auctioneer as a trusted third party sup-
plying agents with the public and dynamic market informa-
tion of order books that epitomize the collective behavior of
the market (thereby substituting the high-dimensional vector
with all agents’ information) in the centralized training pro-
cess. This substantially improves the scalability of the pro-
posed MARL method and also protects the privacy of pro-
sumers/consumers. To this effect, we approximate the joint
Q-value function as:

Qn(o1:N , a1:N |θQn ) ≈ Qn(on, an, k̂
da
n |θQn ) (7)

where k̂dan = {k̂bn, k̂sn} = {kbn−, ksn−, ∀n− ∈ N \ {n}} de-
notes the combination of buy and sell order books other than
agent n in DA market. It can be observed that k̂dan is an em-
bedded function that not only abstracts all other agents’ ob-
servations (e.g., P infn− ) as well as actions of the price strate-
gies pn− and the quantity strategies qn− resulting from their
ES energy schedules Cesn− and Des

n−, but also displays the
DA market dynamics of P2P energy trading. As a result, this
function provides a good approximation of agents’ observa-
tions and actions as well as the DA market dynamics. In-
corporating k̂dan in the critic estimation, each agent can make
acquainted decisions on the basis of the impact of the actions
of other agents in DA market, albeit not knowing their spe-
cific energy portfolios and usage activities. This averts the
explosion of action and observation spaces and alleviates the
environmental non-stationarity.

Given the collective Q-value function, the experience
replay buffer Dn contains the tuples (on, an, rn, o

′
n, k̂

da
n ),

recording experiences for each agent n. The centralized

action-value function Qn is updated as:

L(θQn ) = Eo,a,r,o′,k̂da,k̂da′

[
(yn −Qn(on, an, k̂

da
n |θQn ))2

]
yn = rn + γQ′n(o′n, a

′
n, k̂

da
n
′|θQn ′)|a′n=µ′

n(o
′
n|θ

µ
n
′)

(8)

where µµµ′ = {µ′1:N} is the set of target policies with soft up-
dated parameters θµ

′

n , k̂da′ is evaluated byµ′µ′µ′ given all agents’
next observations. Note that the centralized Q function is only
used during training. During decentralized execution, each
policy µn(on|θµn) only takes its own observation on to pro-
duce the action.

Finally, it has to be discussed for this particular DA market
applied problem that the DA market efficiency is completely
represented by the public information of order books rather
than the local observations and actions of all agents, since the
market clearing outcomes (trading prices and clearing quan-
tities) are directly calculated based on the order information.
As a result, each agent in DA-MADDPG method receiving
the market dynamics (i.e., order books) can make more ac-
quainted decisions than the conventional MADDPG method.

5 Experiments and Analysis
5.1 Experiment Setup
Environment. The proposed MARL method is evaluated
on a real-world open-source dataset recorded by the Aus-
tralian distribution utility Ausgrid [Ratnam et al., 2017]. We
collect the corresponding electricity load and PV generation
data of 8 residential households, and form them into 4 pro-
sumers (with PV generation) and 4 consumers (electricity de-
mand only). For each of prosumers and consumers, an ES
is installed to provide the system flexibility potentials, where
its operating parameters are derived from [Papadaskalopoulos
and Strbac, 2016] and presented in Table 1. The grid prices
are offered by Ausgrid, including the ToU tariff as the grid
buy price varying for the time presented in Table 2 and the
FiT as the grid sell price fixed at $0.04/kWh during the whole
day.
Baselines. We compare the proposed DA-MADDPG with
the conventional ZI strategy [Friedman, 2018], four RL al-
gorithms with three independent methods, e.g., Independent
Q-learning (IQL) [Watkins and Dayan, 1992], Independent
DDPG (IDDPG) [Lillicrap et al., 2016] and Independent
PPO (IPPO) [Schulman et al., 2017], and one state-of-the-
art MARL method with centralised critics, e.g., MADDPG
[Lowe et al., 2017]. To further evaluate the benefit of P2P
energy trading, we benchmark the performance against to the
scenario that agents trade independently with the utility com-
pany using DDPG method without P2P energy trading (Grid).

Parameter Value

Ees, E
es

(kWh) 2,10
ηesc/ηesd 0.95
P

es
(kW) 2

Ees
0 (kWh) T N (6, 12, 2, 10)

Table 1: ES operating parameters.
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Time ToU ($/kWh) FiT ($/kWh)time value
shoulder 9:00-16:00 0.13
peak 17:00-20:00 0.18 0.04
off-peak 21:00-8:00 (next day) 0.08

Table 2: The grid price structure.

5.2 Training Performance
The convergence curves of mean episodic total energy bills
of 8 agents evaluated by different MARL methods are illus-
trated in Figure 4. As for baselines, we first show the perfor-
mance of three independent learning algorithms (IQL, IPPO,
IDDPG) with decentralized critics. They fail to learn an op-
timal policy, where IPPO and IDDPG exhibit high variances
which may be due to the non-stationarity issue. Conversely,
MADDPG can alleviate the non-stationarity and learn the
more effective coordination policies via the centralized critic
incorporating with all agents’ local observations and actions,
but its capability could be limited due to the lack of the DA
market information. Instead, we can see that the proposed
DA-MADDPG method converges to the lowest energy bills
owing to its more sufficient representation of the DA market
collective dynamics for the critic.

5.3 Trading Analysis
Having demonstrated the superiority of DA-MADDPG
method over the state-of-the-art MARL algorithms, this sec-
tion aims at analysing: 1) the ES flexibility potentials in re-
ducing peak demands; 2) the energy exchanges in local trad-
ing via DA market; and 3) the trading strategies under the dy-
namic DA-MADDPG method w.r.t. the statistic ZI method.

ES Flexibility. Although Grid, ZI and DA-MADDPG dif-
fer with regard to the P2P energy trading (under the latter
twos) or not (under the first one), they exhibit some common
trends. Compared with the inflexible load (w/o ES) in Fig-
ure 5, the net generation during mid-day hours 9-16 and the
net demand during peak hours 17-20 of 4 prosumers are both
reduced, since the abundant (free) PV generation during mid-
day hours is locally absorbed by flexible ES, and the demand
at peak hours is shaved through discharging of ES (Figure 6).

0 100 200 300 400 500 600 700 800 900 1000
Episode

30
32
34
36
38
40
42
44
46
48

En
er

gy
 b

ill
s (

$)

IQL
IPPO

IDDPG
MADDPG

DA-MADDPG

Figure 4: The episodic mean ± std of 8 agents’ total energy bills for
10 random runs over 1000 episodes.

Method Internal (kWh) External (kWh) Net bills ($)

Grid - 441.70 38.32
ZI 31.74 378.23 35.47
DA-MADDPG 65.42 310.86 30.78

Table 3: Sum of internal, external trading quantities and energy bills
of 8 agents under Grid, ZI and DA-MADDPG methods.

On the other hand, 4 consumers cannot make use of free PV
generation locally, but still perform the same demand reduc-
tion effect during peak hours 17-20, either through charging
ES from grid at cheap ToU during off-peak hours 1-8 (Grid,
ZI) or buy energy locally from 4 prosumers in DA market dur-
ing mid-day hours 9-16 (ZI, DA-MADDPG) in Figure 6. In
this context, we can observe that agents under all methods are
incentived to use their ES flexibility potentials to discharge to
supply demand during peak hours through charging free PV
generation during mid-day hours or cheap energy during off-
peak hours.
Grid vs. DA. When P2P energy trading is allowed in DA
market, prosumers/consumers with energy surplus/deficiency
are incentived to trade locally among themselves. Thereby,
we can observe that compared with the Grid case without P2P
energy trading, the generation of 4 prosumers and the demand
of 4 consumers during mid-day hours (when both energy sur-
plus and deficiency exist) in Figure 5 are both reduced under
ZI and DA-MADDPG methods, since a amount of energy is
balanced locally in DA market.
ZI vs. DA-MADDPG. The final comparison is regarding
statistic ZI and dynamic DA-MADDPG methods in the same
DA market environment. On the one hand, we can observe in
Figure 6 that consumers under ZI method charge ES from
grid during off-peak hours 1-8 at low ToU and discharge
ES to supply demand during peak hours 17-20 when ToU
is high. However, consumers under ZI method do not ex-
hibit any charging behavior during mid-day hours when pro-
sumers’ PV generation is abundant, this is because the en-
ergy schedules of ES are pre-optimized given the grid buy and
sell prices in day-ahead planning without considering P2P en-
ergy trading. In other words, the quantity availability traded
in DA market is the net demand/generation that assumes to
trade with the grid in day-ahead (i.e., Grid case). On the
other hand, we can observe in Figure 6 that consumers un-
der DA-MADDPG method stop charging ES from grid dur-
ing off-peak hours 1-8 but start charging ES during mid-day
hours 9-16 with PV generation, this is driven by the availabil-
ity of DA market allowing consumers to buy energy directly
from prosumers with PV generation in real-time. Under such
method, consumers learn the dynamics of DA market to save
energy during off-peak hours and buy energy in DA market
during mid-day hours, while prosumers learn to sell energy in
DA market instead of selling their energy surplus (PV gener-
ation) back to the grid at the unfavorable FiT.

5.4 Economic Benefits
The final section aims at 1) evaluating the agents’ economic
benefits from DA market and 2) comparing the proposed DA-
MADDPG with the benchmark ZI strategy for DA market.
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Figure 5: Net load (positive for consumption, negative for generation) of 4 prosumers (P1-4) and 4 consumers (C1-4) under different methods,
including for comparison purposes the inflexible load without ES.
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Figure 6: ES charging (positive) and discharging (negative) sched-
ules of 4 prosumers (P1-4) and 4 consumers (C1-4) under ZI and
DA-MADDPG methods.
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Figure 7: Energy bills of 4 prosumers (P1-4) and 4 consumers (C1-
4) under Grid, ZI and DA-MADDPG methods.

It can be observed in Figure 7 that all 8 agents receive the
highest energy bills under Grid case without P2P energy trad-
ing. After participating in DA market, the energy bills lower
down in ZI method. Furthermore, with DA-MADDPG mod-
eling the dynamics of DA market, the energy bills achieve the
lowest. The above economic trends can be also validated in
Table 3: a) there is no internal trading under Grid case, so the
net demand and generation (441.70kWh in total) are bought

at high ToU or sold at low FiT with the utility company; b) ZI
achieves $2.85 total energy bills saving by 31.74kWh inter-
nal trading within DA market; c) DA-MADDPG achieves the
least total energy bills by making the highest internal trading
at 65.42kWh. In relative terms, DA-MADDPG achieves ap-
proximately 17.81% and 29.62% lower external trading with
the utility company as well as 13.22% and 16.69% lower total
energy bills over ZI and Grid, respectively.

6 Conclusion and Future Work
We introduce a P2P energy trading problem among energy
prosumers and consumers evaluated on a highly efficient
DA market mechanism. For this specific problem, we pro-
pose a novel MARL algorithm namely DA-MADDPG. Based
on MADDPG, we construct a representative Q-value func-
tion for each agent by abstracting the other agents’ obser-
vations and actions through the DA market public informa-
tion. The proposed DA-MADDPG is evaluated on a real-
world dataset and compared with five baselines (e.g., ZI, IQL,
IDDPG, IPPO, MADDPG). The experimental results demon-
strate the benefit of more internal energy exchange among
agents through DA market. Consequently, it leads to higher
economic benefits in reducing the cost of energy bills.

The future works are in two directions. The first one lies
in modelling a more realistic P2P energy trading problem
by increasing the population of agents and forms them into
a large-scale multi-agent system and further demonstrate the
scalability of the proposed DA-MADDPG method under this
setting. Secondly, the economic model in this paper neglects
the physical operations of electricity systems. To this end,
future work will adopt the introduced DA market to an envi-
ronment with network constrained microgrid.
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