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Abstract
Positive-unlabeled (PU) learning deals with the bi-
nary classification problem when only positive (P)
and unlabeled (U) data are available, without nega-
tive (N) data. Existing PU methods perform well on
the balanced dataset. However, in real applications
such as financial fraud detection or medical diagno-
sis, data are always imbalanced. It remains unclear
whether existing PU methods can perform well on
imbalanced data. In this paper, we explore this
problem and propose a general learning objective
for PU learning targeting specially at imbalanced
data. By this general learning objective, state-of-
the-art PU methods based on optimizing a consis-
tent risk estimator can be adapted to conquer the
imbalance. We theoretically show that in expecta-
tion, optimizing our learning objective is equivalent
to learning a classifier on the oversampled balanced
data with both P and N data available, and further
provide an estimation error bound. Finally, experi-
mental results validate the effectiveness of our pro-
posal compared to state-of-the-art PU methods.

1 Introduction
In recent years, mobile wallets are set to become more and
more common [JuniperResearch, 2018]. Due to its popular-
ity, the security of mobile wallets is highly concerned. To
protect users’ money, the digital payment platform needs to
detect risky accounts and give warnings before any fraud hap-
pens. In practice, the public security office usually provides a
list of illegal accounts as positive (P) data with which a classi-
fier can be trained. However, because it is not certain whether
any account outside the list is trustable or not, treating them
as negative (N) may bring unnecessary noise into the system.
To get rid of noise, the classifier needs to be trained on only
P data and unlabeled (U) data.

Such kind of problems is formed into a positive-unlabeled
(PU) learning problem [Denis, 1998] in which P and U
data are available and no negative (N) data is provided.
PU learning has applicability in the fields of not only fi-
nancial fraud detection, but also Alzheimer’s disease di-
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agnosis [Chen et al., 2020], information retrieval [Dupret
and Piwowarski, 2008] and link prediction [Hsieh et al.,
2015]. Recently, many efforts [du Plessis et al., 2015;
Kiryo et al., 2017; Shi et al., 2018; Chen et al., 2020;
Chen et al., 2021] have been devoted to case-control PU
learning [Menon et al., 2015] and efficient algorithms based
on deep neural networks are proposed [Kiryo et al., 2017;
Chen et al., 2020].

Although existing PU methods have been shown to be
successful in benchmark datasets [Kiryo et al., 2017; Chen
et al., 2020], they may not perform well on tasks such as
fraud detection or medical diagnosis. The reason is that
in these tasks, different from the benchmark datasets, the
data is highly imbalanced [Chawla, 2010; He and Garcia,
2009], i.e., if the data are i.i.d. sampled from the underly-
ing data distribution, the number of P data is much smaller
than the number of N data. For example, among all the
mobile wallet accounts, only a small amount of accounts
are illegal; in all medical check-ups, only a few patients
have the disease. However, most of the current PU meth-
ods do not consider special techniques to handle the imbal-
ance. Even worse, some of the PU methods weigh the risk
incurred on P data by the small class prior, further enlarg-
ing the impact of imbalance. There are a few works touch-
ing the imbalanced PU learning problem. [Xie and Li, 2018;
Sakai et al., 2018] optimize directly the AUC in PU learning.
However, as F1 is counted as one of the metrics suitable for
imbalanced learning, a good AUC does not necessarily mean
a good F1, as it cares about the relative order of real outputs,
instead of the classification result. [Chen et al., 2021] dealt
with cost-sensitive PU learning, which required the cost to be
known, while in our study such information is not available.

In normal classification when both P and N data are avail-
able, the imbalanced learning problem has been widely in-
vestigated. Related methods based on a single model can
be divided into four categories. One category is sampling.
Either oversampling [Chawla et al., 2002; Yan et al., 2019;
Guo et al., 2019] is used to increase the number of minor-
ity data, or undersampling [Peng et al., 2019] is used to de-
crease the number of majority data. Such methods cannot be
easily adapted to improve PU learning. Undersampling can-
not be used due to that no N data is available. For oversam-
pling, due to that state-of-the-art PU methods weigh the risks
of P data by the small class prior [du Plessis et al., 2014;
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du Plessis et al., 2015; Kiryo et al., 2017; Shi et al., 2018;
Chen et al., 2020], no matter how many data points are over-
sampled their effect on learning is dramatically reduced due
to the weighting.

Another category of methods is based on cost-sensitive
learning [Wang et al., 2017; Khan et al., 2018; Huang et al.,
2020; Byrd and Lipton, 2019], i.e., assigning different costs
to majority class and minority class. Such kind of methods
can also be effective when the cost is appropriately set up but
most of the time, setting up the cost accurately is not possi-
ble due to lacking of domain knowledge. Recently, imbal-
anced learning methods based on metric-learning and semi-
supervised learning are also proposed. For methods based
on metric-learning [Wang et al., 2018; Viola et al., 2020], N
data is required to learn an appropriate distance metric, which
is unavailable in PU learning. For semi-supervised learn-
ing methods, their performance depends on learning a good
enough initial classifier to label U data [Kim et al., 2020;
Yang and Xu, 2020]; however, as we have discussed, the cur-
rent PU method may not learn such a good enough classi-
fier on imbalanced data. Besides these methods on a single
model, ensemble methods [Liu et al., 2020] are also proposed
to combine the results of several base methods, such as com-
bining oversampling and cost-sensitive methods. Despite the
good performance of them on PN data, they inherited the sin-
gle model methods’ disadvantages to handle PU data.

In this paper, we propose a general re-weighting strategy
for imbalanced PU learning. We assume that oversampling
will work well to tackle the imbalance problem if both P and
N data are available. Based on such an assumption, we care-
fully design the weights for the risks on P data and U data and
show theoretically that in expectation, the risk of the balanced
PN data can be perfectly estimated through the available PU
data using our proposed re-weighting strategy. We further
give an empirical error bound on the classifier learned empir-
ically. Experimental results have verified that using our gen-
eral re-weighting strategy can enhance the F1 performance of
PU methods on handling imbalanced data.

Note that designing a re-weighting strategy in PU learning
is not as easy as in PN learning. In PN learning, a straightfor-
ward strategy is to give a large weight for P data and a small
weight for N data. In PU learning, due to the unavailability
of N data, the risk of P data being treated as negative is also
calculated and deducted from the overall optimization objec-
tive [du Plessis et al., 2015; Kiryo et al., 2017]. Addition-
ally, a risk on U data is incorporated. Due to the existence
of these different risks, the reweighting for PU learning be-
comes much more complex than PN learning. Although it
looks straightforward to improve the weights on P data and
keep the weights on U data, our analysis in Sec. 2 shows that
reweighting in this way will distort the target data distribution
and fail to guarantee a statistical consistency as our proposal.

Our contribution are summarized as follows

• We propose a general learning objective for PU learn-
ing with imbalanced data. A reweighting strategy is de-
signed in this general learning objective. As far as we
know, this is the first work specially dealing with such a
practical problem.

• We theoretically verify that in expectation, optimizing
such a learning objective on available PU data can en-
able learning a classifier on balanced PN data which is
not available. We also give an estimation error bound to
guarantee the performance.

• We show empirically that when the proposed learning
objective is used, existing PU methods can be adapted
to better handle imbalanced data: their performance on
imbalanced data is dramatically improved.

2 Methodology
2.1 Formulation and Background
Assume there is an underlying distribution P (X,Y ), where
X ∈ Rd is the input and Y ∈ {−1,+1} is the output
random variables. In case-control PU learning [Menon et
al., 2015], P data of size np are sampled from P (x|Y =
+1) and U data of size nu are sampled from P (x). π =
P (Y = 1) represents the class prior of positive label. In
most cases, it is assumed to be known. It can also be esti-
mated from the data if it is unknown [Elkan and Noto, 2008;
du Plessis et al., 2017]. Based on the given P and U data, our
objective is to learn a classifier f : Rd → {−1,+1} which
can successfully classify an instance x. In practice, we of-
ten learn a function g : Rd → [0, 1], whose output value can
represent the posterior probability of P (Y |x).

In PU learning, the following risk is used as the learning
objective [du Plessis et al., 2015]

Rpu(g) = πEP (x|Y=+1)[`(g(x),+1)] + (1)
(EP (x)[`(g(x),−1)]− πEP (x|Y=+1)[`(g(x),−1)]),

where `(·, ·) is any trainable surrogate loss function of zero-
one loss [du Plessis et al., 2015], such as the sigmoid loss

`sig(g(x), y) =
1

1 + exp(yg(x))
(2)

We can see that the loss on P data EP (x|Y=+1)[`(g(x),+1)]
is weighted by π, which is very small in imbalanced data.
Additionally, the loss treating P data as negative, i.e.,
EP (x|Y=+1)[`(g(x),−1)]), is additionally measured and de-
duced from the learning objective. Such an item never exists
in PN learning.

The following estimator is then optimized based on the
given PU data

R̂pu(g) =
π

np

∑
xi∈P

`(g(xi),+1) + (3)(
1

nu

∑
xi∈U

`(g(x),−1)− π

np

∑
xi∈P

`(g(xi),−1)

)

named as uPU (unbiased PU) [du Plessis et al., 2015].
In practice, it is found that due to the strong fit ability of

deep neural networks, the second term of Eq. (3) can go much
lower than zero. However, theoretically, this term is used to
estimate (1− π)EP (x|Y=−1)[`(g(x),−1)]), which should al-
ways be non-negative. In this way, Kiryo et al. proposed to
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optimize the following non-negative risk

R̂nnpu(g) =
π

np

∑
xi∈P

`(g(xi),+1) + max

(
0,

1

nu∑
xi∈U

`(g(x),−1)− π

np

∑
xi∈P

`(g(xi),−1)

)
and gave the nnPU (non-negative PU) method [du Plessis et
al., 2017]. From then on, nnPU has become the state-of-the-
art method for PU learning using deep neural networks. And
many algorithms for PU learning are proposed based upon
nnPU [Xu et al., 2019; Hsieh et al., 2019; Chen et al., 2020].

2.2 Algorithm
In this part, we assume that oversampling can help combat
imbalanced data in PN learning. Based on such an assmup-
tion, we employ both the data generation process of case-
control PU learning and oversampling to solve the imbal-
anced PU learning problem.

The data generation process is depicted in Figure 1. Imag-
ine we have an imbalanced PN dataset DPN based on which
the available PU dataset is generated. The PN dataset is sam-
pled from the underlying distribution P (X,Y ), which con-
tains n̂p positive data and n̂n negative data. If both n̂p and
n̂n are large enough, sampling from this dataset can approx-
imate sampling according to the original data distribution.
In this way, we have n̂p/n̂n = π/(1 − π). If we over-
sample the P data in DPN according to P (x|Y = 1), we
will have a balanced dataset DbalancedPN with distribution
Pbalanced(X,Y ), which contains mp positive data and mn

negative data. mp � n̂p, mn = n̂n, mp/mn = π′/(1− π′),
and π′ = Pbalanced(Y = 1). π′ is around 0.5 such that the
newly generated PN data is balanced. We assume that the
learned classifier on DbalancedPN has a good performance on
metrics suitable for imbalanced learning such as F1 score. In
this way, what we want to do is to learn a classifier on the
balanced PN data to tackle the imbalanced problem. The risk
we want to optimize for DbalancedPN is

RbalancePN(g) = EPbalanced(x,y)`(g(x), y). (4)
Note that we have oversampled from DPN the P data only.
It means that although the joint distribution Pbalanced(X,Y )
is different from the original joint probability P (X,Y ),
the class conditional probability remains unchanged, i.e.,
P (x|Y = 1) = Pbalanced(x|Y = 1). We also have P (x|Y =
−1) = Pbalanced(x|Y = −1) due to that we do nothing to
the N data. In this way, we have
RbalancePN(g) = EPbalanced(x,y)`(g(x), y) (5)

= π′EPbalanced(x|Y=1)`(g(x),+1) +

(1− π′)EPbalanced(x|Y=−1)`(g(x),−1)
= π′EP (x|Y=1)`(g(x),+1) +

(1− π′)EP (x|Y=−1)`(g(x),−1).
Since

(1− π)EP (x|Y=−1)`(g(x),−1) (6)
= EP (x)`(g(x),−1)− πEP (x|Y=+1)`(g(x),−1),

we can have

Theorem 1. For a joint distribution Pbalanced(X,Y ), the
objective risk is defined in Eq. (4). If there is another dis-
tribution P (x, y) which has different class prior P (Y ) with
Pbalanced(X,Y ) but the same class conditional probability
P (x|Y ), we have

RbalancePN(g) = π′EP (x|Y=+1)`(g(x),+1) +
1− π′

1− π
(7)

[EP (x)`(g(x),−1)− πEP (x|Y=+1)`(g(x),−1)]

in which π = P (y = 1) and π′ = Pbalanced(y = 1).

Proof. The proof can be derived by combining the above
Eqs. (5) and (6) .

Theorem 1 gives us a guide on how to learn a classifier (in
expectation) for the balanced PN data but the only availability
is imbalanced PU data. In practice, we need to optimize an
empirical estimation ofRbalancePN, which is

R̂balancePN(P,U) =
π′

np

∑
xi∈P

`(g(xi),+1) + (8)

1− π′

nu(1− π)
∑
xi∈U

`(g(x),−1)−

(1− π′)π
np(1− π)

∑
xi∈P

`(g(xi),−1).

Since we also want to make use of the deep neural net-
works as our base learner, we may face the same problem
as nnPU [Kiryo et al., 2017]. In this way, we will optimize a
similar non-negative loss as nnPU, which is,

R̂nnBalancePN(P,U) =
π′

np

∑
xi∈P

`(g(xi),+1) + (9)

max

(
0,

1− π′

nu(1− π)
∑
xi∈U

`(g(x),−1)

− (1− π′)π
np(1− π)

∑
xi∈P

`(g(xi),−1)

)
.

We want to minimize the above risk to get a classifier
ĝ(x; θ). Practically, R̂nnBalancePN is optimized through a
gradient ascend strategy employed also in [Kiryo et al., 2017;
Han et al., 2020; Ishida et al., 2020]. We call our proposed
method ImbalancednnPU and give the procedures in Algo-
rithm 1. In this strategy, we define

R̂N (P,U) =
1− π′

nu(1− π)
∑
xi∈U

`(g(x),−1)−

(1− π′)π
np(1− π)

∑
xi∈P

`(g(xi),−1).

Then when R̂N is larger than zero, we do normal gradient
descend (Line 6); if R̂N is smaller than zero, we do gradient
ascent instead (Line 8). This is the same strategy for nnPU.
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Figure 1: The illustration of the original imbalanced PN data, the generated imbalanced PU data, the oversampled balanced PN data, the
generated balanced PU data and how they are generated. Note that the only available data are the imbalanced PU data.

Algorithm 1 ImbalancednnPU
Input: Training data P and U
Parameter: class prior π and π′, MAX_E
Output: classifier ĝ(x; θ)

1: Let A be an SGD-like optimizer such as Adam [Kingma
and Ba, 2015] and t = 1

2: while t < MAX_E do
3: Shuffle P and U into b mini-batches, each is repre-

sented as Pi and Ui respectively
4: for i = 1 to b do
5: if R̂N (Pi,Ui) ≥ 0 then
6: Update θ by A with the gradient

∇θR̂nnBalancePU(Pi,Ui)
7: else
8: Update θ by A with the gradient

−∇θR̂N (Pi,Ui)
9: end if

10: end for
11: end while
12: return θ and the corresponding classifier ĝ(x; θ)

A naive way: reweighting P data by π′. Note that a
straightforward strategy is to reweight the P data by π′

but keeping the weights on U data unchanged. Note that
in this strategy, there is an implicity assumption that the
Pbalanced(x) is equal to P (x) in Figure 1. However, since
we have

Pbalanced(x) = π′Pbalanced(x|Y = 1) +

(1− π′)Pbalanced(x|Y = −1),

Pbalanced(x) cannot be equal to P (x) unless π = π′, i.e.,
no oversampling has ever happened. In another word, the

naive strategy to reweigh only P data by π′ resembles learn-
ing the classifier on data sampled from an unknown distribu-
tion which cannot be generated from the original data set by
oversampling method.
PU methods beyond nnPU. There are many methods pro-
posed recently for PU learning , and some of them based
on the original nnPU have achieved state-of-the-art perfor-
mance. For these methods, additional tricks such as self-
learning, meta-learning, or knowledge distillation is added
beyond nnPU [Chen et al., 2020]. However, at their basis,
an nnPU method should be run. In this way, the optimization
objective in them is also updated to Eq. 9 and their perfor-
mance is expected to be improved on imbalanced data.

2.3 Theoretical Properties
Note that in Section 2.2, we first derive the expected risk
Eq. (7). Then we have an estimation of it based on the
given data in Eq. (8). So if we optimize Eq. (8), how would
the achieved classifier be different from the one optimizing
Eq. (7)? In this section, we answer this question by giving an
estimation error bound.

To have an estimation error bound, we first need to make
assumption on the surrogate loss function `(·, ·). We assume
` is Lipschitz continuous with respect to its first argument,
and the Lipschitz constant is L`. We further assume ` is sym-
metric, i.e.,

`(t,+1) + `(t,−1) = 1.

Note that these two assumptions are satisfied by the com-
monly used surrogate loss function sigmoid loss in Eq. (2).
We will also use sigmoid loss in our experiments.

In learning, suppose we have a function class G. Let

g∗ = argmin
g∈G
RbalancePN(g)
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and

ĝPU = argmin
g∈G
R̂balancePN(g).

We denote the Rademacher complexity [Shalev-Shwartz and
Ben-David, 2014] of G for the sampling of size n sampled
with probability P as Rn,P (G). We then have the following
theoretical results
Theorem 2. Assume ` is symmetric and Lipschitz continuous
with respect to its first argument, and the Lipschitz constant
is L`. For any δ > 0 with probability at least 1− δ, we have

RbalancePN(ĝPU)−RbalancePN(g
∗) ≤

4(π′ + π − 2π′π)

1− π
L`Rnp,P (x|Y=1)(G) +

2(1− π′)
1− π

L`Rnu,P (x)(G) +

2(π′ + π − 2π′π)

1− π

√
ln(4/δ)

2np
+

2(1− π′)
1− π

√
ln(4/δ)

2nu
.

We put the detailed proof of Theorem 2 into the supple-
mentary files.

When R is upper bounded for G, we have that

RbalancePN(ĝPU)−RbalancePN(g
∗)→ 0

in O(1/√np + 1/
√
nu), i.e., theoretically we still need

enough P data to make the classifier satisfied. In practice,
we observed that our proposal performs better than classical
PU method such as nnPU [Kiryo et al., 2017]. We plan to
explore this interesting direction on more tight theoretical re-
sults in the future work.

Note that when π′ = 0.5 and ` is the zero-one loss, our
learning objective Eq. (4) can be seen as the arithmetic mean
of true positive rate and true negative rate. In this way,
[Menon et al., 2013] provides a regret bound if we can es-
timate P (Y |x) in a precise way. Motivated by this work,
we will set π′ = 0.5 and the final prediction is made by
sgn(g(x)− 0.5).

3 Experiments
In this section, we compare the performance of our proposed
ImbalancednnPU with state-of-the-art PU methods on imbal-
anced datasets. We will show that state-of-the-art PU meth-
ods, although have been shown to be effective on balanced
PU data, fails to be superior on imbalanced PU data. We also
adapt several imbalanced learning methods for normal clas-
sification into PU learning, and compare with them. All the
codes are implemented in Python 3 and Pytorch 1.7, and run-
ning on a GPU server with CUDA 11.1.
Dataset. In previous PU work, datasets such as CIFAR10 1

have been widely used [Kiryo et al., 2017]. These multi-class
datasets are processed into balanced binary classification data
by picking five categories out of all ten categories as P, with
π from 0.40 to 0.50. In our tasks, following existing works to
test the scalability of our proposal, we also use the CIFAR10

1https://www.cs.toronto.edu/ kriz/cifar.html

data. Different from [Kiryo et al., 2017], which divided the
data into animal and non-animal, we pick only one category
from all the ten categories as P, and treat all other data as N. In
this way, we have 10 different datasets, with π approximately
equaling 0.1. In each dataset, there are 50, 000 training data
and 10, 000 test data as provided by the original CIFAR10.
To make the training data into a PU learning problem, we
follow [Kiryo et al., 2017] to sample 1, 000 positive instances
and treat them as P; all the training data are used as U, i.e.,
nu = 50, 000.
Methods. We compare our proposed ImbalancednnPU and
other algorithms,

• Our method. We will show the empirical results for two
versions of our proposed method, depending whether
they use additional labeled data to do meta-learning.
One of the method is the ImbalancednnPU we pro-
posed. Note that our proposed learning objective is gen-
eral such that any method optimizing a risk similar to
nnPU can be enhanced to handle imbalanced data by our
proposal. In this way, we further enhance self-PU [Chen
et al., 2020], the meta-learning method to handle imbal-
anced data, and call the method ImbalancedSelfPU.

We will compare with
• PU learning method without meta-learning. For PU

learning method, we compare with nnPU [Kiryo et al.,
2017] which is the state-of-the-art method in PU learn-
ing. For nnPU, we use the same network structure and
the recommended parameter tuning strategy as in the
original paper.

• PU learning method with meta-learning. Method Self-
PU [Chen et al., 2020] is a meta-learning method for PU
learning based on nnPU. In such a method, additional
data with groundtruth label is used for meta-learning.

• Oversampling method. We compare with classical over-
sampling method SMOTE [Chawla et al., 2002]. Since
SMOTE requires to do kNN first, we set k = 5 as sug-
gested for SMOTE. For SMOTE, the number of P data
is oversampled to be 50, 000, the same as the number of
U data.

• Semi-supervised imbalanced learning method. We use
the strategy proposed in [Yang and Xu, 2020], which
first trains a classifier using nnPU. After initial training
for 100 epochs, U data is labeled by this classifier and
the training starts again by optimizing a combination of
PU risk and PN risk. The parameter to weight the loss
on labeled data and U data is set as recommended in the
original paper. The method is called SSImbalance.

• PU-AUC. PU-AUC directly optimizes AUC. We include
it into comparison.

Settings. For our proposed ImbalancednnPU, we set π′ =
0.5 and π = 0.1. We use the same network structure as [Kiryo
et al., 2017], i.e., a 13-layer CNN with ReLU and Adam as
the optimizer. We tune the hyper-parameters step size and
weight decay by a grid select from {10−10, 10−9, . . . , 100}
for all methods based on neural networks. All the other hy-
perparameters in the network are set as default.
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Figure 2: F1 score on CIFAR10 dataset without meta-learning when treating airplane, automobile or truck as P label. The dense line shows
the average of 10 trials, and the shadow area show the standard deviation.

0 100 200
Epoch

0.0

0.2

0.4

0.6

F1

ImbalancedSelfPU
Self-PU

(d) airplane

0 100 200
Epoch

0.0

0.2

0.4

0.6

F1

(e) automobile

0 100 200
Epoch

0.0

0.2

0.4

0.6

F1

(f) truck

Figure 3: F1 score on CIFAR10 dataset with meta-learning when treating airplane, automobile or truck as P label. The dense line shows the
average of 10 trials, and the shadow area show the standard deviation.

Evaluation. The same as [Kiryo et al., 2017], we set the
number of epochs to be 200. For PU data induced by each
label, 10 random PU datasets are generated and we show the
average results of the 10 trials, as well as the standard devia-
tion. On the imbalanced test set, we will show the F1 score.
We additionaly show the performance on AUC in our supple-
mentary files due to space limitation.

Results without meta-learning. The experimental results
of methods without meta-learning on F1 score are shown in
Figure 2. We only show the results on treating three labels,
“aeroplane”, “automobile” and “truck”, as P and put other
seven result in the supplementary. From these experimen-
tal results, we can see that our porposed ImbalancednnPU
achieved the best results among all compared methods on
most datasets. Among the compared methods, the semi-
supervised imbalanced method [Yang and Xu, 2020] per-
forms the best among all baselines; however, its performance
strongly relies on a satisfiable base classifier.

Results with meta-learning. The experimental results of
methods with meta-learning on F1 score are shown in Fig-
ure 3. We can see that our proposal improves the performance
of self-PU, and sometimes, the variance can also be reduced.

4 Conclusion
In this paper, we propose a novel reweighting strategy for PU
learning from imbalanced data. In this method, we oversam-
ple the implicit PN data to balance, and then use risk on the
available PU data to mimic the risk on the balanced PN data.
We prove the equality of these two risks in expectation, and
also give the estimation error bound. Based on the strategy,
we propose ImbalancednnPU and further ImbalancedSelfPU.
Experimental results verify the effectiveness.

There are many directions worth investigating in the future.
One interesting problem is the theoretical studies. In our pa-
per, although we have given an estimation error bound, it did
not show much the merit of our proposed method comparing
against state-of-the-art PU method such as nnPU [Kiryo et
al., 2017]. In this way, we may need a new theoretical results
sensitive to the difference between π and π′.
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