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Abstract

Sparse rewards are double-edged training signals in
reinforcement learning: easy to design but hard to
optimize. Intrinsic motivation guidances have thus
been developed toward alleviating the resulting ex-
ploration problem. They usually incentivize agents
to look for new states through novelty signals. Yet,
such methods encourage exhaustive exploration of
the state space rather than focusing on the environ-
ment’s salient interaction opportunities. We pro-
pose a new exploration method, called Don’t Do
What Doesn’t Matter (DoWhaM), shifting the em-
phasis from state novelty to state with relevant ac-
tions. While most actions consistently change the
state when used, e.g. moving the agent, some ac-
tions are only effective in specific states, e.g., open-
ing a door, grabbing an object. DoWhaM detects
and rewards actions that seldom affect the environ-
ment. We evaluate DoWhaM on the procedurally-
generated environment MiniGrid, against state-of-
the-art methods. Experiments consistently show
that DoWhaM greatly reduces sample complexity,
installing the new state-of-the-art in MiniGrid.

1 Introduction
We consider the reinforcement learning (RL) problem in
which an agent learns to interact with its environment opti-
mally w.r.t. a cumulative function of reward signals collected
along its trajectories [Sutton and Barto, 2018]. To do so, an
RL agent explores its surrounding, aiming at retrieving the
most prominent course of actions, and updates its behavior
accordingly. When the environment provides abundant re-
wards, the agent may successfully collect enough training sig-
nals by performing random actions. But as soon as the envi-
ronment provides scarce rewards, the agent is reduced to inef-
ficiently waver around without being able to update its policy.
To palliate this lack of training signals, one common method
consists in intrinsically motivating the agent to explore its en-
vironment using a self-rewarding mechanism [Schmidhuber,
1991; Oudeyer et al., 2007].

In the online RL literature, a widespread strategy is to
augment the sparse extrinsic reward from the environment

with a generated dense intrinsic reward that steers explo-
ration [Chentanez et al., 2005]. Hence, the intrinsic reward
should encode a degree of “novelty,” “surprise,” or “curiosity”
which is often encoded as an estimate of the agent’s visita-
tion frequency of state-action pairs. The agent is incentivized
to diversely interact with its environment to collect intrin-
sic rewards, which may ultimately trigger extrinsic rewards.
Nonetheless, establishing intrinsic motivation signals remains
double-edged as it introduces human-priors, may lead to sub-
optimal policies or foster reward hacking behavior.

All in all, different novelty measures have been studied,
where each of them entails different exploration behaviors.
For instance, count-based methods keep counts of previous
observations to bait the agent to explore unseen states [Lopes
et al., 2012; Bellemare et al., 2016; Ecoffet et al., 2019]. Yet,
these approaches implicitly encourage an exhaustive search
of the state space. Differently, curiosity-based methods train
a model that encapsulates the environment dynamics, be-
fore nudging the agent to visit state-transitions with high
prediction errors [Pathak et al., 2017; Burda et al., 2018;
Haber et al., 2018; Houthooft et al., 2016] or large change
in the value of state features [Raileanu and Rocktäschel,
2019]. However, the first category suffers from reward decay
across episodes and poor generalization within procedurally-
generated environments. We here observe that the second
category insufficiently favors exploration towards novel and
useful actions.

In this paper12, we therefore aim to shift the emphasis from
state novelty distributions towards novel action distributions
to develop new intrinsic motivation signals, and consequently,
change the exploration behavior. More precisely, we aim at
encouraging the agent to visit states that allow rare and rele-
vant actions, i.e. actions that can only be performed in rare
occasions. Imagine that an infant discovers that pushing a
button triggers a light; s/he is likely to push everywhere to
switch on new lights. By repeating his/her action, the infant
may eventually uncover new buttons, and start associating the
action push to the relevant state features of buttons. A simi-
lar observation can be made within virtual environments and
embodied agents. We expect the agent to first detect rare ac-
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tions to learn while being nudged towards the states that allow
performing such actions.

In this spirit, we propose a new approach we name Don’t
Do What Doesn’t Matter (DoWhaM). Instead of uniformly
seeking for novel states, DoWhaM encourages exploring
states allowing actions that are rarely useful; those rarely rel-
evant actions are generally hard to retrieve by random ex-
ploration. In other words, the agent is intrinsically rewarded
when successfully performing an action that is usually inef-
fectual. We observe that this simple mechanism induces a
remarkably different exploration behavior differing from the
common state-count and curiosity-based patterns.

Formally, DoWhaM keeps track of two quantities for each
action: the number of times the action has been used and the
number of times the action led to a state change. The re-
sulting intrinsic reward is inversely proportional to the num-
ber of times the action has led to a state change. Noticeably,
DoWhaM primarily keeps count of actions, and can thus be
defined as an action count-based method. Besides, tracking
actions (as opposed to states) naturally scales in RL: in the
discrete case, there is generally less than a few thousand ac-
tions, allowing for an exact count. In the continuous case,
actions may easily be discretized without using complex den-
sity models [Tang and Agrawal, 2020].

This paper first provides an overview of recent exploration
methods before introducing DoWhaM as an action-driven in-
trinsic motivation method. We then study this approach in
the MiniGrid procedurally generated environment [Chevalier-
Boisvert et al., 2018]. Despite their apparent simplicity,
these tasks contain intermediate decisive actions, e.g. picking
keys, which have kept in check advanced exploration methods
[Raileanu and Rocktäschel, 2019; Campero et al., 2020]. We
empirically show that DoWhaM reduces the sample complex-
ity by a factor of 2 to 10 in a diverse set of environments while
resolving the hardest tasks. We then study how DoWhaM
amends the agent’s behavior and compare it to other meth-
ods. Finally, we also analyze whether DoWhaM may lead to
unwanted agent behavior when facing environment with mul-
tiple interactions, which we refer as the BallPit-problem.

2 Related Works
RL algorithms require the agents to acquire knowledge about
their environment to update their policy; exploration has thus
been one of the longest running problems of RL [Sutton and
Barto, 2018]. Exploration methods have quickly been cate-
gorized into two broad categories: directed and undirected
exploration.

On the one hand, undirected exploration does not use any
domain knowledge and ensures exploration by introducing
stochasticity in the agent’s policy. This approach includes
methods such as random walk, ε-greedy, or Boltzmann explo-
ration. Although they enable learning the optimal policy in
the tabular setting, they require a number of steps that grows
exponentially with the state space [Whitehead, 1991]. De-
spite this inherent lack of sample efficiency, they remain valu-
able task-agnostic exploration strategies in large-scale prob-
lems with dense rewards. On the other hand, directed meth-
ods incorporate external priors to orient the exploration strat-

egy through diverse heuristics or measures. Among others,
uncertainty has been used to guide exploration towards ill-
estimated state-action pairs by relying on the Bellman equa-
tion [Geist and Pietquin, 2010; O’Donoghue et al., 2018] or
by bootstrapping multiple Q-functions [Osband et al., 2016].
Despite being theoretically sound, these methods face scal-
ing difficulties. In this paper, we study another directed ex-
ploration approach based on reward bonuses to densify the
reward signal.

In this setting, the environment reward, namely extrinsic
rewards, is augmented with an exploration guidance reward
signal, namely intrinsic rewards [Chentanez et al., 2005].
This intrinsic reward spurs exploration by tipping the agent to
take a specific course of actions. Furthermore, it makes undi-
rected exploration mechanism applicable again by spreading
milestone rewards during training. Inspired by cognitive sci-
ence, this intrinsic reward often encodes a degree of “nov-
elty,” “surprise,” ,“curiosity” [Oudeyer et al., 2007] , “learn-
ing progress” [Lopes et al., 2012] or “boredom” [Schmid-
huber, 1991]. These common intrinsic motivation mech-
anisms are broadly categorized into three families: count-
based, curiosity-based, and goal-based methods.

Count-based exploration aims to catalog visited states (or
action-states pairs) along episodes to detect unseen states, and
drive the agent towards them. It has first been proposed as
an exploration heuristic in the early days of RL.before be-
ing framed as an intrinsic exploration reward mechanisms in
the tabular case [Strehl and Littman, 2008]. Pseudo-counts
were then introduced to approximate the state counts [Lopes
et al., 2012], where pseudo-counts were estimated through
different density models to produce intrinsic rewards. Den-
sity models range from raw image downscaling with or with-
out handcrafted state features [Ecoffet et al., 2019], contex-
tual trees [Bellemare et al., 2016], generative neural mod-
els, e.g. PixelCNN [Ostrovski et al., 2017], or autoencoders
combined with a local hashing function [Tang et al., 2017].
Differently, [Burda et al., 2018] use the prediction error be-
tween a randomly initialized network and a trained network
as a state-count proxy. Yet, count-based methods may explore
the immediate surrounding and heavily depend on the state
representation quality. By shifting the emphasis on counting
action, we thus address these representation constraints and
push for distant interactions.

Curiosity-based exploration aims to encourage the agent
to uncover the environment dynamics rather than cataloging
states. Inspired by cognitive science, such agents learn a
world model predicting the consequences of their actions;
and they take an interest in challenging and refining it [Haber
et al., 2018; Oudeyer et al., 2007]. In RL, this intuition is
transposed by taking the current state and action to predict
the next state representation; the resulting prediction error
is then turned into the intrinsic reward signal. Approaches
mostly differ in learning the state representation: [Burda et
al., 2019] use random projections, [Houthooft et al., 2016]
capture the environment stochasticity by maximizing mutual
information with Bayesian Networks. In parallel, [Pathak et
al., 2017] argue that the state representation should mainly
encode features altered by the agent. They thus introduce
an inverse model that predicts the action given two conse-
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quent states as a training signal. Yet, those intrinsic rewards
based on prediction errors may attract the agent into irrele-
vant yet unpredictable transitions. Another drawback is re-
ward evanescence: the intrinsic reward slowly vanishes as
the model is getting better. [Schmidhuber, 1991] originally
proposed to measure the mean error evolution rather than im-
mediate errors to account for the agent progress. Differently,
[Raileanu and Rocktäschel, 2019] replace the error prediction
by the difference between consecutive representation states,
removing the need to compute a vanishing prediction error.
In this paper, we also compare successive states in a similar
spirit, but we use it to catalog actions and bias state visitation
through a different exploration scheme.

Goal-based methods provide identifiable and intermediate
goals to reward the agent upon completion. Such approaches
perform an explicit curriculum by slowly increasing the ex-
ploration depth through goal difficulties. Goal-based meth-
ods may take several forms ranging from hindsight experi-
ence replay [Andrychowicz et al., 2017], adversarial goal-
generation [Forestier et al., 2017; Campero et al., 2020] to
hand-crafted goals. [Hermann et al., 2017]. Yet, they may
face to unstable training, complex goal definition, or require
fully observable environment [Campero et al., 2020]. Other
forms of intrinsic reward have been explored with empower-
ment [Mohamed and Jimenez Rezende, 2015] or trajectory
diversities [Savinov et al., 2018], but they are facing scal-
ability issues. [Hussenot et al., 2020] also tried to retrieve
intrinsic motivation signals from human trajectories through
inverse reinforcement learning. Finally, intrinsic motiva-
tion have been explored in hierarchical reinforcement learn-
ing [Barto et al., 2004; Kulkarni et al., 2016], but it goes
beyond the scope of this paper.

3 Reinforcement Learning Background
Notation. The environment is modeled as a Markov Deci-
sion Problem (MDP), where the MDP is defined as a tuple
{S,A,P,R, γ}. At each time step t, the agent is in a state
st ∈ S , where it selects an action at ∈ A according to its
policy π : S → A. It then receives a reward rt from the
environment’s reward function r : S × A × S → R and
moves to the next state st+1 with probability p(st+1|st, at)
according to the transition kernel P . Hence, the agent gen-
erates a trajectory τ = [s0, a0, r0, s1, r1, a1, . . . , sT , aT , rT ]
of length T . In practice, the policy is often parameterized
by a weight vector θ ∈ Θ. The goal is then to search for
the optimal policy πθ∗ that maximizes the expected return
J(θ) = Eπθ

[∑
t=0 γ

tr(st, at, st+1)
]

by directly optimizing
the policy parameters θ.

Intrinsic Motivation. In this setting, the reward func-
tion is decomposed into an extrinsic reward returned by
the environment re(st, at) and a new intrinsic reward
ri(st, at, st+1). Therefore, the new reward function is de-
fined as r(st, at, st+1) = re(st, at, st+1) + βri(st, at, st+1)
where β is an hyperparameter to balance the two return sig-
nals. In practice, the extrinsic reward is often a sparse task-
specific signal while the intrinsic reward is usually a dense
training signal that fosters exploration.

Figure 1: Top left to down right : MultiRoom (N7S4, N12S10), Ob-
structedMaze (2Dlh, 2Dlhb) KeyCorridor (S4R3, S5R3), Obstruct-
edMaze (1Q, Full)

4 Don’t Do What Doesn’t Matter
Intuition. While most actions consistently move the agent
to a new state, some actions do not affect specific states, i.e.,
the agent remains in the same state after performing it. We
hence define an effective action if the new state of the envi-
ronment is different from what it would have been if no action
were to be taken. For instance, in tasks involving embodied
interaction, such state-action pairs include moving forward
while facing a wall or grabbing non-existent objects. Al-
though one may update the MDP only to keep effective ac-
tions, such an operation may not always be feasible or desir-
able in practice. It is thus up to the agent to learn the correct
actionable states through exploration. Noticeably, those rare
state-actions are often landmarks in the environment dynam-
ics, e.g., triggering buttons or opening doors. One idea is thus
to bias the agent to visit states that effectively allow rare ac-
tions. DoWhaM encapsulates this exploration pattern by (1)
detecting rare but effective actions, (2) rewarding the agent
when effectively performing these rare actions. In short, rare
and effective actions are the relevant actions that matter.

Method. For every action ai, the agent tracks two quan-
tities. The number U of times an action has been used
during past trajectories, and the number E of times the ac-
tion was effective, i.e. change the state st 6= st+1

3. For-
mally, given the whole history of transitions across episodes
H = (sh, ah, sh+1)Hh=0:

UH(a) =
H∑
h=0

1{ah=a}, (1)

EH(a) =
H∑
h=0

(1{ah=a} × 1{sh 6=sh+1}), (2)

where 1 is the indicator function and × the product operator.
Intuitively, the ratio EH(a)/UH(a) indicates how often

the action a has been effective along the history H. For in-
stance, actions that move an agent would update the state
most of the time, therefore U(ai) ≈ E(ai). On the other

3In noisy or dynamic environment, it is possible to relax or learn
this as mentioned in subsection 6.3
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hand, grabbing objects only changes the state in rare occur-
rences, and U(ai) ≥ E(ai). We then define the bonus as:

B(at) =
η
1−E

H(at)

UH(at) − 1

η − 1
, (3)

where η is a hyperparameter. This function is a continuous
approximation of an exponential decay exp−ηE

H(at)/U
H(at).

It ranges from 1 when EH = 0 and goes to 0 when EH =
UH. Small η leads to a uniform bonus on all actions whereas,
large values favor rare and efficient actions.

An intrinsic reward mechanism often requires to discount
the intrinsic bonus within an episode. Hence, it prevents the
agent from overexploiting, and being stuck in local explo-
ration minima. Inspired by theoretically sound count-based
methods [Strehl and Littman, 2008], we thus divide the pre-
vious ratio by an episodic state-count.

Finally, we want to reward action only in context where
they are effective, thus the agent is rewarded only when st 6=
st+1, defining the final DoWhaM intrinsic reward:

riDoWhaM (st, at, st+1) =

{
B(at)√
Nτ (st+1)

if st 6= st+1

0 otherwise
(4)

where Nτ (s) =
∑t
h=0 1{s=sh} is an episodic state count

which is reset at the beginning of each episode. In high-
dimensional state space, the episodic state count can be re-
placed by a pseudo-count [Bellemare et al., 2016] or an
episodic novelty mechanism [Badia et al., 2020].
Action-based Counter. As counting methods may sound
anachronistic, we emphasize again that actions are ascertain-
able in RL, i.e. they can be easily enumerated. As opposed to
state-counting which requires complex density models [Os-
trovski et al., 2017], discrete action suffers less from the curse
of dimensionality, and can easily be binned together in the
case of a large action set.Besides, although DoWhaM relies
on an episodic state count, a raw approximation is sufficient
as it encodes a reward decay.

5 Experimental Settings
We evaluate DoWhaM in the procedurally-generated envi-
ronments MiniGrid [Chevalier-Boisvert et al., 2018]. Min-
iGrid is a partially observable 2D gridworld with a diverse
set of tasks. The RL agent needs to collect items and open
locked doors before reaching a final destination. Despite its
apparent simplicity, several MiniGrid environments require
the agent to perform exploration with few specific interac-
tions, and have kept in check state-of-the-art exploration pro-
cedures [Raileanu and Rocktäschel, 2019]. For each exper-
iment, we report the rolling mean (over 40k timesteps) and
standard deviation over 5 seeds.

5.1 MiniGrid Environment
Each new MiniGrid world contains a combination of rooms
that are populated with objects (balls, boxes or keys), and
are linked together through (locked/unlocked) doors. Balls
and keys can be picked up or dropped and the agent may
only carry one of them at a time. Boxes can be opened

to discover a hidden colored key. Doors can be unlocked
with keys matching their color. The agent is rewarded af-
ter reaching the goal tile. At each step, the agent observes
a 7x7 representation of its field of view and the item it
carries if any. The agent may perform one out of seven
actions: move forward, turn right, turn left, pick-up ob-
ject, drop object, toggle. Noticeably, some actions are in-
effective in specific states, e.g. moving forward in front
of a wall, picking-up/dropping/toggling objects when none
is available. Following [Raileanu and Rocktäschel, 2019;
Campero et al., 2020], we focus on three hard exploration
tasks, which are illustrated in Figure 2.
MultiRoom(N -S). The agent must navigate through a se-
quence of empty rooms connected by doors of different col-
ors. A map containsN rooms, whose indoor width and height
are sampled within 2 and S − 2 tiles. MultiRoom maps en-
tail limited interaction as the agent only has to toggle doors
and no object manipulation is required. Yet, this bare-bone
environment constitutes a good preliminary trial.
KeyCorridor(S-R). The agent must explore multiple adja-
cent unlocked rooms to retrieve a key, open the remaining
locked room, and collect the green ball. A map contains
a large main corridor connected to 2 × R square rooms of
fixed indoor dimension S − 2. Solving a KeyCorridor map
requires the agent to perform a specific sequence of interac-
tions, which makes the task more difficult than MultiRoom.
ObstructedMaze. The agent must explore a grid of rooms
that are randomly connected to each others in order to collect
a blue ball. Some of the doors are locked and the agent has
to either directly collect the keys or toggle boxes to reveal
them. Besides, distractor balls are added to block door access.
ObstructedMaze can quickly become a hard maze with false
leads and complex interactions.

5.2 Experimental Setting
Training. We follow the training protocol defined in
[Raileanu and Rocktäschel, 2019; Campero et al., 2020]. We
use 3 convolution layers with a kernel size of 3, followed by
2 fully-connected layers of size 1024, and an LSTM of hid-
den size 1024. Finally, we use two separate fully-connected
layers of size 1024 for the actor’s and critic’s head. We
train our model with the distributed actor-critic algorithm
IMPALA [Espeholt et al., 2018] TorchBeast implementa-
tion [Raileanu and Rocktäschel, 2019].
Baselines. We here cover the three common families of in-
trinsically motivated reward mechanisms. COUNT [Strehl
and Littman, 2008] is a counting method that baits the agent
to explore less visited states. In this setting, we use a
tabular-count to catalog the state-action pairs. RND [Burda
et al., 2018] acts as a states’ pseudo-count method. A net-
work is trained to predict randomly projected states and
the normalized predicton error is used as intrinsic reward.
RIDE [Raileanu and Rocktäschel, 2019] is a curiosity-based
model that builds upon [Pathak et al., 2017]. It computes the
difference between two consecutive states, encouraging the
agent to perform actions that lead it to a maximally different
states. AMIGO [Campero et al., 2020] is a hierarchical goal-
based method, splitting the agent into two components: an
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Figure 2: Comparison between intrinsically motivated methods on multiple MiniGrid tasks.

adversarial goal-setter and a goal-condition learner that ad-
versarially creates goals.

6 Experimental Results
6.1 Base Environment
Figure 2 displays the results on 8 MiniGrid tasks. Notice-
ably, DoWhaM outperforms all the baselines in sample com-
plexity, and even solves among the most complex worlds. In
MultiRoom, we observe that DoWhaM outperforms RIDE,
RND, and COUNT in the simple setup (N7S4), and matches
RIDE’s sample complexity performance on the challenging
setup (N12S10). Note DoWhaM does not seem to be penal-
ized by the small amount of possible interactions. In KeyCor-
ridor and ObstructedMaze, RIDE, RND, and AMIGO learn
in the easiest instances but they struggle as the difficulty, i.e.
exploration depth, increases as first observed in [Campero et
al., 2020]. On the other hand, DoWhaM consistently solves
all the environments, even the challenging ObstructedMaze-
Full.

We derive two hypotheses from those results: (1) State-
count rewards exhaustively explore the state space, reduc-
ing the overall exploration coverage (2) Curiosity-based re-
wards do not emphasize enough salient interactions and then
explore new but irrelevant state-action pairs. Although such
approaches were successful in many environments, those ex-
ploration behaviors may fail as soon as specific interactions
must be regularly performed in the exploration process. In
the following, we thus try to assess those hypotheses.

6.2 Intrinsic Exploration Behavior
We first conduct a series of experiments without external re-
ward to study what type of exploration each bonus creates. In
other words, what are the inductive exploration biases that
arise from the different intrinsic reward mechanisms. To
do so, we rely on two metrics: the state visit (plotted as
heatmaps) and the action distribution (plotted as bar plots).

Playground RND RIDE COUNT DoWhaM

Figure 3: States visitation in Playground environment. Bright or-
ange means more visits , darker and blue means less visits

Rewardless Playground. In this spirit, we design a sand-
box environment without any specific goal to observe the
agent behavior visually, akin to a kindergarten. This envi-
ronment contains multiple keys, balls, and boxes located in
the corners and spawns the agent facing a random direction.
Figure 3 shows the agent state visits for during 106 training
timesteps when only using the intrinsic reward signal.

We observe that RND and DoWhaM are both attracted by
the objects and explore the space thoroughly, whereas RIDE
and COUNT remain close to the center and seldomly reach
the objects. This observation backs our results in Obstruct-
edMaze2Dlh, where RND and DoWhaM are the only meth-
ods exploring thoughtfully the environment. It also confirms
our hypothesis that standard state-based approaches, e.g.,
COUNT, may not be pushed enough to perform in-depth ex-
ploration. Surprisingly, the curiosity-based method RIDE has
not been strongly incentivized to interact with remote objects,
suggesting that it may suffer from its dependency on the state
representation. However, these experiments do not explain
the performance difference between RND and DoWhaM on
the most challenging setups. Thus, looking at the action dis-
tribution is necessary.

Rewardless KeyCorridorS4R3. We then study the behav-
ior that is solely intrinsically motivated in the KeyCorridor
environment to better grasp the DoWhaM performance in this
setting. Similarly, we trained the agents on KeyCorridorS4R3
for 107 timesteps with only the intrinsic reward signal, and
results are displayed in Figure 4.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2954



RND RIDE COUNT DoWhaM
lef
t

rig
ht

for
wa
rd

pic
ku
p

dro
p

tog
gle

0.0

0.1

0.2

0.3 usage
effective

lef
t

rig
ht

for
wa
rd

pic
ku
p

dro
p

tog
gle lef
t

rig
ht

for
wa
rd

pic
ku
p

dro
p

tog
gle lef
t

rig
ht

for
wa
rd

pic
ku
p

dro
p

tog
gle

Figure 4: State and action distributions in rewardless KeyCorridor
(S4R3). UH(a) and EH(a) action-count are in blue and green.
Only DoWhaM correctly uses pickup/drop/toggle during explo-
ration.

All the baselines – RIDE, RND, and COUNT – remain
mostly stuck in the central corridor, where DoWhaM explores
rooms more uniformly. More impressively, the DoWhaM
agent naturally picks the key, enters the locked room, and
grabs the ball 7% of the times without any extrinsic reward.
COUNT, RIDE, and RND all have a success ratio below
0.6%, which may explain why DoWhaM manages to solve
this task.

We also observe a large discrepancy in the action dis-
tribution between the different methods. First, we observe
that RND and DoWhaM action distributions remain approx-
imately uniform while RIDE and COUNT favor moving ac-
tions, reducing the opportunity for interactions. Second, and
crucially, the impact distributions EH(a) differs drastically
between DoWhaM and other methods. All agents are try-
ing actions such as pick, toggle or drop, but those actions are
rarely changing the agent’s state. These actions are not used
in the appropriate context, i.e., in front of an object. It means
that rewarding state novelty might not be enough to discover
effective actions, thus wasting samples. Although DoWhaM
and RND had similar state-visitation and action distribution
patterns, only DoWhaM correctly apprehend rarely effective
actions, and correctly use them to explore its environment.

6.3 Intrinsic Motivation Pitfalls
The Ball Pit Problem. As DoWhaM biases the state visit
distribution towards performing rare actions, it may intro-
duce a poor exploration pattern when facing too many of such
states. We refer to this potential issue as the Ballpit problem:
the agent remains in rooms with plenty of balls to interact
with. We created four Multiroom (normal, small, more, max),
and randomly spawned objects to assess the agent behavior.
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Figure 5: As distractors are added (from left to right), we observe a
drop in performance for all methods.

ColorMaze RND RIDE COUNT DoWhaM

Figure 6: RND, RIDE and COUNT remain within the colored region
whereas DoWhaM learns to go straight to the boxes and keys.

As the number of objects grows, the performance of all
algorithms deteriorates. RND, COUNT are mostly affected
by this problem, as the number of states is growing exponen-
tially; thus, counting state occurrence is challenging. RIDE
is less affected by the BallPit problem, but most surprisingly,
DoWhaM is the only one to reach the exit consistently in the
most challenging setup. The EH(a)/UH(a) ratio correctly
balances the exploration bonus, and does not take over the
final extrinsic reward.
The Noisy-TV Problem. State-count based agent are at-
tracted to state-action pairs with random noise. In its cur-
rent definition, DoWhaM is also affected while computing
EH. Similar to [Burda et al., 2018], this effect can be cir-
cumvented by using an inverse model, and we leave it for
future work.
ColorMaze. In Figure 6, we design a map with a sequence
of open rooms, colored floor changing every episode, two
boxes with one hidden key, and a locked door leading to the
reward. All baselines remain in the first part of the maze
while DoWhaM quickly reaches the objects and solves the
task. This experiment highlights again how shifting the em-
phasis from exhaustive state-visit to relevant state-visit can be
beneficial, and change the exploration pattern.

7 Conclusion
We introduce Don’t Do What Doesn’t Matter (DoWhaM), a
new action-based intrinsic exploration algorithm. As opposed
to count-based and curiosity-driven methods, DoWhaM shifts
the emphasis from novel state to state with relevant actions,
rewarding actions that are rarely effective in the environment.
Combined with a simple episodic count, DoWhaM outper-
forms recent exploration methods on a variety of hard ex-
ploratory tasks in a Minigrid environment. This proof of con-
cept illustrates that action-based exploration is a promising
approach as it induces surprisingly different exploration pat-
terns. We also pointed out a new category of problems called
BallPit, which deteriorate performance of many intrinsically
motivated reward approaches.
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