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Abstract
Prediction based on Irregularly Sampled Time Se-
ries (ISTS) is of wide concern in real-world ap-
plications. For more accurate prediction, methods
had better grasp more data characteristics. Differ-
ent from ordinary time series, ISTS is characterized
by irregular time intervals of intra-series and dif-
ferent sampling rates of inter-series. However, ex-
isting methods have suboptimal predictions due to
artificially introducing new dependencies in a time
series and biasedly learning relations among time
series when modeling these two characteristics. In
this work, we propose a novel Time Encoding (TE)
mechanism. TE can embed the time information
as time vectors in the complex domain. It has the
properties of absolute distance and relative distance
under different sampling rates, which helps to rep-
resent two irregularities. Meanwhile, we create a
new model named Time Encoding Echo State Net-
work (TE-ESN). It is the first ESNs-based model
that can process ISTS data. Besides, TE-ESN in-
corporates long short-term memories and series fu-
sion to grasp horizontal and vertical relations. Ex-
periments on one chaos system and three real-world
datasets show that TE-ESN performs better than all
baselines and has better reservoir property.

1 Introduction
Prediction based on Time Series (TS) widely exists in many
scenarios, such as healthcare and meteorology [Xing et al.,
2010; Wang et al., 2019]. Many methods, especially Recur-
rent Neural Networks (RNNs), have achieved state-of-the-art
[Fawaz et al., 2019]. However, in real-world applications, TS
usually is Irregularly Sampled Time Series (ISTS) data. For
example, the blood sample of a patient during hospitalization
is not collected at a fixed time of day or week. This charac-
teristic limits the performances of the most methods.

Comprehensive learning of ISTS characteristics con-
tributes to the accuracy of final prediction [Hao and Cao,

∗Contact Author. Peking University, No. 5 Yiheyuan Road, Bei-
jing 100871, People’s Republic of China.

2020]. ISTS has two characteristics of irregularity under the
aspects of intra-series and inter-series:

• Intra-series irregularity is the irregular time intervals be-
tween observations within a time series. For example, due
to the change of patient’s health status, the relevant mea-
surement requirements are also changing. In Figure 1, the
time between a COVID-19 patient’s blood sample could
be 1 hour or even 7 days. Uneven intervals will change the
dependency between observations and large time intervals
will add a time sparsity factor [Jinsung et al., 2017].

• Inter-series irregularity is the different sampling rates
among time series. For example, in Figure 1, because vi-
tal signs have different rhythms and sensors have different
sampling time, for a COVID-19 patient, heart rate is mea-
sured in seconds, while blood sample is collected in days.
The difference of sampling rates is not conducive to data
preprocessing and model design [Karim et al., 2019].

However, grasping both two irregularities is challenging.
In real-world applications, a model usually has multiple time
series as input. If seeing the input as a multivariate time se-
ries, data alignment with up/down-sampling and imputation
occur. But it will artificially introduce some new dependen-
cies while omit some original dependencies, causing subopti-
mal prediction [Sun et al., 2020b]; If seeing the input as mul-
tiple separated time series and changing dependencies based
on time intervals, the method will encounter the problem of
bias, embedding stronger short-term dependency in high sam-
pled time series due to smaller time intervals. This is not nec-
essarily the case, for example, although the detection of blood
pressure is not frequent than heart rate in clinical practice, its
values have a strong diurnal correlation [Virk, 2006].

In order to get rid of the above dilemmas and achieve more
accurate prediction, modeling all irregularities without intro-
ducing new dependency is feasible. However, the premise
is that ISTS can’t be interpolated, which makes the align-
ment impossible, leading to batch gradient descent for mul-
tivariate time series hard to implement, aggravating the non-
converging and instability of error Back Propagation RNNs
(BPRNNs), the basis of existing methods for ISTS [Sun et
al., 2020b]. Echo State Networks (ESNs) is a simple type
of RNNs and can avoid non-converging and computationally

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3010



expensive by applying least square problem as the alterna-
tive training method [Jaeger, 2002]. But ESNs can only pro-
cess uniform TS by assuming time intervals are equally dis-
tributed, with no mechanism to model ISTS. For solving all
the difficulties mentioned above, we design a new structure to
enable ESNs to handle ISTS data, where a novel mechanism
makes up for the disadvantage of no learning of irregularity.

• We introduce a novel mechanism named Time Encoding
(TE). TE represents time points as dense vectors and ex-
tends to complex domain for more options. TE injects the
absolute and relative distance properties based on time in-
terval and sampling rate into time representations, which
helps model both intra-series irregularity and inter-series
irregularity of ISTS at the same time.

• We design a mode named Time Encoding Encoding Echo
State Network (TE-ESN). In addition to the ability of mod-
eling both two ISTS irregularities, TE-ESN can learn the
long short-term memories in a time series longitudinally
and fuses the relations among time series horizontally.

• We evaluate TE-ESN for early prediction and one-step-
ahead forecasting on four datasets. TE-ESN outperforms
state-of-the-art models and has better reservoir property.

2 Related Work
2.1 ISTS Method Categories
Existing methods can be divided into two categories:

Missing data perspective. It discretizes the time axis into
non-overlapping intervals, points without data are consid-
ered as missing data. M-RNN [Jinsung et al., 2017] handled
missing data by operating time series forward and backward.
GRU-D [Che et al., 2018] used decay rate to weigh the cor-
relation between missing data and other data. But data im-
putation may artificially introduce new dependency beyond
original relations and totally ignore ISTS irregularities.

Raw data perspective. It constructs models which can di-
rectly receive ISTS as input. T-LSTM [Baytas et al., 2017]
used the elapsed time function for modeling irregular time
intervals. IPN [Shukla and Marlin, 2019] used three time
perspectives for modeling different sampling rates. However,
they just performed well in the univariate time series, for mul-
tiple time series, they had to apply alignment first, causing the
data missing in some time points, back to the defects of the
first category.

2.2 Echo State Networks
The adaption of the BPRNNs training requirements causes
the above defects. ESNs with a strong theoretical ground, is
practical and easy to implement, can avoid non-converging
[Gallicchio and Micheli, 2017; Sun et al., 2020a]. [Jaeger
et al., 2007] designed a classical reservoir structure leaky-
ESN using leaky integrator neurons and mitigated noise prob-
lem. [Gallicchio et al., 2017] proposed a stacked reservoirs
structure DeepESN based on deep learning (DL) to pursue
conciseness of ESNs and effectiveness of DL. [Zheng et al.,
2020] proposed LS-ESN by considering the relations of time
series in different time spans. But there is no ESNs-based
methods for ISTS.

3 Time Encoding Echo State Network
The widely used RNN-based methods, especially ESNs, only
model the order of time series by assuming the time distribu-
tion is uniform. We design Time Encoding (TE) mechanism
(Section 3.2) to help ESNs model ISTS (Section 3.3).

3.1 Definitions
First, we give two new definitions used in this paper.
Definition 1 (Irregularly Sampled Time Series ISTS). A time
series u with sampling rate rs(d), d ∈= {1, ..., D} has sev-
eral observations distributed with time t, t ∈= {1, ..., T}. udt
represents an observation of a time series with sampling rate
rs(d) in time t.

ISTS has two irregularities: (1) Irregular time intervals of
intra-series: ti − ti−1 6= tj − tj−1. (2) Different sampling
rate of inter-series: rs(di) 6= rs(dj).

For prediction tasks, one-step-ahead forecasting is using
the observed data u1:t to predict the value of ut+1, and con-
tinues over time; Early prediction is using the observed data
u1:t (t < tpre) to predict the classes or values in time tpre.
Definition 2 (Time Encoding TE). Time encoding mecha-
nism aims to design methods to embed and represent every
time point information of a time line.

TE mechanism extends the idea of Positional Encoding
(PE) in natural language processing. PE was first introduced
to represent word positions in a sentence [Gehring et al.,
2017]. Transformer [Vaswani et al., 2017] model used a set
of sinusoidal functions discretized by each relative input po-
sition, shown in Equation 1. Where pos indicates the position
of a word, dmodel is the embedding dimension. Meanwhile, a
recent study [Wang et al., 2020] encoded word order in com-
plex embeddings. An indexed j word in the pos position is
embeded as gpe(j, pos) = reiωjpos+θj . r, ω and θ denote
amplitude, frequency and primary phase respectively. They
are all the parameters that should to be learned using deep
learning model.

PE(pos, 2i) = sin(
pos

10000
2i

dmodel

)

PE(pos, 2i+ 1) = cos(
pos

10000
2i

dmodel

)
(1)

3.2 Time Encoding Mechanism
First, we introduce how the Time Vector (TV) perceives irreg-
ular time intervals of a single ISTS with the fixed sampling
rate. Then, we show how Time Encoding (TE) embeds time
information of multiple ISTS with different sampling rates.
The properties and proofs are summarized in the Appendix.

Time Vector with Fixed Sampling Rate
Now, let’s only consider one time series, whose irregularity is
just reflected in the irregular time intervals. Inspired by Po-
sitional Encoding (PE) in Equation 1, we apply Time Vector
(TV) to note the time codes. Thus, in a time series, each time
point is tagged with a time vector:

TV (t) = [..., sin(cit), cos(cit), ...]

ci =MT
− 2i
dTV ,i = 0, ...,

dTV
2
− 1

(2)
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Figure 1: An ISTS example of a COVID-19 patient and the structure of TE-ESN

In Equation 2, each time vector has dTV embedding di-
mensions. Each dimension corresponds to a sinusoidal. Each
sinusoidal wave forms a geometric progression from 2π to
MTπ. MT is the biggest wavelength defined by the maxi-
mum number of input time points.

Without considering the different sampling rates of inter-
series, for a single ISTS, TV can simulate the time intervals
between two observations by its properties of absolute dis-
tance and relative distance.

Property 1 (Absolute Distance Property). For two time
points with distance p, the time vector in time point t + p
is the linear combination of the time vector in time point t.

TV (t+ p) = (a,b) · TV (t)

a = TV (p, 2i+ 1),b = TV (p, 2i)
(3)

Property 2 (Relative Distance Property). The product of time
vectors of two time points t and t+ p is negatively correlated
with their distance p. The larger the interval, the smaller the
product, the smaller the correlation.

TV (t) · TV (t+ p) =

dTV
2 −1∑
i=0

cos(cip) (4)

For a computing model, if its inputs have the time vectors
of time points corresponding to each observation, then the
calculation of addition and multiplication within the model
will take the characteristics of different time intervals into ac-
count through the above two properties, improving the recog-
nition of long term and short term dependencies of ISTS.
Meanwhile, without imputing new data, natural relation and
dependency within ISTS are more likely to be learned.

Time Encoding with Different Sampling Rates
When the input is multi-series, another irregularity of ISTS,
different sampling rates, shows up. Using the above in-
troduced time vector will encounter the problem of bias.
It will embed more associations between observations with
high sampling rate according to the Property 2, as they have
smaller time intervals. But we can not simply conclude that
the correlation between the values of time series with low
sampling rate is weak.

Thus, we design an advanced version of time vector, noted
Time Encoding (TE), to encode time within multiple ISTS.

TE extends TV to complex-valued domain. For a time point
t in the d-th ISTS with rs(d) sampling rate, the time code is
in Equation 5, where ω is the frequency.

TE(d, t) = ei(ωt), ω = ωd · r−1s (d) (5)
Compared with TV, TE has two advantages:
The first is that TE not only keeps the property 1 and 2, but

also incorporates the influence of frequency ω, making time
codes consistent at different sampling rates.
ω reflects the sensitivity of observation to time, where a

large ω leads to more frequent changes of time codes and
more difference between the representations of adjacent time
points. For relative distance property, a large ω makes the
product large when distance p is fixed.
Property 3 (Relative Distance Property with ω). The product
of time encoding of two time points t and t + p is positive
correlated with frequency ω.

TE(t) · TE(t+ p) = eiωt · eiω(t+p) = eiω(2t+p) (6)

In TE, we set ω = ωd · r−1s (d). ωd is the frequency pa-
rameter of d-th sampling rate. TE fuses the sampling rate
term r−1s (d) to avoid the bias of time vector causing by only
considering the effect of distance p.

The second is that each time point can be embeded into
dTE dimensions with more options of frequencies by setting
different ωj,k in Equation 7.

TE(d, t) = ei(ωt),ω = ωj,k · r−1s (d)

j = 0, ..., dTV − 1,k = 0, ...,K − 1
(7)

In TE, ωj,k means the time vector in dimension j has K
frequencies. But in Equation 2 of TV, the frequency of time
vector in dimension i is fixed with ci.

The Relations between Different Mechanisms
Time encoding with different sampling rates is related to time
vector with fixed sampling rate and a general complex expres-
sion [Wang et al., 2020].

• TV is a special case of TE. If we set ωk,j = ci, then
TE(d, t) = TV (t, 2i+ 1) + iTV (t, 2i).

• TE is a special case of a fundamental complex expression
r · ei·(ωx+θ). We set θ = 0 as we focus more on the re-
lation between different time points than the value of the
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first point; We understand term r as the representation of
observations and leave it to learn by computing models.
Besides, TE inherits the properties of position-free offset
transformation and boundedness [Wang et al., 2020].

3.3 Injecting Time Encoding mechanism into Echo
State Network

Echo state network is a fast and efficient recurrent neural
network. A typical ESN consists of an input layer Win ∈
RN×D, a recurrent layer, called reservoir Wres ∈ RN×N ,
and an output layer Wout ∈ RM×N . The connection weights
of the input layer and the reservoir layer are fixed after ini-
tialization, and the output weights are trainable. u(t) ∈ RD,
x(t) ∈ RN and y(t) ∈ RM denote the input value, reser-
voir state and output value at time t, respectively. The state
transition equation is:

x(t) = f(Winu(t) +Wresx(t− 1))

y(t) =Woutx(t)
(8)

Before training, three are three main hyper-parameters of
ESNs: Input scale win; Sparsity of reservoir weight α; Spec-
tral radius of reservoir weight ρ(Wres) [Jiang and Lai, 2019].

However, existing ESNs-based methods cannot model the
irregularities of ISTS. Thus, we make up for this by proposing
Time Encoding Echo State Network (TE-ESN).

Time Encoding Phase
TE-ESN hasD reservoirs, assigning each time series of input
an independent reservoir. An observation udt is transferred
trough input weight W d

in, time encoding TE(d, t), reservoir
weight W d

res and output weight W d
out. The structure of TE-

ESN is shown in Figure 1. The state transition equation is:

x̃dt = γfx
d
t

′
+ (1− γf )xD\d Reservoir

xdt
′
= γlx

d
t + (1− γl)(xdt−1 + xdt−k) Long short

xdt = tanh(TE(d, t) +W d
inu

d
t +W d

resx̃
d
t−1) Time encoding

xD\d =
1

D − 1

∑
i∈D\d

x̃i Neighbor

(9)
TE-ESN creates three highlights compared with other

ESNs-based methods by changing the Reservoir state:
• Time encoding mechanism (TE). TE-ESN integrates time

information when modeling the dynamic dependencies of
input, by changing recurrent states in reservoirs through
TE term to Time encoding state.

• Long short-term memory mechanism (LS). TE-ESN leans
different temporal span dependencies, by incorporating not
only short-term memories from state in last time, but also
long-term memories from state in former k time (k is the
time skip) to Long short state.

• Series fusion (SF). TE-ESN also considers the horizontal
information between time series, by changing Reservoir
state according to not only the former state in its time series
but also the Neighbor state in other time series.
The coefficients γl and γf trade off the memory length in

Long short state and the fusion intensity in Reservoir state.

Algorithm 1 TE-ESN

Input: Utrain = {ud
t , t}: training input;

Ytrain = ydt , t: teacher signal;
Utest = {ud

t , t}: test input;
MT : maximum time;
γl: leaky rate; γf : fusion rate;
k: long term time span;
λ: regularization coefficient;
win: input scale of Win;
ρ(Wres): spectral radius of Wres;
α: sparsity of Wres;

Output: Ypre: prediction result.
1: Randomly initialized Win in [−win, win];
2: Randomly initialized Wres with α and ρ(Wres).
3: for i = 1 to |Utrain| do
4: for t = 1 to MT do
5: Compute TE(d, t) by Equation 7
6: Compute x̃(t) by Equation 9
7: end for
8: end for
9: X̃ = {x̃(t)}

10: TE = {TE(t)}
11: Compute Wout by Equation 11
12: for t = 1 to Ttest do
13: Compute TEtest(d, t) by Equation 7
14: Compute x̃test(t) by Equation 9
15: end for
16: X̃test = {x̃test(t)}
17: TEtest = {TEtest(t)}
18: Ypre =Wout(X̃test − TEtest)

Time Decoding Phase
The states in reservoir of TE-ESN have time information as
TE embeds time codes into the representations of model in-
put. For final value prediction, it should decode the time in-
formation and get the real estimated value at time tpre by
Equation 10. Further, by changing the time tpre, we can get
different prediction results in different time points.

y(tpre) =Wout(x̃(t)− TE(tpre)) (10)
Equation 11 is the calculation formula of the readout

weights when training to find a solution to the least squares
problem with regularization parameter λ.

min
Wout

||Ypre − Y ||22 + λ||Wout||22

Wout = Y (X̃ − TE)T ((X̃ − TE)(X̃ − TE)T + λI)−1

(11)
Algorithm 1 shows the process of using TE-ESN for pre-

diction. Line 1-11 obtains the solution of readout weights
Wout of TE-ESN by that using the training data. Line 12-18
shows the way to predict the value of test data. Assuming the
reservoir size of TE-ESN is fixed by N , The maximum time
MT is T , the input has D time series, the complexity is:

C = O(αTN2 + TND) (12)

4 Experiments
4.1 Datasets
• MG [Mackey and Glass, 1977] is a chaotic system. y(t +
1) = y(t) + δ(a

y(t− τδ )
1+y(t− τδ )n

− by(t)). δ, a, b, n, τ, y(0) =

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3013



Figure 2: Lactic dehydrogenase (LDH) forecasting for a 70-year-old female COVID-19 patient

BPRNNs-based ESNs-based Ours
M-RNN T-LSTM GRU-D ESN leaky-ESN DeepESN LS-ESN TV-ESN TE-ESN

MG 0.232±0.005 0.216±0.003 0.223±0.005 0.229±0.001 0.213±0.001 0.197±0.000 0.198±0.000 0.204±0.001 0.195±0.001
SILSO 2.950±0.740 2.930±0.810 2.990±0.690 3.070±0.630 2.950±0.590 2.800±0.730 2.540±0.690 2.540±0.790 2.390±0.780
USHCN 0.752±0.320 0.746±0.330 0.747±0.250 0.868±0.290 0.857±0.200 0.643±0.120 0.663±0.150 0.647±0.150 0.640±0.190

COVID-19 0.098±0.005 0.096±0.007 0.100±0.005 0.136±0.006 0.135±0.007 0.129±0.006 0.120±0.007 0.115±0.005 0.093±0.005
0.959±0.004 0.963±0.003 0.963±0.004 0.941±0.003 0.942±0.003 0.948±0.003 0.949±0.003 0.958±0.002 0.965±0.002

Table 1: Prediction results of nine methods on four datasets (COVID-19 mortality in AUC-ROC; Others in MSE)

0.1, 0.2,−0.1, 10, 17, 1.2. t random increases with irregu-
lar interval. The task is one-step-ahead-forecasting.

• SILSO [Center, 2016] provides open-source monthly
sunspot series from 1749 to 2020. It has irregular time
intervals, from 1 to 6 month. The task is one-step-ahead
forecasting from 1980 to 2019.

• USHCN [Menne and R., 2010] consists of daily meteoro-
logical data of 48 states from 1887 to 2014. Irregular time
intervals are from 1 to 7 days. Sampling rates are from 0.33
to 1 per day. We use the records of 4 neighboring states to
predict New York temperature in next 7 days.

• COVID-19 [Yan L, 2020] contains patients’ blood samples
from 10 Jan. to 18 Feb. 2020 at Tongji Hospital, Wuhan,
China. It has 80 features from 485 patients with 6877
records. Irregular time intervals are from 1 minus to 12
days. Sampling rates are from 0 to 6 per day. The task is
to early predict in-hospital mortality before 24 hours and
one-step-ahead forecasting for each biomarkers.

4.2 Baselines
• BPRNNs-based: There are 3 methods designed for ISTS

data with BP training - M-RNN [Jinsung et al., 2017], T-
LSTM [Baytas et al., 2017] and GRU-D [Che et al., 2018].
Each of them have be introduced in Section 2.

• ESNs-based: There are 4 methods designed based on ESNs
- ESN [Jaeger, 2002], Leaky-ESN [Jaeger et al., 2007],
DeepESN [Gallicchio et al., 2017] and LS-ESN [Zheng et
al., 2020]. Each of them have be introduced in Section 2.

• Our methods: We use TV-ESN with the time representation
embedded by TV, we use TE-ESN with the time represen-
tation embedded by TE.

4.3 Experiment Setting
We use Genetic Algorithms (GA) [Zhong et al., 2017] to op-
timize hyper-parameters shown in Table 5. For TV-ESN, we

Parameters Value range Parameters Value range

win, α, ρ (0, 1] γl, γf [0, 1]
k {2, 4, 6, 8, 10, 12} λ {10−4, 10−2, 1}

Table 2: Search settings of hyper-parameters

set ω = ci, dTV = 64. For TE-ESN, We set ωk,j =M
− 2j
dTE

j ,
where M0 = MT

2 ,M1 = MT,M2 = 2MT,M3 = 4MT
and dTE = 64. Results are got by 5-fold cross validation.
Method performances are evaluated by AUC-ROC and MSE.
Network property of ESNs is evaluated by Memory Capabil-
ity (MC) [Farkas et al., 2016] in Equation 13. where r2 is the
squared correlation coefficient.

MC =

∞∑
k=0

r2(u(t− k), y(t)) (13)

4.4 Results
The conclusions drawn from the results are shown in italics.

Prediction Results
Shown in Table 1: (1) TE-ESN outperforms all baselines
on four datasets. It means Learning two irregularities of
ISTS helps for prediction and TE-ESN has this ability. (2)
TE-ESN is better than TV-ESN in multivariable time series
datasets (COVID-19, USHCN) shows the effect of Property
3 of TE; TE-ESN is better than TV-ESN in univariable time
series datasets (SILSO, MG) shows the advantage of multi-
ple frequencies options of TE. (3) ESNs-based methods per-
form better in USHCN, SILSO and MG, while BPRNNs-
based method performs better in COVID-19. Which shows
the characteristic of ESNs that they are good at modeling the
consistent dynamic chaos system, such as astronomical, me-
teorological and physical. Figure 2 shows a case of forecast-
ing lactic dehydrogenase (LDH), an important bio-marker of
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Figure 3: Dimension and frequency setting of time encoding

ci, 32 ci, 64 ωd,i, 32 ωd,i, 64

MG 0.226±0.001 0.204±0.001 0.210±0.001 0.193±0.001
SILSO 2.690±0.600 2.540±0.79 2.550±0.750 2.390±0.780
USHCN 0.681±0.180 0.670±0.200 0.673±0.170 0.640±0.190

COVID-19 0.105±0.006 0.099±0.005 0.101±0.005 0.093±0.005
0.949±0.002 0.952±0.003 0.950±0.002 0.965±0.002

Table 3: Prediction results of TE-ESN with different ω, dTE

w/o TE w/o LS w/o SF TE-ESN

MG 0.210±0.001 0.213±0.001 0.193±0.001 0.193±0.001
SILSO 2.790±0.630 2.930±0.690 2.390±0.780 2.390±0.780
USHCN 0.713±0.120 0.757±0.210 0.693±0.160 0.640±0.190

COVID-19 0.135±0.006 0.130±0.006 0.125±0.007 0.093±0.005
0.943±0.003 0.949±0.003 0.956±0.003 0.965±0.002

Table 4: Prediction results of TE-ESN with different mechanisms

COVID-19 [Yan L, 2020; Sun et al., 2020c]. TE-ESN has
smallest difference between real and predicted LDH values.

Time Encoding Mechanism Analysis
Dot product between two sinusoidal positional encoding de-
creases with increment of absolute value of distance [Yan et
al., 2019]. (1) Figure 3 shows the relation of TE dot prod-
uct and time distance, it shows that using multiple frequencies
will enhance monotonous of negative correlation between dot
product and distance. (2) Table 3 shows the prediction results
in different TE settings, results shows that using multiple fre-
quencies can improve the prediction accuracy.

Ablation Study of TE-ESN
We test the effect of TE, LS and SF, which are introduced
in Section 3.3, by removing TE term, setting γl = 1 and
setting γf = 1. The results in Table 4 show that all the-
ses three mechanisms of TE-ESN contribute to the final pre-
diction tasks. TE has the greatest impact in COVID-19, the
reason may be that the medical dataset has the strongest ir-
regularity compared with other datasets. LS has the greatest
impact in USHCN and SILSO, as there are many long time
series, it is necessary to learn the dependence in different time
spans. SF has a relatively small impact, the results have no
change in SILSO and MG as they are univariate.

Hyper-Parameters Analysis of TE-ESN
In TE-ESN, each time series has a reservoir, reservoirs setting
can be different. Figure 4 shows COVID-19 mortality predic-
tion results when changing spectral radius ρ and time skip
k of LDH and hs-CRP. Setting uniform hyper-parameters or

Figure 4: Mortality prediction of TS-ESN with different ρ and k

win α ρ γl k γf λ

MG 1 0.1 0.7 0.8 6 1.0 10−2

SILSO 1 0.1 0.6 0.8 10 1.0 10−2

USHCN 1 0.1 0.7 0.8 12 0.8 10−2

COVID-19 1 0.2 0.8 0.8 2 0.8 10−2

1 0.3 0.9 0.7 4 0.9 10−2

Table 5: Best settings of hyper-parameters of TE-ESN

ESN leaky-ESN DeepESN LS-ESN w/o TE TE-ESN

MC 35.05 39.65 42.98 46.05 40.46 47.83

Table 6: Memory capacity results of ESNs-based methods

different hyper-parameters for each reservoir has little effect
on the prediction results. Thus, we set all reservoirs with the
same hyper-parameters for efficiency. Table 5 shows the best
hyper-parameter settings.

Memory Capability Analysis of TE-ESN
Memory capability (MC) can measure the short-term memory
capacity of reservoir, an important property of ESNs [Gallic-
chio et al., 2018]. Table 6 shows that TE-ESN obtains the best
MC, and TE mechanism can increase the memory capability.

5 Conclusions
In this paper, we propose a novel Time Encoding (TE) mech-
anism in complex domain to model the time information of
ISTS. It can represent the irregularities of intra-series and
inter-series. We create a novel Time Encoding Echo State
Network (TE-ESN), which is the first method to enable ESNs
to handle ISTS. TE-ESN can model both longitudinal long
short-term dependencies in time series and horizontal influ-
ences among time series. We evaluate the method and give
several model related analysis in two prediction tasks on four
datasets. The results show that TE-ESN outperforms the ex-
isting state-of-the-art and has good properties. Future works
will focus on the dynamic reservoir properties and hyper-
parameters optimization of TE-ESN, and will incorporate
deep structures to TE-ESN for better prediction accuracy.
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