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Abstract
Model reuse tries to adapt well pre-trained models
to a new target task, without access of raw data. It
attracts much attention since it reduces the learn-
ing resources. Previous model reuse studies typi-
cally operate in a single-domain scenario, i.e., the
target samples arise from one single domain. How-
ever, in practice the target samples often arise from
multiple latent or unknown domains, e.g., the im-
ages for cars may arise from latent domains such
as photo, line drawing, cartoon, etc. The meth-
ods based on single-domain may no longer be fea-
sible for multiple latent domains and may some-
times even lead to performance degeneration. To
address the above issue, in this paper we propose
the MRL (Model Reuse for multiple Latent do-
mains) method. Both domain characteristics and
pre-trained models are considered for the explo-
ration of instances in the target task. Theoretically,
the overall considerations are packed in a bi-level
optimization framework with a reliable generaliza-
tion. Moreover, through an ensemble of multiple
models, the model robustness is improved with a
theoretical guarantee. Empirical results on diverse
real-world data sets clearly validate the effective-
ness of proposed algorithms.

1 Introduction
In traditional machine learning, great efforts have been de-
voted to collect massive labeled data [LeCun et al., 2015], ex-
plore smart optimization techniques [Kingma and Ba, 2015]
and large-scale computation power [Dean et al., 2012] to
train accurate models. Nowadays, a great deal of well-trained
machine learning models have been readily available to use.
However, once given a new data set, the user still has to re-
train a model, which obviously causes huge waste of pub-
lic model resources. Meanwhile, due to privacy and secu-
rity concerns, a large number of open source models usually
do not allow to access raw data. Therefore, it is highly de-
sirable to study model reuse [Zhou, 2016] which is able to
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Previous target task in model reuse studies
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Figure 1: Comparison to previous model reuse studies. They assume
the data in the target task belong to a single domain. In practice, the
target task may contain several latent domains, such as the photos,
line drawings, and cartoons returned by web image search for ‘car’
and ‘cat’. What is more difficult is one usually only gets the category
label (car or cat), rather than the domain labels (photo or cartoon).

reduce the learning resources for a new target task using pre-
trained models without the access of raw data. Model reuse
has attracted much attention and many algorithms have been
developed recently, e.g., [Yang et al., 2007; Ye et al., 2018;
Shi and Li, 2019; Li et al., 2021].

Previous model reuse studies typically assume that the in-
stances in the target task are from one single domain [Yang et
al., 2007; Ye et al., 2018; Shi and Li, 2019; Li et al., 2021].
In many real situations, however, such an assumption is hard
to hold since the target task often consists of multiple latent
(unknown) domains [Mancini et al., 2019]. For example, im-
ages found on the web are often a collection of many hidden
domains. As shown in Figure 1, images searched from web
for ‘car’ or ‘cat’ consist of multiple latent domains, such as
photos, group shots, line drawings, cartoons, etc, where the
domain labels are unknown beforehand. Similar situations
also arise in speech recognition where the samples of the tar-
get application are often from a mixture of multiple groups
of speakers (domains) [Liao, 2013]. In face recognition, the
target application needs to tackle samples from multiple la-
tent domains such as front, left and right pose [Sim et al.,
2002]. In addition, it is often available to have the category
label (such as ‘car’), while difficult to collect the domain la-
bels (such as ‘photo’, ‘cartoon’) [Mancini et al., 2019].
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It is obvious that such setting is different to the single-
domain scenario in previous model reuse studies. The model
reuse methods based on single-domain scenario may no
longer be feasible for multiple latent domains and may some-
times even lead to performance degeneration.

To address the above issue, in this paper, a novel method
MRL (Model Reuse for Latent domains) is proposed. Our
basic assumption is that the instance diversity caused by do-
main characteristics is helpful for the exploitation of pre-
trained models. Moreover, a flexible ensemble usually per-
forms more robust than a single model. Specifically, we
first construct attention transfer based on smoothness assump-
tion [Zhou and Belkin, 2014], i.e., similar instances should
have similar concept compositions within their latent do-
mains, which motivates a similar exploitation of pre-trained
models. We put it in a knowledge distillation manner and
then implement knowledge transfer via a black-box predic-
tion from pre-trained models. To achieve a reliable general-
ization, motivated by safe weakly supervised learning [Guo
et al., 2020], we enforce the learned model to be also well-
performed on the given labeled examples in the target task,
which is cast as a bi-level optimization framework with effec-
tive solutions. Empirical studies on a number of real-world
data sets show that MRL achieves a clear performance gain
over multiple algorithms.

2 Related Work
Model reuse is different to Federated Learning [Yang et al.,
2019], a recently emerging area, which also provides data pri-
vacy protection. Federated learning trains a joint machine
learning model on decentralized clients via iterative model
aggregation between clients and control severs. Unlike feder-
ated learning, the goal of model reuse is not to build a joint
model from multiple separated data sources, but to help new
task with the use of pre-trained models.

Model reuse is also different to various multi-task learning
studies [Pentina and Lampert, 2017], where multi-task learn-
ing aims to facilitate all the tasks via joint learning multiple
tasks, and model reuse aims to facilitate the target task only
via the use of pre-trained models.

Our work is related to various ensemble-based weakly
supervised frameworks such as semi-supervised multi-task
learning [Pentina and Lampert, 2017], semi-supervised en-
semble learning [Bennett et al., 2002], and multi-source do-
main adaptation [Hoffman et al., 2018]. It is worth noting
that these frameworks assume that target data are collected
form a single domain or extract data from related tasks in a
white-box way, which is not the case in our study.

There are a couple of studies proposed on mining from la-
tent domains. Hoffman et al. [2012] proposed a constrained
clustering method to discover latent domains from labeled
data and build a mixture transform to implement domain
adaptation. Xiong et al. [2014] proposed a squared-loss mu-
tual information clustering model based on domain-specific
local subspace estimation. Mancini et al. [2019] presented a
novel deep architecture to assign a data sample to a latent
domain through a side branch. There are also some stud-
ies [Mansour et al., 2008; Hoffman et al., 2018] proposing

the distribution-weighted ensemble for target task composed
with latent domains. However, they all learn in a scratch man-
ner, without the exploration of pre-trained models.

There are some efforts on transferring a single pre-trained
network to a new target task [Romero et al., 2015; Jang et al.,
2019]. In their studies, the target samples still raise from one
single domain and the pre-trained models are required to be
deep models, which is clearly different to our work.

3 Proposed MRL Method
3.1 Notation and Problem Formulation
Let (x, y) ∈ X × Y be the feature-label space where x ∈ Rd
is the d-dimensional feature space and Y is the label space.
Formally, training data set from the task consists of n labeled
instances Dl = {(x1, y1), · · · , (xn, yn)} and m unlabeled
instances Du = {xn+1, · · · ,xn+m}. Usually, n is too few to
derive a competitive model from scratch. m is relatively large
because unlabeled data is much cheaper to obtain. Note that
the target samples does not have any domain label.

Suppose there are K pre-trained models {h1, · · · , hK}
each corresponds to a latent domain, built on the same
feature-label space X × Y with different sources. For-
mally, there is a small constant error rate ε > 0 with a
certain loss function L on their task distribution Di: ∀i ∈
[K],E(x,y)∈Di [L(hi(x), y)] ≤ ε. The goal of model reuse
is to learn a model h(x; θ) : {X ; Θ} → Y parameterized
by θ ∈ Θ from training data to minimize the generaliza-
tion risk RT (h) = E(x,y)∈DT [L(h(x; θ), y)] where DT de-
notes the distribution of the target task. Generally, L is con-
vex and bounded by a certain constant M . Without loss of
generality, we assume DT =

∑K
k=1 λkDk with unknown

λ = [λ1, . . . , λK ] [Mansour et al., 2008]According to struc-
tural risk minimization, it is formalized as following:

min
θ∈Θ

∑n
i=1 L (h(xi; θ), yi) +

∑
x Ω

(
x; θ, {hk}Kk=1

)
(1)

where x ∈ {xi}n+m
i=1 and Ω(x; θ, {hk}Kk=1) refers to the reg-

ularization term with the help of pre-trained models, which
is the key to model reuse. Ω could be realized in different
ways, like output consistency [Hinton et al., 2015], represen-
tation consistency [Romero et al., 2015], etc. In this paper,
we choose output consistency to instantiate Ω, as it is good at
coping with the probability output on label space, no matter
for neural networks or trees. Specifically, Ω(x; θ, {hk}Kk=1)
could be rewritten as D[h(x; θ),R(x)], where R represents
a specific reuse strategy and D represents distance measure,
like KL-Divergence, L2 distance, etc.

3.2 Consistent Reuse and Its Deficiencies
A straightforward and effective method to utilize pre-trained
models is to consider a linear ensemble of existing models
with weights w for the target task, i.e.,

Rw({hk}Kk=1, DT ) =
K∑
i=1

wihi(x)

s.t. w∗ = arg min
w∈W

E(x,y)∼DTL

(
K∑
i=1

wihi(x), y

)
.

(2)
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Figure 2: Consistent reuse cases on two-moon data and diamond
data. Each individual model from multiple sources has achieved an
accurate performance on its raw task as illustrated in (a) and (c),
while the joint model performs poorly on the mixed distribution.

whereW is typically a convex set as {w | wi ≥ 0,
∑
i wi =

1}. The weights could be solved in various ways, such as
performance error [Murugesan et al., 2016; Shi and Li, 2019;
Zhao et al., 2020] , min-max game [Li et al., 2021], empir-
ical discrepancy [Pentina and Lampert, 2017] and maximum
mean discrepancy [Duan et al., 2012], etc. These methods
rely on a consistent scheme that utilizes the target data in a
same manner. We call them consistent reuse in this paper.
Now, we present the robustness analysis of consistent reuse
on DT .

Theorem 1. Note that DT =
∑K
i=1 λiDi, the upper bound

of consistent reuseRw satisfies, for α > 1,

min
w

E(x,y)∼DTL(Rw(x), y) ≤
K∑
i=1

wi[dα(DT || Di)ε]
α−1
α M

1
α

where dα(D‖D′) = eDα(D‖D′) denotes the exponential of the
Rényi Divergence of two distributions D and D′. In the worst
case ∀i ∈ [K], dα(Di || DT )→∞, α→ 1, the upper bound
could be tailored as:

min
w

max
DT

E(x,y)∼DTL(Rw(x), y) ≤M. (3)

Theorem 1 indicates that consistent reuse is not effective
to distribution DT , particularly there is no guarantee for con-
sistent reuse in the worst case. Figure 2 illustrates our ob-
servation on synthetic data. When we adapt previous accu-
rate models from multiple sources to the target distribution
DT = 1

K

∑K
k=1Dk, consistent reuse 1

K

∑K
k=1 hk is poor be-

cause of the large divergence between any individual source
distribution Di and the target distribution DT . As a result,
each individual hk performs well on one part of data distribu-
tion while performs poorly on the whole distribution.

To address such critical limitation, we propose an approach
to explore the instance diversity in the target distribution asso-
ciated with latent domains. In the following subsections, at-
tention reuse, which is designed to explore instance diversity
and exploit pre-trained models, is first introduced and then
the optimization scheme.

3.3 Attention Reuse
As human being, one often asks different questions to differ-
ent teachers/experts, e.g., ask the maths teacher for theoretical
questions and the engineering teacher for practical questions.
Although one single teacher may not be able to handle all the

K Models

Prototype 1 Prototype 2 Prototype 3

K Prototypes

×SoftMax Normalization

Similarity Function

[ℎi 𝒙 ]𝑖=1
𝐾

Feature 
Extractor

Attention Reuse 
ℛ𝜙(𝒙)

Input

Figure 3: Attention Reuse. Through attention mechanism, we feed
various instances (queries) to corresponding models (experts).

questions, one can ask the corresponding teacher for diverse
queries. In this section, we simulate such a human pattern to
build an attention mechanism to implement a flexible knowl-
edge transfer.

To achieve it, one first needs to properly specify how at-
tention is defined w.r.t. given pre-trained models {hk}Kk=1.
To that end, here we consider attention as the model-wise
confidence w for vary queries. Based on smoothness as-
sumption [Zhou and Belkin, 2014], that is, similar instances
should have similar concept compositions within their latent
domains, we further argue if model hk could correctly pre-
dict x, it is likely to correctly predict instances similar to
x. Thus, we construct an attention reuse Rφ based on an
instance-aware function g : X → W parameterized by φ.

Rφ({hk}Kk=1,DT ) =
K∑
i=1

g(x;φ∗)ihi(x) (4)

s.t. φ∗ = arg min
φ

E(x,y)∼DTL

(
K∑
i=1

g(x;φ)ihi(x), y

)
.

We construct a description of the marginal distribution for
each model, which is named as Prototype. The final predic-
tion is then computed as a weighted sum of the predictions
{hk(x)}Kk=1, where the weight assigned to each prediction
hk(x) is computed by a compatibility function of the query
with its corresponding Prototype, as illustrated in Figure 3. In
practice, we use a feature extractor ψ : X → Rp to obtain a
low-dimensional embedding of input, and build a dot-product
attention [Vaswani et al., 2017] on ψ(x). The K prototypes
[Pk]Kk=1 ∈ Rp×k and predictions [hk(xi)]

K
k=1 are packed to-

gether into matrices P and H . We compute the attention out-
put for query x as:

Rφ(x) = Attention(x, P,H) = SoftMax(ψ(x)
T
P )H

where ψ could be instantiated as convolution networks, like
a resnet-backbone pre-trained on Imagenet. Notice that the
attention mechanism could be optimized via Eq. 4 when we
only have category labels.

Compared to consistent reuse, attention reuse favors a bet-
ter exploration of the target data with latent domains through
feeding various instances to corresponding models. It owns
better robustness guarantees based on [Mansour et al., 2008].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2959



Algorithm 1 The proposed MRL method

Input: Training data {(xi, yi)}ni=1 and {xi}n+m
i=n+1, predic-

tions H , learning rate ηθ and ηφ, maximal iteration T .
Output: Target model h(θT )

1: Initialize θ0 through supervised learning.
2: Initialize φ0 on labeled data via Eq. 4.
3: for t = 0 to T − 1 do
4: Sample data from {(xi, yi)}ni=1 and {xi}n+m

i=n+1

5: Compute inner loss Linner(θt, φt)
6: Update θt+1 = θt − ηθ∇θLinner(θt, φt)
7: Update φt+1 = φt − ηφ∇φLouter(θt+1)
8: end for
9: return h(θT )

Theorem 2 (Robustness). Note that DT =
∑K
i=1 λiDi, the

upper bound of attention reuse in the worst case satisfies:

min
φ

max
DT

E(x,y)∼DTL (Rφ(x), y) ≤ ε.

Compared to Theorem 1, Theorem 2 indicates that the pro-
posed attention reuse is provably more robust than previous
consistent reuse. The experimental results also confirmed our
theoretical findings.

3.4 Optimization and Analysis
We denote the target model derived under Eq. 1 and φ as θ̂(φ).
Remind that the goal of model reuse is to maximize the gen-
eralization E(x,y)∈DT [L(h(x; θ̂(φ)), y)] of the target model
θ̂(φ). In practice, we derive φ through the empirical risk on
labeled data as

∑n
i=1 L(h(xi; θ̂(φ)), yi). To simplify the no-

tation, we denote θ̂(φ) as θ̂. The overall consideration is cast
under a bi-level optimization scheme [Colson et al., 2007].

min
φ

n∑
i=1

L(h(xi; θ̂), yi) (5)

s.t. θ̂ = arg min
θ∈Θ

n∑
i=1

L (h(xi; θ), yi) +

n+m∑
i=n+1

Ωφ (xi; θ,H)

where Ωφ (xi; θ,H) = D[h(x; θ),Rφ(x)].
There are various algorithms solving the bi-level optimiza-

tion in Eq. (5), such as single-level reduction, gradient de-
scent and evolutionary algorithms [Sinha et al., 2018]. We
choose an efficient alternating optimization method [Jang et
al., 2019] to solve it. The overall optimization procedure is
summarized in Algorithm 1. We first optimize h(θ) and φ
on labeled data and employ them as the initialization, for bi-
level optimization. In inner optimization, we update θ with
reuse strategy Rφ and predictions H from previous models.
In outer optimization, we can obtain the outer objective, and
update φ through bi-level gradient ∇φLouter(θt+1), which
can be calculated by implicit function theorem and chain
rule [Shu et al., 2019].

Convergence
The convergence analysis of bi-level optimization have been
well-studied in previous studies [Ren et al., 2018; Shu et al.,

2019]. Suppose the loss function is ζ-Lipschitz smooth and
the gradient in inner/outer optimization is bounded by δ. Our
method could achieve E[||∇Louter(θt)||2] ≤ εT in O(1/ε2T ).

Generalization
We further analyze the generalization risk of MRL based
on [Zhao et al., 2019; Guo et al., 2020] to better understand
the comparison w.r.t. learning from scratch.
Theorem 3 (Generalization). Assume L is ζ-Lipschitz con-
tinuous w.r.t. φ. Let φ ∈ Rd′(d′ = K ∗ p) be the pa-
rameters in a unit ball, and n be the labeled data size. Let
φ∗ = arg maxφ∈Rd′ RT (θ̂(φ)) be the optimal parameter in
the unit ball, and φ̂ be the empirical optima among a candi-
date set A. With probability at least 1− δ we have,

RT (θ̂(φ∗)) ≤ RT (θ̂(φ̂)) +
3ζ +

√
4d′ ln(n) + 8 ln(2/δ)√

n
.

It is noteworthy that supervised learning which opti-
mizes high-dimensional (d) parameters θ, achieves the op-
timal weight in the order O(

√
d ln(d) ln(n)/n) [Shalev-

Shwartz and Ben-David, 2014]. By contrast, we learn a low-
dimensional (d′ � d) attention module φ via bi-level opti-
mization, sharing a order O(

√
d′ ln(n)/n), as established in

Theorem 3, favors a better order than learning from scratch.
In this work, we forge a connection between knowledge

distillation and teacher-student semi-supervised learning [Qi
and Luo, 2019] to build a target model, decoupled with pre-
trained models, i.e., does not need to recall pre-trained mod-
els for new queries.

4 Empirical Study
4.1 Experimental Setup
To validate our method, we perform experiments on diverse
tasks, including Digital Recognition, Attribute Classification
and Face Recognition. All competing methods are imple-
mented on PyTorch1. The output consistency D is instanti-
ated with L2 distance. The hyper-parameters are adjusted by
the validation set for all methods.
Learn from Scratch Besides supervised learning, we have
compared three popular teacher-student SSL methods in deep
learning community, i.e., Pseudo Label (PL) [Lee, 2013],
Temporal Ensembling (TE) [Laine and Aila, 2017] and Vir-
tual Adversarial Training (VAT) [Miyato et al., 2018]. PL
teaches unlabeled data via entropy regularization, TE tracks a
model ensemble over time to have a better teacher model, and
VAT generates adversarial noise on input to construct a robust
teacher. They utilize the consistency of unlabeled data with-
out much prior knowledge, showing promising performance.
Learn with Reuse We have also compared the effect of
model reuse with the best single teacher selected from labeled
data, as well as the consistent reuse. Without loss of gener-
ality, we implement black-box knowledge transfer based on
distillation [Hinton et al., 2015]. We denote them as MR-BS
(Model Reuse with Best Single source) and MR-CR (Model
Reuse with Consistent Reuse), respectively.

1https://pytorch.org/
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Digital Recognition
MNIST SVHN USPS MS MU SU MSU Ave. Gain

Supervised .837 ± .018 .660 ± .013 .794 ± .023 .726 ± .021 .857 ± .014 .691 ± .009 .745 ± .006 -
PL .870 ± .018 .706 ± .018 .818 ± .024 .762 ± .010 .890 ± .008 .728 ± .014 .774 ± .011 .034
TE .853 ± .017 .710 ± .017 .822 ± .032 .774 ± .006 .879 ± .015 .736 ± .010 .752 ± .011 .031

VAT .834 ± .020 .668 ± .023 .827 ± .024 .716 ± .024 .871 ± .026 .706 ± .015 .760 ± .018 .010
MR-BS .899 ± .008 .664± .017 .851 ± .017 .786 ± .003 .936 ± .001 .820 ± .003 .756± .007 .057
MR-CR .877 ± .006 .681± .013 .865 ± .008 .746± .010 .877± .014 .719± .012 .758± .011 .030

MRL .971 ± .002 .764 ± .010 .898 ± .005 .867 ± .007 .956 ± .006 .837 ± .003 .867 ± .004 .131

Attribute Classification
Smart Slow Bulbous Solitary Nestspot Lean Spots Ave. Gain

Supervised .820 ± .010 .853 ± .021 .846 ± .011 .812 ± .012 .862 ± .009 .853 ± .009 .820 ± .021 -
PL .855 ± .008 .886 ± .012 .865 ± .008 .858 ± .007 .879 ± .009 .859 ± .013 .847 ± .011 .026
TE .855 ± .014 .878 ± .008 .864 ± .006 .849 ± .009 .873 ± .007 .855 ± .006 .862 ± .008 .024

VAT .855 ± .011 .884 ± .015 .876 ± .007 .857 ± .021 .887 ± .008 .861 ± .006 .871 ± .010 .032
MR-BS .811± .028 .870± .011 .844± .009 .818± .017 .852± .014 .851± .010 .862± .007 .006
MR-CR .827± .013 .874± .011 .852± .017 .826± .016 .852± .013 .847± .007 .866± .006 .011

MRL .876 ± .016 .901 ± .006 .890 ± .011 .874 ± .011 .896 ± .009 .889 ± .005 .896 ± .008 .051

Table 1: Accuracy (mean ± std) for digital recognition and attribute classification. For reuse methods, if the performance is worse than SSL,
the corresponding entries are boxed. The entries with the best performance in each subtask are bolded.

4.2 Tasks on Digital Recognition
We begin our study with a generalization of digital recogni-
tion task, which consists of three digital recognition datasets:
SVHN, MNIST, and USPS. Generally, we use the full recom-
mended training sets per domain to learn the source models,
and select test images from 3 datasets to construct the target
tasks. For consistency, we resize these images to 28x28, and
convert the images from SVHN to gray scale.

During reuse, we take 10% samples for validation and 40%
samples for testing. Besides, we extract 500, 100, 100 labeled
samples from SVHN, MNIST and USPS respectively, and the
remaining samples as unlabeled data. Specifically, we train a
CNN with 3 convolution layers and take the output of convo-
lution as the representation (512-dim) to derive attention.

Table 1 shows the average accuracy of 5 random splits on
7 different target tasks composed with different domains. For
examples, “MSU” means the target task composed with three
domains, “MS” means the target task composed with domains
MNIST and SVHN. It can be found that the consistent reuse
method is often inferior to the direct semi-supervised learn-
ing methods, and its performance is not robust. In contrast,
our method consistently outperforms semi-supervised learn-
ing methods and baselines, and shows stronger robustness.
Particularly in the average, our method has a 13.1% perfor-
mance gain over supervised baseline, which is clearly better
than the consistency method (3.0%) and SSL (3.4%).

4.3 Tasks on Attribute Classification
Our second set of experiments is based on the Animals with
Attributes 2 dataset2, which contains 37,322 images of 50 ani-
mal classes. These animals are aligned to 85 binary attributes,

2https://cvml.ist.ac.at/AwA2/

Figure 4: Results of knowledge transfer with varying numbers of
labeled samples on attribute classification task.

e.g. color, habitat, via a class-attribute binary matrix, indicat-
ing whether an animal possesses each feature.

We select 4 attributes about habitat {plains, mountains, wa-
ter, tree}, to simulate the different sources and construct mul-
tiple tasks of identifying whether the animal on a given image
possesses a certain attribute or not. Firstly, we split 27,322
samples and divided them into these 4 sources according to
the habitats. For example, horses belong to plains, dolphins
belong to water, and pandas belong to tree. Then, four mod-
els were built on these sources respectively. Such a setting
is consistent with data sources for different geographic lo-
cations in real-world. The target task is selected from some
advanced attributes, for example, to determine whether the
animal has spots, whether it is smart, etc. For the remaining
10,000 samples, we use 50% as training set, 10% examples
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Figure 5: Visualization (best in color) of attention values on pre-trained models and corresponding habitat attributes. The lower part contains
habitat information for various animals. The upper part contains the weight learned by our method on 500 labeled examples. We could find
it has reasonably mined the relationship between different instances and habitats (latent domains). For example, the weights of fplains and
fmountains on antelope are larger than others, which feed such instances into corresponding models.

as validation set and take the others for testing. In addition,
we construct an {2048, 200, 2}MLP as the target model, and
use the 2048-dimensional features, taken by convolution of
ILSVRC pre-trained ResNet101 [Xian et al., 2018], as the
input of our MLP and attention module. The average results
(with 200 labeled samples) under 10 times random splits are
reported. From Table 1, it can be found that the consistent
reuse method does not work well, i.e., it is usually inferior
to the direct semi-supervised learning methods. In contrast,
our method behaves much more robust, i.e., it consistently
outperforms semi-supervised learning methods and baselines
over all the subtasks.

A key factor of model reuse is to study the effectiveness
when the labeled data is limited. In these cases, model reuse
would be more desriable. We sample various labeled sam-
ples and compare the performance of Supervised, VAT, MR-
CR and MRL on “spots” task. As shown in Figure 4, MRL
consistent achieves better performance gain over compared
methods, especially when labeled samples are few.

To further evaluate the effectiveness of attention module,
we visualize the average value of similarity learned on differ-
ent prototypes in the upper part of Figure 5. The lower part
has shown the ground truth of habitat. We could find that our
attention module could reasonablely learn the relationship be-
tween instances and habitats (latent domains).

4.4 Tasks on Face Recognition
Finally, we evaluate our method on the CMU Multi-PIE
dataset [Sim et al., 2002], which is a facial expression dataset.
In this experiment, five domains generated from Multi-PIE
(each corresponding to a distinct pose) from 68 individu-
als. Specifically, five subsets, i.e., PIE05 (left), PIE07 (up-
ward), PIE09 (downward), PIE27 (front), PIE29 (right) are
constructed, and the face images in each subset are taken un-
der different illumination and expression conditions. These
subsets3 are based on SURF features and the dimension of

3https://github.com/jindongwang/transferlearning/blob/master/
data/dataset.md

1-shot 2-shot
Supervised .632 ± .016 .815 ± .011

PL .637 ± .013 .800 ± .010
TE .692 ± .011 .823 ± .015

VAT .704 ± .011 .825 ± .008
MR-BS .657± .014 .812± .014
MR-CR .650± .023 .802± .012

MRL .851 ± .009 .885 ± .008

Table 2: Accuracy (mean ± std) for face recognition.

features is 1024.
We extract 800 samples per domain to construct the target

task, the remaining samples are used as the source data to
build pre-trained models separately. Due to the limited num-
ber of samples, we use 680 samples (2 samples per category
per domain) as testing set, and 340 samples (1 sample per
category per domain) as validation set. The rest of the target
data is regarded as unlabeled data pool. In addition, we use
Logistic Regression as the base model, and use SURF feature
as the input of attention module. The results on one-shot (1
sample per category per domain) and two-shot cases in Ta-
ble 2 further demonstrate the robustness of our proposal.

5 Conclusion
In this paper, we study the model reuse for latent domains
problem where the target data are composed with latent or
unknown domains. This is a new kind of model reuse which
to the best of our knowledge, has not been thoroughly studied.
In this paper we propose a novel MRL method. Both domain
characteristics and pre-trained models are considered for the
exploration of instances in the target task. The learned model
is enforce to be well-performed on two different objectives,
which is cast as a bi-level optimization with effective solu-
tions in a reliable generalization. Empirical results verify our
effectiveness and robustness.
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