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Abstract
Stochastic shortest path (SSP) is a well-known
problem in planning and control, in which an agent
has to reach a goal state in minimum total expected
cost. In this paper we present the adversarial SSP
model that also accounts for adversarial changes in
the costs over time, while the underlying transition
function remains unchanged. Formally, an agent in-
teracts with an SSP environment for K episodes, the
cost function changes arbitrarily between episodes,
and the transitions are unknown to the agent. We
develop the first algorithms for adversarial SSPs
and prove high probability regret bounds of square-
root K assuming all costs are strictly positive, and
sub-linear regret in the general case. We are the
first to consider this natural setting of adversarial
SSP and obtain sub-linear regret for it.

1 Introduction
Stochastic shortest path (SSP) is one of the most basic models
in reinforcement learning (RL). It features an agent that inter-
acts with a Markov decision process (MDP) with the aim of
reaching a predefined goal state in minimum total expected
cost. Many important RL problems fall into the SSP frame-
work, e.g., car navigation and Atari games, and yet it was
only rarely studied from a theoretical point of view until very
recently, mainly due to its challenging nature in comparison
to finite-horizon, average-reward or discounted MDPs. For
example, in SSP some polices might suffer infinite cost.

An important aspect that the standard SSP model fails to
capture is changes in the environment over time (e.g., changes
in traffic when navigating a car). In the finite-horizon setting,
the adversarial MDP model was proposed to address chang-
ing environments, and has gained considerable popularity in
recent years. It allows the cost function to change arbitrarily
over time, while still assuming a fixed transition function.

In this work we present the adversarial SSP model that
introduces adversarially changing costs to the classical SSP
model. Formally, the agent interacts with an SSP instance for
K episodes, and the cost function changes arbitrarily between
episodes. The agent’s objective is to reach the goal state in all
episodes while minimizing its total expected cost. Its perfor-
mance is measured by the regret, defined as the cumulative

difference between the agent’s total cost in K episodes and
the expected total cost of the best policy in hindsight.

Finite-horizon MDPs are a special case of the general SSP
problem where the agent is guaranteed to reach the goal state
within a fixed number of steps H . This model is extensively
studied in recent years for both stochastic and adversarial
costs. In the adversarial MDP literature it is better known
as the loop-free SSP model. While having a similar name,
loop-free SSP follows the restrictive assumption that after H
steps the goal will be reached and is thus far less challenging.

As pointed out by [Tarbouriech et al., 2020], in the general
SSP problem we face new challenges that do not arise in the
loop-free version. Notably, it features two possibly conflict-
ing objectives – reaching the goal vs minimizing cost; and
it requires handling unbounded value functions and episode
lengths. In the adversarial SSP model, these difficulties are
further amplified as the adversary might encourage the learner
to use “slow” policies and then punish her with large costs.

In this paper we propose the first algorithms for regret
minimization in adversarial SSPs without any restrictive as-
sumptions (namely, loop-free assumption). While we lever-
age algorithmic and technical tools from both SSP and finite-
horizon adversarial MDP, tackling the general SSP problem
in the presence of an adversary requires novel techniques and
careful analysis. Our algorithms are based on the popular on-
line mirror descent (OMD) framework for online convex opti-
mization (OCO). However, naive application of OMD to SSP
cannot overcome the challenges mentioned above as we later
show, and we use carefully designed mechanisms to establish
our theoretical guarantees.

The main contributions of this paper are as follows. First,
we formalize the adversarial SSP model and define the no-
tion of learning and regret. Second, we establish an efficient
implementation of OMD in the SSP model with known tran-
sitions and study the conditions under which it guarantees
near-optimal

√
K expected regret, showing that some modifi-

cations are necessary. Then, we illustrate the challenge of ob-
taining regret bounds in high probability in adversarial SSPs,
and present a novel method that allows OMD to obtain its re-
gret with high probability. Finally, we tackle unknown transi-
tions. We describe the crucial adaptations that allow OMD
to be combined with optimistic estimates of the transition
function and guarantee

√
K regret when all costs are strictly

positive, and K3/4 regret in the general case. Hopefully, the
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infrastructure created in this paper for handling adversarial
costs in SSPs with unknown transition function paves the way
for future work to achieve minimax optimal regret bounds.

Related work. Early work by [Bertsekas and Tsitsiklis,
1991] studied the planning problem in SSPs, i.e., computing
the optimal strategy efficiently when parameters are known.
Under certain assumptions, they established that the optimal
strategy is a deterministic stationary policy (a mapping from
states to actions) and can be computed efficiently using stan-
dard planning algorithms, e.g., Value Iteration and LP.

Recently [Tarbouriech et al., 2020] presented the prob-
lem of learning SSPs (with stochastic costs) and provided
the first algorithms with sub-linear regret but with depen-
dence on the minimal cost cmin. Their results were fur-
ther improved by [Rosenberg et al., 2020] that eliminate the
cmin dependence and prove high probability regret bound of
Õ(D|S|

√
|A|K) complemented by a nearly matching lower

bound of Ω(D
√
|S||A|K), where D is the diameter, S is the

state space and A is the action space.
As mentioned before, regret minimization in RL is exten-

sively studied in recent years, but the literature mainly fo-
cuses on the average-reward infinite-horizon model [Bartlett
and Tewari, 2009; Jaksch et al., 2010] and on the finite-
horizon model [Osband et al., 2016; Azar et al., 2017; Dann
et al., 2017; Jin et al., 2018; Zanette and Brunskill, 2019;
Efroni et al., 2019]. Adversarial MDPs were also first stud-
ied in the average-reward model [Even-Dar et al., 2009;
Neu et al., 2014], before focusing on the finite-horizon set-
ting which is typically referred to as loop-free SSP. Early
work in this setting by [Neu et al., 2010] used a reduction
to multi-arm bandit [Auer et al., 2002], but then [Zimin and
Neu, 2013] introduced the O-REPS framework, which is the
implementation of OMD in finite-horizon MDPs. All these
works assume known transition function, but more recently
[Neu et al., 2012; Rosenberg and Mansour, 2019a; Rosen-
berg and Mansour, 2019b; Jin et al., 2020; Shani et al., 2020;
Cai et al., 2020] consider unknown transitions.

We stress that all previous work in the adversarial setting
made the restrictive loop-free assumption, avoiding the main
challenges tackled in this paper. Building on our method-
ologies, [Chen et al., 2020] recently extended our work and
obtained minimax optimal

√
K regret with known transitions.

However, they do not consider the more challenging unknown
transitions case, and also assume that the learner knows in ad-
vance the running time of the best policy in hindsight.

2 Preliminaries
An adversarial SSP problem is defined by an MDP M =
(S,A, P, s0, g) and a sequence {ck : S × A → [0, 1]}Kk=1
of cost functions. S and A are finite state and action spaces,
respectively, s0 ∈ S is an initial state and g 6∈ S is the goal
state. P is a transition function such that P (s′ | s, a) gives the
probability to move to s′ when taking action a in state s, and
thus

∑
s′∈S∪{g} P (s′ | s, a) = 1 for every (s, a) ∈ S ×A.

The learner interacts with M in episodes, where ck is the
cost function for episode k. However, it is revealed to the
learner only in the end of the episode. Formally, the learner

starts each episode k at the initial state1 sk1 = s0. In each
step i of the episode, the learner observes its current state ski ,
picks an action aki and moves to the next state ski+1 sampled
from P (· | ski , aki ). The episode ends when the goal state g
is reached, and then the learner observes ck and suffers cost∑Ik

i=1 ck(ski , a
k
i ) where Ik is the length of the episode. Im-

portantly, Ik is a random variable that might be infinite. This
is the unique challenge of SSP compared to finite-horizon.
Proper Policies. A stationary policy π : A × S → [0, 1] is
a mapping such that π(a | s) gives the probability that action
a is selected in state s. A policy π is called proper if play-
ing according to π ensures that the goal state is reached with
probability 1 when starting from any state (otherwise it is im-
proper). Since reaching the goal is one of the learner’s main
objectives, we make the basic assumption that there exists
at least one proper policy. This is equivalent to the assump-
tion that the goal state is reachable from every state, which is
clearly a necessary assumption.

We denote by Tπ(s) the expected hitting time of g when
playing according to π and starting at s. In particular, if π is
proper then Tπ(s) is finite for all s, and if π is improper there
must exist some s′ ∈ S such that Tπ(s′) =∞. When paired
with a cost function c : S ×A→ [0, 1], any policy π induces
a cost-to-go function Jπ : S → [0,∞], where Jπ(s) is the
expected cost when playing policy π and starting at state s,
i.e., Jπ(s) = limT→∞ E

[∑T
t=1 c(st, at) | P, π, s1 = s

]
. For

a proper policy π, it follows that Jπ(s) is finite for all s.
Under the additional assumption that every improper pol-

icy suffers infinite expected cost from some state, [Bertsekas
and Tsitsiklis, 1991] show that the optimal policy is station-
ary, deterministic and proper; and that every proper policy π
satisfies the following Bellman equations for every s ∈ S:

Jπ(s) =
∑
a∈A

π(a | s)
(
c(s, a) +

∑
s′∈S

P (s′ | s, a)Jπ(s′)
)

Tπ(s) = 1 +
∑
a∈A

∑
s′∈S

π(a | s)P (s′ | s, a)Tπ(s′). (1)

Learning Formulation. The learner’s goal is to minimize
its total cost. Its performance is measured by the regret – the
difference between the learner’s total cost in K episodes and
the total expected cost of the best proper policy in hindsight:

RK =
K∑
k=1

Ik∑
i=1

ck(ski , a
k
i )− min

π∈Πproper

K∑
k=1

Jπk (s0),

where Jπk is the cost-to-go of policy π with respect to (w.r.t)
cost function ck, and Πproper is the set of proper policies. If Ik
is infinite for some k, we define RK =∞ forcing the learner
to reach the goal in every episode. We also denote by π? =

arg minπ∈Πproper

∑K
k=1 J

π
k (s0) the best policy in hindsight.

Our analysis makes use of the Bellman equations, that hold
under the conditions described before Eq. (1). To make sure
these are met, we assume that the costs are strictly positive.
Assumption 1. All costs are positive, i.e., there exists cmin >
0 such that ck(s, a) ≥ cmin for every k and (s, a) ∈ S ×A.

1Our algorithms readily extend to a fixed initial distribution.
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We can easily eliminate Assumption 1 by applying a per-
turbation to the instantaneous costs. That is, instead of ck
we use the cost function c̃k(s, a) = max{ck(s, a), ε} for
some ε > 0. This ensures that the effective minimal cost is
cmin = ε, at the price of introducing additional bias. Choosing
ε = Θ(K−1/4) ensures that all our algorithms obtain regret
bounds of Õ(K3/4) in the general case. See details in Ap-
pendix K and discussion about cmin in Section 5.
Occupancy Measures. Every policy π induces an occu-
pancy measure qπ : S × A → [0,∞] such that qπ(s, a) is
the expected number of times to visit state s and take action
a when playing according to π, i.e.,

qπ(s, a) = lim
T→∞

E
[ T∑
t=1

I{st = s, at = a} | P, π, s1 = s0

]
,

where I{·} is the indicator function. Note that for a proper
policy π, qπ(s, a) is finite for every (s, a). In fact, the corre-
spondence between proper policies and finite occupancy mea-
sures is 1-to-1, and its inverse2 for q is given by πq(a | s) =
q(s,a)
q(s) where q(s) =

∑
a∈A q(s, a) is the expected number

of visits to s. The equivalence between policies and occu-
pancy measures is well-known for MDPs (see, e.g., [Zimin
and Neu, 2013]), but also holds for SSPs by linear program-
ming formulation [Manne, 1960]. Notice that the expected
cost of policy π is linear w.r.t qπ , i.e.,

Jπk

k (s0) = E
[ Ik∑
i=1

ck(ski , a
k
i ) | P, πk, s1 = s0

]
=
∑
s∈S

∑
a∈A

qπk(s, a)ck(s, a)
def
= 〈qπk , ck〉.

Thus, minimizing the expected regret can be written as an in-
stance of online linear optimization in the following manner,

E[RK ] = E
[ K∑
k=1

Jπk

k (s0)−
K∑
k=1

Jπ
?

k (s0)
]

= E
[ K∑
k=1

〈qπk − qπ
?

, ck〉
]
.

3 Known Transition Function
We start with the simpler (yet surprisingly challenging) case
where P is known to the learner. Recall that while the tran-
sition function is known, the costs change arbitrarily between
episodes. In Section 3.1 we establish the implementation of
the OMD method in SSP, and in Section 3.2 we use it to ob-
tain a high probability regret bound.

3.1 Online Mirror Descent for SSP
Online mirror descent is a popular framework for OCO and
its application to occupancy measures yields the O-REPS al-
gorithms [Zimin and Neu, 2013; Rosenberg and Mansour,

2If q(s) = 0 for some state s then the inverse mapping is not
well-defined. However, since s will not be reached, we can pick the
action there arbitrarily. More precisely, the correspondence holds
when restricting to reachable states.

2019a; Rosenberg and Mansour, 2019b; Jin et al., 2020].
Usually these algorithms operate w.r.t to the set of all occu-
pancy measures (which corresponds to the set of all policies),
but a naive application of this kind fails in SSP because it does
not guarantee that the learner plays proper policies. For ex-
ample, in the first episode these algorithms play the uniform
policy which may suffer exponential cost (see Appendix A).

Thus, we propose to apply OMD to the set ∆(τ) – occu-
pancy measures of policies π that reach the goal in expected
time Tπ(s0) ≤ τ . This set is convex and has a compact rep-
resentation as we show shortly. Our algorithm SSP-O-REPS
operates as follows. In the beginning of episode k, it picks an
occupancy measure qk from ∆(τ) which minimizes a trade-
off between the current cost function and the distance to the
previously chosen occupancy measure. Then, it extracts the
policy πk = πqk and plays it through the episode. Formally,

qk = qπk = arg min
q∈∆(τ)

η〈q, ck−1〉+ KL(q ‖ qk−1), (2)

where KL(·||·) is the KL-divergence, and η > 0 is a learning
rate. Computing qk is implemented in two steps: first find the
unconstrained minimizer and then project it into ∆(τ), i.e.,

q′k = arg min
q

η〈q, ck−1〉+ KL(q ‖ qk−1) (3)

qk = arg min
q∈∆(τ)

KL(q ‖ q′k). (4)

Eq. (3) has a closed form q′k(s, a) = qk−1(s, a)e−ηck−1(s,a),
and Eq. (4) can be formalized as a constrained convex opti-
mization problem with the following linear constraints:

∀s.
∑
a∈A

q(s, a)−
∑
s′∈S

∑
a′∈A

q(s′, a′)P (s|s′, a′) = I{s = s0}∑
s∈S

∑
a∈A

q(s, a) ≤ τ, (5)

where we omitted non-negativity constraints. The first set of
constraints are standard flow constraints, while the novel con-
straint (5) ensures that Tπ

q

(s0) ≤ τ . In Appendix B we show
how to solve this problem efficiently and describe implemen-
tation details for the algorithm. Pseudocode in Appendix C.

Finally, we need to pick the parameter τ . While it needs to
upper bound Tπ

?

(s0) in order to have qπ
? ∈ ∆(τ), we want

it to be as small as possible to get tighter regret guarantees. To
that end, define the SSP-diameter [Tarbouriech et al., 2020]
D = maxs∈S minπ∈Πproper T

π(s) and pick τ = D/cmin. The
diameter can be computed efficiently by finding the optimal
policy w.r.t the constant cost function c(s, a) = 1 (see Ap-
pendix B). We refer to this policy as the fast policy πf , and it
holds that D = maxs∈S T

πf

(s).
Indeed qπ

? ∈ ∆(D/cmin) because the total cost of the best
policy in hindsight in K episodes is upper bounded by the
total cost of any other policy, e.g., the fast policy (which is
at most DK), and is lower bounded by the expected time of
π? times the minimal cost, i.e., Jπ

?

k (s0) ≥ cminT
π?

(s0) (see
Appendix D). In Appendix A we also show that this choice
of τ cannot be smaller in general.

In Appendix D we provide the full analysis of the algorithm
yielding the following regret bound in expectation. Moreover,
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we show that all the chosen policies must be proper and there-
fore the goal is reached with probability 1 in all episodes.
Theorem 1. Under Assumption 1, the expected regret of SSP-
O-REPS with known transition function and η = Θ̃( 1√

K
) is

E[RK ] ≤ O
( D

cmin

√
K log

D|S||A|
cmin

)
= Õ

( D

cmin

√
K
)
.

3.2 High Probability Regret Bound
To obtain high probability regret bounds, we must control the
deviation between the learner’s suffered cost and its expected
value. While this is easily achievable in the finite-horizon set-
ting through an application of Azuma inequality, it appears a
major challenge in SSP since there is no finite upper bound
on the learner’s cost. In fact, Appendix A illustrates a simple
example with 0 expected regret, but constant probability to
suffer large regret (linear in K). The idea here is that even
though a policy has small cost in expectation, there might be
a tiny probability that it suffers huge cost (this cannot happen
in finite-horizon since the cost is always bounded by H). Fi-
nally, even an event with tiny probability will happen at least
once if there is a large number of episodes K.

Our strategy to control the deviation between the learner’s
actual suffered cost and its expected value is based on the
observation that this quantity is closely related to the expected
time to reach the goal from any state. This is illustrated by
the following lemma whose proof is based on an adaptation
of Azuma inequality to unbounded martingales (Theorem 11)
which may be of independent interest.
Lemma 1. Assume that in each episode k the learner plays a
strategy σk such that the expected time to reach the goal from
any state is at most τ . Then, with probability at least 1− δ,

K∑
k=1

Ik∑
i=1

ck(ski , a
k
i ) ≤

K∑
k=1

E
[ Ik∑
i=1

ck(ski , a
k
i ) | P, σk, sk1 = s0

]
+O

(
τ

√
K log3 K

δ

)
.

Thus, bounding the regret in high probability boils down to
guaranteeing that Tπk(s) ≤ D/cmin for all s ∈ S and not just
s0. Unfortunately, these constraints admit a non-convex set
of occupancy measures. To bypass this issue we propose the
SSP-O-REPS2 algorithm that operates as follows: start every
episode k by playing the policy πk chosen by SSP-O-REPS
(i.e., Eq. (2)), but once we reach a state swhose expected time
to the goal is too long (i.e., Tπk(s) ≥ D/cmin), switch to the
fast policy πf . We defer to the pseudocode in Appendix E.

Now the conditions of Lemma 1 are clearly met, so it re-
mains to relate the expected cost of our new strategy σk to
this of πk. The key novelty of our mid-episode policy switch
is the timing. The naive approach would be to perform the
switch when the policy takes too long, but then there is no
way to bound the excess cost when compared to that of πk.
Performing the switch only once a “bad” state is reached en-
sures that the expected cost of σk can only be better than πk.
The analysis in Appendix F makes these claims formal and
proves the following high probability regret bound.

Theorem 2. Under Assumption 1, with probability 1− δ, the
regret of SSP-O-REPS2 with known transition function is

RK ≤ O
( D

cmin

√
K log3 KD|S||A|

δcmin

)
= Õ

( D

cmin

√
K
)
.

4 Unknown Transition Function
A standard technique to deal with unknown transition func-
tion in adversarial MDPs is to use optimistic estimates of P .
We follow this approach but, as in the known transitions case,
crucial modifications are necessary to apply optimism and ob-
tain regret guarantees. In this section we describe our SSP-
O-REPS3 algorithm for unknown transitions.

We start by describing the confidence sets and transition
estimates used by the algorithm. SSP-O-REPS3 proceeds in
epochs and updates the confidence set at the beginning of ev-
ery epoch. The first epoch begins at the first time step, and
an epoch ends once an episode ends or the number of visits
to some state-action pair is doubled. Denote by Ne(s, a) the
number of visits to (s, a) up to (and not including) epoch e,
and by Ne(s, a, s′) the number of times this was followed
by a transition to s′. Let Ne

+(s, a) = max{Ne(s, a), 1}
and define the empirical transition function for epoch e by
P̄e(s

′|s, a) = Ne(s, a, s′)/Ne
+(s, a). Finally, define the con-

fidence set for epoch e as the set of all transition functions P ′
such that for every (s, a, s′) ∈ S ×A× (S ∪ {g}),

|P ′(s′ | s, a)− P̄e(s′ | s, a)| ≤ εe(s′ | s, a),

where εe(s′|s, a) = 4
√
P̄e(s′|s, a)Ae(s, a) + 28Ae(s, a) is

the confidence set radius for Ae(s, a) =
log
(
|S||A|Ne

+(s,a)/δ
)

Ne
+(s,a) .

By Bernstein inequality (see, e.g., [Azar et al., 2017]), these
confidence sets containP with probability 1−δ for all epochs.

Next, we extend our OMD implementation to the unknown
transitions case. We follow the elegant approach of [Rosen-
berg and Mansour, 2019a] that use occupancy measures that
are extended to include a transition function as well, that is,

qP,π(s, a, s′) = lim
T→∞

E
[ T∑
t=1

I{st = s, at = a, st+1 = s′}
]
,

where E[·] is shorthand for E[· | P, π, s1 = s0] here. Now
an occupancy measure q corresponds to a transition function-
policy pair with the inverse mapping given by

πq(a | s) =
q(s, a)

q(s)
; P q(s′ | s, a) =

q(s, a, s′)

q(s, a)
,

where q(s, a) =
∑
s′∈S∪{g} q(s, a, s

′) is the expected num-
ber of visits to (s, a) w.r.t P q when playing πq . We extend
the set ∆(τ) (which we cannot compute without knowing
P ), and perform OMD on the set ∆̃e(τ) that changes through
epochs. ∆̃e(τ) is defined as the set of occupancy measures q
whose induced transition function P q is in the confidence set
of epoch e and the expected time of πq (w.r.t P q) from s0 to
the goal is at most τ . This set is again convex with a compact
representation, and it admits the following OMD update step,

qk = qPk,πk = arg min
q∈∆̃e(k)(τ)

η〈q, ck−1〉+ KL(q ‖ qk−1), (6)
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where e(k) denotes the first epoch in episode k. Similarly
to the known transitions case, this update can be performed
efficiently. See Appendix G for details of the implementation.

In contrast to the known transitions case, this version of
OMD cannot even guarantee bounded regret in expectation,
because without knowledge of the transition function there is
no guarantee that the chosen policies are even proper. Note
that in the easier loop-free SSP setting, this OMD version is
enough to guarantee a high probability regret bound even with
unknown transitions. We now describe the mechanisms that
need to be combined with OMD to obtain our regret bound.

Similarly to Section 3.2, we must make sure that the learner
does not take too much time to reach the goal. The problem
now is that we cannot compute its expected time Tπk since P
is unknown. Instead, we use the expected time of πk w.r.t Pk
(denoted by T̃πk

k ) which is an estimate of Tπk , but not neces-
sarily an optimistic one. Once a state s is reached such that
T̃πk

k (s) ≥ D/cmin we want to switch to the fast policy πf
which again cannot be computed without knowing P . This
policy is replaced with its optimistic estimate π̃fe , which we
refer to as the optimistic fast policy. Together with the opti-
mistic fast transition function P̃ fe , this policy minimizes the
expected time to the goal out of all pairs of policies and transi-
tion functions from the confidence set of epoch e. The details
of computing the optimistic fast policy are in Appendix G.

If we were in the known transitions case, this would have
been enough. So it seems that it should also suffice with un-
known transitions, if we recompute the optimistic fast pol-
icy in the end of every epoch similarly to [Rosenberg et al.,
2020]. However, in the adversarial setting this approach fails
for two main reasons. First, we cannot guarantee that T̃πk

k
is a good enough estimate of Tπk in all states. Second, the
learner’s policy is stochastic which means that we cannot
guarantee all actions are being explored enough (as opposed
to [Rosenberg et al., 2020] that only play deterministic poli-
cies since they do not tackle adversarial costs). To overcome
these challenges, we propose to force exploration in the fol-
lowing manner. Define a state to be unknown until every ac-
tion was played at least Φ = αD|S|

c2min
log D|S||A|

δcmin
times in this

state (for some constant α > 0), and known afterwards. When
reaching an unknown state, we play the least played action so
far (forcing exploration), and only then switch to the opti-
mistic fast policy. The idea behind this forced exploration is
inspired by [Rosenberg et al., 2020] that show that once all
states are known, the optimistic fast policy is proper with high
probability.

To summarize, SSP-O-REPS3 operates as follows. We
start each episode k by playing the policy πk computed in
Eq. (6), and maintain confidence sets that are updated at the
beginning of every epoch. When we reach a state s such that
T̃πk

k (s) ≥ D/cmin, we switch to the optimistic fast policy. In
addition, when an unknown state is reached we play the least
played action up to this point and then switch to the optimistic
fast policy. Finally, we also make the switch to the optimistic
fast policy once the number of visits to some state-action pair
is doubled, at which point we also recompute it. We defer to
the full pseudocode in Appendix H and to the full analysis in

Appendix I that yields the following regret bound.
Theorem 3. Under Assumption 1, with probability 1− δ, the
regret of SSP-O-REPS3 with known SSP-diameter D is

RK ≤ Õ
(D|S|
cmin

√
|A|K +

D2|S|2|A|
c2min

)
= Õ

(D|S|
cmin

√
|A|K

)
,

where the last equality holds for K ≥ D2|S|2|A|/c2min.
Our analysis builds on ideas from [Rosenberg et al., 2020]

that analyze optimistic algorithms in SSP with stochastic
costs. However, for the many reasons described in this pa-
per and because our algorithm is not optimistic, many novel
technical adaptions are needed in order to tackle the new chal-
lenges that arise when both the costs are adversarial and the
transition function is unknown. Due to lack of space these
are mostly presented in Appendix I, but here we give a short
overview of the analysis.

Recall that the learner has two objectives in SSP: minimiz-
ing cost and reaching the goal. When transitions were known,
we used Lemma 1 to say that (with high probability) the goal
is reached in every episode, and then we could simply focus
on bounding the regret. With unknown transitions, the argu-
ment for bounding the total time becomes more involved. The
idea is that (with high probability) the number of steps be-
tween policy switches cannot be too long, as a consequence
of our added mechanisms. To that end, we split the time steps
into intervals. The first interval begins at the first time step,
and an interval ends once (1) an episode ends, (2) an epoch
ends, (3) an unknown state is reached, or (4) a policy switch
is made due to reaching a “bad” state. Intuitively, we bound
the length of every interval by Õ(D/cmin) with high probabil-
ity, and then use fact that the number of intervals is bounded
by Õ(K +D|S|2|A|/c2min) to bound the total time. Then, we
show that the regret of the learner can be bounded by the re-
gret of OMD (analyzed in Section 3) plus the square root of
the total variance (times |S|2|A|). Finally, we obtain our re-
gret bound by noticing that the total variance is equal to the
variance in each interval times the number of intervals, and
bounding the variance in an interval by O(D2/c2min) .
Estimating the SSP-diameter. When the transition func-
tion is unknown, we cannot compute the diameter D. How-
ever, a careful look at our algorithms shows that we use it
only twice. First, we pick τ = D/cmin as an upper bound
on the expected time of the best policy in hindsight. For this
purpose it is enough to use Tπ

f

(s0)/cmin, and therefore we
shall dedicate the first L episodes to computing an estimate
D̃(s0) of Tπ

f

(s0) before running SSP-O-REPS3. Second, D
is used to make a switch when a “bad” or unknown state s is
reached, but again it is enough to use Tπ

f

(s) instead. Simi-
larly, we use the first L visits to s to estimate Tπ

f

(s) and then
continue executing the algorithm with D̃(s) instead of D.

To compute D̃(s) we run the algorithm of [Rosenberg et
al., 2020] for regret minimization in SSP with constant cost
of 1 (since it measures time). By their regret bound, we can
set L ≈

√
K and suffer negligible additional regret. This is
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also enough to yield the two properties we need in order to
keep the same regret bound (with high probability): D̃(s) is
an upper bound on Tπ

f

(s) for any s ∈ S, and D̃(s) ≤ O(D)
(i.e., it is not too large). Details and full proofs in Appendix J.

5 Discussion
Lower bound and future work. In this paper we presented
the first algorithms to achieve sub-linear regret in SSP with
adversarially changing costs. Building on some of our ideas,
[Chen et al., 2020] recently proposed sophisticated algo-
rithms with minimax optimal regret of Õ(

√
DT?K) in the

known transitions case, where T? is the expected time of
the best policy in hindsight. Interestingly, their lower bound
reveals a gap from the stochastic setting (and from finite-
horizon adversarial MDPs), showing that the adversarial SSP
model is indeed significantly more challenging than previous
models. Moreover, it shows that our regret bounds are near-
optimal (up to 1/

√
cmin) in the hard case where the expected

time of π? is as large asD/cmin (see example in Appendix A).
There are still many interesting open problems in adversar-

ial SSPs. Achieving minimax optimal regret with unknown
dynamics is an important open problem that can hopefully
be solved using some of the techniques presented here. The
known transitions case is still far from solved as well. The
algorithm of [Chen et al., 2020] requires knowing T? in ad-
vance which is a very restrictive assumption. Estimating T?
on the fly is another important open problem which seems
very challenging due to the adversarially changing costs.

SSP vs finite-horizon. As this paper and the works of [Tar-
bouriech et al., 2020; Rosenberg et al., 2020] attempt to
show, the SSP problem presents very different challenges
than finite-horizon MDPs (or equivalently loop-free SSPs) al-
though they are seemingly similar in structure. These differ-
ences stem from the double objective that the agent has to face
in SSP, i.e., minimizing cost vs reaching the goal, while the
only focus of the finite-horizon model is minimizing cost (the
time of each episode is bounded by H by definition). Apart
from the conceptual difference, this leads to numerous tech-
nical challenges, where the biggest one is unbounded value
functions and episode lengths. Note that almost every on-
line learning problem has some boundness assumptions and
therefore novel technical tools must be used here (or at least
non-trivial adaptations of existing tools, e.g., Theorem 11).

Dealing with adversarial costs in SSP is challenging even
when the transition function is known to the learner. As
described in this paper, using occupancy measures, this be-
comes an online linear optimization problem. However, un-
like the finite-horizon case, in the SSP setting the decision set
(i.e., the set of occupancy measures) does not have a bounded
diameter (in finite-horizon it has diameter H), and this is the
source of the unique challenges. To address these issues, we
proposed to limit the decision set so it has a finite diameter
(but still contains the best occupancy measure in hindsight).
Surprisingly this is not enough to obtain high probability re-
gret bounds (see example in Appendix A), because we cannot
constrain the expected time from all states, and thus we used a
novel notion of switching policy when reaching “bad” states.

When the transitions are unknown, all these challenges be-
come harder because in order to estimate the expected cost of
a policy to reasonable error (even just to determine whether
it is proper), one needs very good estimation of the transition
function. While in the finite-horizon setting OMD is easily
generalized to unknown transitions through optimistic esti-
mates, in adversarial SSP further adaptations are necessary.
Adversarial vs stochastic costs in SSP. In this paper we
studied the effects of adversarially changing costs on the gen-
eral SSP model without any restrictive assumptions, previ-
ously studied only under stochastic costs [Tarbouriech et al.,
2020; Rosenberg et al., 2020]. The recent lower bound [Chen
et al., 2020] shows that adversarial costs in SSP pose signif-
icant new challenges, as opposed to finite-horizon where the
lower bound for adversarial or stochastic costs is the same.

Both [Tarbouriech et al., 2020; Rosenberg et al., 2020] use
optimism w.r.t the costs, which ensures them that the time
is also bounded since they use the positive costs assumption,
i.e., Assumption 1. While cmin appears in their regret bounds,
the latter is able to push it to an additive term (independent of
K) and thus keep a regret of Õ(

√
K) in the general case (after

applying perturbation). Since we are dealing with adversar-
ial costs, we cannot use optimism. Instead we use the OMD
method to handle the adversary, and must make sure that we
do so while reaching the goal with high probability. For this
reason we incorporate explicit constraints on the time, and
these cause us to suffer regret that depends on D/cmin instead
ofD since Tπ

?

is not bounded byD even though Jπ
?

is. This
dependence is unavoidable in the adversarial case, and it also
requires the additional challenge of estimating D, while opti-
mistic estimates are bounded by D (with high probability).

Technically, our analysis follows the framework of [Rosen-
berg et al., 2020] since we need to show the goal is reached
with high probability. Yet, the mechanisms we introduced
are necessary to make this framework useful in the adversar-
ial case, and even then careful analysis is needed. Hopefully,
the framework we introduced here will help obtain minimax
optimal regret with unknown transitions. In this context, two
notable mechanisms are forced exploration and policy switch
in “bad” states. Forced exploration is key to handle large vari-
ance stochastic policies might have in SSP (without adversar-
ial costs deterministic policies suffice). It ensures that we can
determine whether our policies are proper as soon as possible
and finish intervals early. While the motivation for switching
in “bad” states is clear from known transitions, when dynam-
ics are unknown this switch becomes problematic as we can-
not guarantee it actually occurs in “bad” states (our estimate
for the time is not even optimistic). More ideas are required
in order to bound the excess cost that comes from switching
policies in falsely estimated “bad” states (see Appendix I).
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