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Abstract

In this paper, we propose a hyperspectral band
selection method via spatial-spectral weighted
region-wise multiple graph fusion-based spectral
clustering, referred to as RMGF briefly. Consid-
ering that different objects have different reflection
characteristics, we use a superpixel segmentation
algorithm to segment the first principal componen-
t of original hyperspectral image cube into homo-
geneous regions. For each superpixel, we con-
struct a corresponding similarity graph to reflect
the similarity between band pairs. Then, a multi-
ple graph diffusion strategy with theoretical conver-
gence guarantee is designed to learn a unified graph
for partitioning the whole hyperspectral cube into
several subcubes via spectral clustering. During the
graph diffusion process, the spatial and spectral in-
formation of each superpixel are embedded to make
spatial/spectral similar superpixels contribute more
to each other. Finally, the band containing mini-
mum noise in each subcube is selected to represent
the whole subcube. Extensive experiments are con-
ducted on three public datasets to validate the su-
periority of the proposed method when compared
with other state-of-the-art ones.
https://github.com/ChangTang/RMGF

1 Introduction

With the rapid development of hyperspectral remote sensing
imaging technology, a large number of hyperspectral images
(HSIs) are obtained. Compared to traditional RGB images,
HSIs contain more abundant information about land cover ob-
jects since a HSI cube consists of hundreds of spectral bands,
which record the reflectance of the scene by using different
electromagnetic waves [Goetz, 2009]. Therefore, it is widely
used in many fields, such as environmental monitoring, veg-
etation coverage estimation, and landslide detection. How-
ever, there are also non-negligible redundant information and
noisy bands mixed in original HSI cube, which not only de-
generate the performance but also induce high computational
complexity of subsequent hyperspectral image analysis. As a
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result, it is necessary to reduce the redundant and noisy band-
s.

In the past decades, there are mainly two kinds of ap-
proaches proposed for HSI band dimension reduction, i.e.,
feature extraction and band section [Sun and Du, 2019]. As to
the former one, original high-dimensional spatial data are of-
ten projected into a new feature space with lower dimension
based on certain criteria. The criteria are designed to learn
more discriminative features in the new feature space. The
typical methods include linear discriminant analysis (LDA)
[Bandos er al., 20091, principal component analysis (PCA)
[Chang er al., 19991, independent component analysis (ICA)
[Du et al., 20031, and maximum noise fraction [Green et al.,
1988]. However, the physical meaning of the new feature s-
pace obtained through feature projection is not clear. For the
latter, a subset of bands are selected from original data. The
selected bands are required to be distinctive and representa-
tive based on some learning algorithms. In such a manner,
the inherent band properties and physical meaning can be p-
reserved. In this work, we also focus on band selection [Wang
et al., 2019].

Based on the availability of sample labels, existing band
selection methods can be categorized into supervised ones
[Feng et al., 2014; Cao et al., 2019] and unsupervised ones
[Jia et al., 2012; Yuan et al., 2016]. For supervised meth-
ods, they need sample labels to train a classifier to select
the most optimal bands. In addition, the appropriate train-
ing model is hard to design and sufficient labels are not easy
to obtain. Compared to supervised methods, unsupervised
ones are more flexible since they do not need the sample la-
bels which are not available in practice in most cases. For
unsupervised methods, they just need certain prior of origi-
nal HSI data to construct leaning models with certain criteria
such as information divergence [Martinez-UsOMartinez-Uso
et al., 2007], sample similarity [Keshava, 2004], maximum
ellipsoid volume [Geng et al., 2014], etc.

For unsupervised hyperspectral band selection, clustering
and ranking are two commonly used strategies. Ranking-
based methods consists of two steps, i.e., evaluating the
importance of each band and than select the most impor-
tant bands. Typical evaluation criteria include information
entropy [Guo er al., 2006], information divergence [Chang
and Wang, 2006] and maximum variance [Chang er al.,
1999]. As a kind of typical unsupervised leaning, clustering
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Figure 1: Flowchart of our hyperspectral band selection method via
region-wise multiple graph fusion-based spectral clustering.

is widely used for hyperspectral band selection in the past
few years and obtain satisfying results [Yuan er al., 2015;
Zhang et al., 2017; Wang et al., 2018; Li et al., 2019;
Wang et al., 2019; 2020al. Clustering based methods first
partition original bands into several groups, then the optimal
band of each group is selected to form the new band subset
for subsequent tasks. Therefore, the clustering performance
is critical for final results.

However, there are still at least two issues that hinder the
band selection performance. Firstly, most of existing cluster-
ing based methods only take the correlation between neigh-
bouring bands into account, while neglect the global infor-
mation. Secondly, most of previous methods regard a certain
band as a whole and reshape it to a feature vector, while the d-
ifferent reflection characteristics of objects are not exploited.
In this paper, in order to tackle these two issues, we propose
a hyperspectral band selection method via region-wise mul-
tiple graph fusion-based spectral clustering (RMGF). Since
different objects are with different reflection characteristic-
s, we first segment the first principal component of original
hyperspectral image cube into homogeneous regions by us-
ing a certain superpixel segmentation, then we construct a
similarity graph to reflect the similarity between band pairs
corresponding to each region. For each region-wise graph,
we design a diffusion process to update it to approximate the
unified graph that reflects the global similarity between dif-
ferent bands. During the diffusion process, the spatial and
spectral distribution of different superpixels are taken consid-
eration, i.e., spatially adjacent superpixels should contribute
more to each other. Finally, an optimal similarity graph is
generated by using the multiple updated graphs and spectral
clustering is performed to obtain different band partitions for
band selection.

In a nutshell, the main contributions of this work are sum-
marized as follows:

e As far as we know, this is the first work that proposes to
fuse multiple graphs for clustering based hyperspectral
band selection.

e Instead of treating a certain hyperspectral band as a w-
hole to calculate the similarities between band pairs, we
segment the hyperspectral band into homogeneous re-
gions by considering that different objects are often with
different reflection characteristics.

e We design a graph diffusion strategy to fuse multiple
graphs for learning a consensus similarity graph that
reflects the global relationship of all the hyperspectral
bands. Extensive experiments are conducted to demon-
strate the superiority of our proposed method when com-
pared with other state-of-the-art hyperspectral band se-
lection methods.

2 Related Work

In this section, we introduce some related clustering-based
hyperspectral band selection methods which our proposed
method belongs to.

For clustering-based methods, each band is treated as a
data point and all of the bands are partitioned into several
groups. Then, for each group, the most representative band
is selected to form a new band subset. Based on the hier-
archical clustering structure, Martlnez-UsOMartinez-Uso et
al. [MartInez-UsOMartinez-Uso et al., 2007] proposed to se-
lect informative bands by minimizing the intra-class variance
as well as maximizing the inter-class variance. In [Wang et
al., 2018], the dynamic programming is used for hyperspec-
tral band partition. By estimating the band noise, the band
with minimum noise in each group is selected as the repre-
sentative band [Wang et al., 2019]. In order to determine
the appropriate number of selected bands, the context infor-
mation is utilized with a fast neighborhood grouping method
for hyperspectral band partition in a coarse to fine manner
[Wang er al., 2020a]. In [Yuan et al., 2015], a novel descrip-
tor is designed to reveal the context of HSI and a dual clus-
tering method which includes the contextual information is
proposed for band clustering. [Li ef al., 2019]. Based on the
concept of shared nearest neighbor, the local density of each
band and the information entropy are combined to select the
optimal band subset.

Although great success has been achieved by previous
clustering-based hyperspectral band selection methods, the
global information as well as the spatial distribution of ob-
jects with different reflection characteristics are not well tak-
en into consideration, which induces unsatisfactory results.
Following we will introduce our proposed method to handle
these issues in detail.

3 Proposed Methodology

In this section, the detailed process of our proposed RMGF
will be elaborated step by step. In summary, RMGF con-
sists of four main parts, i.e., homogeneous region segmen-
tation, region-wise similarity graph construction, similarity
graph diffusion and spectral-clustering based band selection,
as shown in Figure 1.
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3.1 Homogeneous Region Segmentation

In most of previous band selection methods, the spectral val-
ue of different pixels in a certain band are often stacked to
form a single feature vector for band selection. However, it
is well known that different objects are often with different
reflection characteristics. Therefore, different homogeneous
regions in hyperspectral images should be treated differently.
In this work, we segment hyperspectral volume into sever-
al homogeneous regions with each region representing a cer-
tain object. Considering the promising performance in both
efficacy and efficiency, we adopt the entropy rate superpix-
el segmentation (ESR) method [Liu ef al., 2011] to generate
multiple homogeneous regions. Of course, other segmenta-
tion algorithms can also be used. Given a hyperspectral cube
with size H x W x B which consists of B bands, in order
to capture the major information of hyperspectral as well as
reduce the computational cost, we first obtain the first princi-
pal component (denoted as Hy) of the hyperspectral images
by using principal component analysis (PCA) [Wold er al.,
1987]. Then, we can generate N superpixels by performing
ESR on H; as follows:

N
HfzgR,,, st. R,NR,=0, (¢#p), (1)

where R, is the p-th superpixel.

3.2 Region-wise Similarity Graph Construction

Based on the segmentation result of, for each superpixel, we
can obtain corresponding multiple superpixels from different
band which share the same pixel locations as the one in Hy.
Then we can calculate the similarity between each superpixel
pair that represent the same homogeneous region across dif-
ferent bands. In such a manner, a B x B similarity graph
which reflects the similarity of different bands in terms of
each region can be obtained. Specifically, supposing that the
feature vector represents the spectral values of the p-th super-
pixel in the ¢-th band and j-th band can be denoted as X;, and

x{,, respectively, then the p-th similarity graph can be calcu-
lated as follows:

i oi |2 . . 3 .
S, (i, j) = exp(%), xi, € Ni(x)) or xJ, € Ni(x})
0, otherwise,
. @
where Ny, (x,) denotes the set of k nearest neighbors of x), and

o is the kernel width of the Gaussian kernel function. Note
that other distance measuring functions or learning strategies
can be also used in Eq. (2) for calculating the similarity val-
ues. However, they are not our focus in this work and we just
use the Euclidean distance for its simplicity and efficiency.

3.3 Similarity Graph Diffusion

Since there may be inaccurate values in the similarity graphs
as obtained by Eq. (2), while there are often multiple su-
perpixels which represent the same or similar object classes.
Therefore, we design a diffusion strategy to update the initial
similarity graphs by exploiting the supplementary informa-
tion implied in different graphs [Tang et al., 2020].
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Given an initial M x M similarity graph S which indi-
cates the similarities between M sample points, a more faith-
ful similarity graph S can be learned via diffusion process. As
indicated by the manifold ranking model [Zhou et al., 2004,
Bai er al., 2017], we can obtain the new similarity graph S by
solving the following optimization problem:

1L s, 5, \
min — S;:S L — 9
s 2 Z Z o (\/D’iiDpp \/Dijqq>

i,j=1p,q=1 (3)

N
o 2
+uy (S —Siy),

i,5=1

where ;1 > 0 1is a regularization parameter. D is a diagonal de-
gree matrix with its i-th diagonal elements D;; = Zj\il Sij.
As can be seen from Eq. (3), it consists of two terms. The first
term is the analogy to local and global consistency [Zhou et
al., 2003] which regularizes that if data point ¢ is similar to
data point 7 and data point p is also similar to data point g on
original similarity graph S, then the learned new similarities
S;p and S;, should also be similar. The second term can be
regarded as a fitting term which regularizes that that a good
learned similarity graph should not change too much from its
initial status.

As derived in [Bai et al., 2017], Eq. (3) has a closed-form
solution as follows:

S = (1 — a)vec (I — ) tvec(F)), 4)
where o = ﬁ vec(+) is an operator which vectorizes

an input matrix by stacking its columns one by one and
the corresponding inverse operator is denoted as vec(-) ™.
A € RM?xM? s the Kronecker product of A, i.e., A ® A
1 1
withA =D 2SD" z.
Motivated by the previous works [Donoser and Bischof,
2013] that run in an iterative manner, the iteratively similarity
propagation can be also formulated as follows:

SUTY — GASWAT 1 (1 - a)s, (5)

where ¢ represents the ¢-th iteration time.

Eq. (5) has a obvious drawback since it can only update a
single similarity graph. In this work, we design a diffusion
strategy to update the multiple graphs corresponding to mul-
tiple regions of hyperspectral images by fully exploiting the
complementarity among different graphs.

In a certain band of the hyperspectral images, the superpix-
els with similar spectral values or closer spatial locations are
more likely to represent the same objects. Therefore, during
the diffusion process, the similarity graphs corresponding to
superpixels which are with similar spectral values as well as
closer spatial locations should contribute more to each other.
With this point in mind, for the similarity graph of the p-th
superpixel, we design the diffusion process to update S, as
follows:

N
1
Syt = oAy | o 2 ey [ AT (-8,
=1
gsﬁp

(6)
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where « is a parameter to balance the updated graph and its
initial status. In our experiments, on order to emphasize the
updated graph, we empirically set & = 0.7. wp, denotes the
weight that the g-th graph contributes to the p-th graph, which
can be defined as follows:

_ 2 l l
exp( el exp( e lall”)

Xp—Xq||2 2

Spgmrexp(pe) ) exp(lgpe)

)
where x,, and x, denote the p-th and g-th feature vector of the
corresponding superpixel in the the first principal component
(i.e., Hy) of the hyperspectral images as introduced in previ-
ous section. 1, and 1, denote the center pixel location of the
p-th and g-th superpixel in Hy. o, and o are two parame-
ters that control the spectral sensitivity and spatial sensitivity
of the element distribution, respectively. In Eq. (7), the first
term measures the spectral similarity of two superpixels while
the second term measures the spatial distance of two super-
pixels.

By using Eq. (6), the connection information in different
graphs can be interchanged iteratively to achieve the final u-
nified graph. On one hand, similarity values of different sim-
ilarity graphs are propagated to each other by the iterative
diffusion process. On the other hand, the information from
original similarity graphs are partially preserved by the scalar
parameter «. In addition, the spectral and spatial similarity
of different superpixels are used to weight the diffusion pro-
cess for better exploiting the complementarity among multi-
ple graphs.

After T times of diffusion, each single similarity graph cor-
responding to a superpixel can be updated to a stable status.
Then the final unified graph which reflects the similarity of
different hyperspectral bands can be obtained as follows:

5" %Z , ®)

which is used for final spectral clustering to partition original
hyperspectral bands into several band subsets.

Wpq =

3

3.4 Spectral-clustering Based Band Selection

Given a certain number of bands K that we want to select,
original hyperspectral bands can be partitioned to K subsets
by performing spectral clustering algorithm on S*. As to each
band subset, the band which is closest to the subset center is
selected as the representative band.

3.5 Theoretical Analysis of the Diffusion Process

Computational Complexity Analysis

As can be seen from Eq. (6), after we obtain the initial simi-
larity graphs of different superpixels, the major computation-
al cost of each diffusion iteration is the multiplication opera-
tion of matrices with size B x B, of which the computational
time complexity is O(B?). Therefore, the whole computa-
tional time complexity of the diffusion process is O(T B3),
where T is the final iteration times.
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Theoretical Convergence Analysis

In this section, we give the theoretical convergence analysis
of the iterative diffusion process. Similar to [Bai er al., 20171,
we firstly introduce the following Lemma 1.

Lemma 1. Given three matrices X, Y and Z with appropriate
sizes, then vec(XYZ') = (Z @ X)vec(Y).

By applying vec(+) to both sides of Eq. (6), we have

vec(S(tH)) = ozAvec(Q(t)) + (1 — a)vec(S,)

t—1
= (ah) vec(SV) + (1 — @) Y~ (ah) vec(S,)
k=0
)
where Q) = 15 Z wpeSL.
q=1,q#p

Since the spectral radius of A is no larger than 1, accord-
ing to the properties of Kronecker product, the eigenvalues of
A=A®Aarealsoin [—1, 1]. Since 0 < a < 1, we have

i t My =
tllglo Eai&) vec(Q,’) =0

lim > (aA)kvec(Sél)) =(I- aA)_lvec(Sz()l)).

t—o0 k=0
(10
Therefore, when t — oo, Eq. (9) converges as

lim vec(Sz(fH)) =(1

t—o0

a)(I— ozA)_lvec(Sz()l)). (11)

By applying vec™! to both sides of Eq. (11), the iteration
converges to exactly the same solution in Eq. (4).

4 Experiments

In this section, extensive experiments are conducted on
three commonly used public hyperspectral image datasets to
demonstrate the efficacy of the proposed method.

4.1 Datasets

Three datasets include Indian Pines scene, Pavia University
Scene and Salinas Scene are used for our experiments. The
detailed information are as follows.

Indian Pines Scene: This dataset was collected by the
AVIRIS sensor in 1992, which consists of 224 spectral bands
with the size of 145 x 145 pixels from 0.4 to 2.5um. There
are 16 different classes of land cover objects in the scene. S-
ince some bands (104-108, 150-163, and 220) are with heavy
noises due to water absorption, we discard those noisy bands
and finally fetch 200 bands for experiments.

Pavia University Scene: This dataset was captured over
Pavia by the ROSIS sensor in 2002. Similar to the Indian
Pines dataset, after removing some noisy bands, 103 spectral
bands are remained. The size of each band is 610 and there
are 9 classes of land cover objects in this scene.

Salinas Scene: This dataset was also gathered by the AVIRIS
sensor over Salinas Valley, CA, USA, in 1998. This dataset
is with a high spatial resolution (3.7-m pixels) and has a total
of 224 spectral bands with the size of 512 x 217. There are
16 classes of land cover objects in this scene.
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Datasets Classifiers UBS TOF ASPS_MN ASPS_IE FNGBS ONR RMGF
KNN 66.404+0.17 68.55+0.14 70.92+0.12 71.34+0.12 71.484+0.14 69.984+0.26 76.26+0.16
Indian Pines SVM 80.09+0.16 79.48+0.17 81.20+0.25 81.26£0.16 81.77+0.17 80.254+0.37 86.48+0.17

LDA 71.1240.18  70.90+0.10 70.46+0.32 70.20+£ 0.22 70.524+0.16  70.09+£0.20  81.19+0.12

KNN 86.43+0.07 86.00+0.04 87.284+0.15 87.07+£0.06 87.36+0.05 89.10+0.15 91.76+0.13

Pavia University SVM 94.33+0.05 94.104+0.02 94.084+0.26 93.95+0.14 94.46+0.07 94.27+0.14 96.35+0.09
LDA 84.194+0.06 84.16+0.08 84.06+0.16 83.62+0.09 84.20+0.04 83.48+0.13  90.49+0.07

KNN 89.33+0.03  88.95+0.05 8§9.384+0.14 89.14+0.04 89.24+0.05 89.33+0.13  92.35+0.12

Salinas SVM 93.26+0.04 93.464+0.04 93.13£0.15 93.08+0.05 93.25+0.06 93.35+£0.16 95.00+0.11
LDA 90.414+0.04 90.314+0.03 90.304+0.06 89.93+£0.02 90.374£0.03  90.69+0.15  92.32+0.08

Table 1: The OA and corresponding standard deviation of different band selection methods with different classifiers on three datasets. The
best results are highlighted in bold font.
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Figure 2: OA of three classifiers by varying the number of selected bands on the Indian Pines dataset. (a) OA obtained by KNN. (b) OA
obtained by SVM. (c) OA obtained by LDA.
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Figure 3: OA of three classifiers by varying the number of selected bands on the Pavia University dataset. (a) OA obtained by KNN. (b) OA
obtained by SVM. (c) OA obtained by LDA.
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Figure 4: OA of three classifiers by varying the number of selected bands on the Salinas dataset. (a) OA obtained by KNN. (b) OA obtained
by SVM. (c) OA obtained by LDA.

3042



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4.2 Compared Methods

In order to validate the superiority of our proposed RMGEF,
five other unsupervised hyperspectral band selection methods
are used for comparison, they are as follows:

1) UBS [Chang and Wang, 2006], which divides the hyper-
spectral image cube into multiple subcubes at equal width
based on the required number of selected bands, each seg-
mentation point is viewed as the representative band.

2) TOF [Wang et al., 2018], which aims to construct an opti-
mal clustering model with rank constraint to provide an effec-
tive criterion for selecting bands on existing clustering struc-
ture.

3) ASPS_MN [Wang et al., 2019], which performs hyper-
spectral band selection via an adaptive subspace partition s-
trategy. The representative band of each band subset is select-
ed based on band noise estimation.

4) ASPS_IE [Wang et al., 2019], similar to ASPS_MN that
selects representative bands from band subsets, but it differs
to ASPS_MN that the representative band of each band subset
is selected by the information entropy.

5) FNGBS [Wang et al., 2020al, which is a fast neighborhood
grouping method for hyperspectral band selection. The band
with the highest local density and information entropy of each
band subset is selected.

6) ONR [Wang et al., 2020b], which selects those bands that
are with high capability to reconstruct other bands and for-
mulates the band selection as a combinatorial optimization
problem.

4.3 Experimental Setup

In our experiments, three typical classifiers, including
k-nearest neighborhood (KNN), support vector machine
(SVM), and linear discriminant analysis (LDA), are used to
evaluate the classification performance of different band s-
election algorithms. Since the desired number of selected
bands is unknown and yet difficult to determine in practice
for different datasets, we vary the number of selected bands
from 5 to 60 with step 5 to illustrate the influence of differen-
t numbers of bands on the final classification accuracy. The
parameter k£ of KNN is set to 3 for all experiments. For the
SVM classifier, we implement it with the RBF kernel, and the
penalty C' and gamma are set 1e4 and 0.5, respectively.

For each dataset, 10% samples of each class are randomly
chosen to construct the training set, and the rest 90% samples
are used for testing. In addition, we perform each algorithm
ten times and report the average results for reducing the influ-
ence of random selection of training and testing samples.

4.4 Experimental Results

In order to validate the efficacy of the proposed method, we
compare it with other six state-of-the-art ones by using three
different classifiers. By selecting the optimal number of se-
lected bands, the overall accuracy (OA) of different methods
on three different datasets are shown in Table 1. The best
results are highlighted in bold font. As can be seen, our pro-
posed RMGF consistently outperforms other competitors in
terms of different classifiers on all of the three datasets.

As to the Indian Pines dataset, our RMGF obtains more
than 7% OA when compared to other methods by using dif-
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ferent classifiers. Specially, when using LDA as classifier, R-
MGEF gains more than 10% OA. For Pavia University dataset,
when using LDA as classifier, RMGF also obtains more than
5% improvement than other methods.

As aforementioned, it is difficult to determine the desired
number of selected bands in practice for different datasets,
we plot the OA curves for every five bands for each dataset
in Figure 2-4. As can be seen, our proposed method outper-
forms other ones in most of the numbers of selected bands.
As shown in Figure 2 and 3, by performing KNN and LDA
on the selected bands of RMGF, we can always obtain higher
OA on Indian Pines and Pavia University datasets. In Figure
4, we can see that RMGF can always select more discrimina-
tive bands for different classifiers.

5 Conclusion

In this paper, we present a hyperspectral band selection
method via spatial-spectral weighted region-wise multiple
graph fusion-based spectral clustering (RMGF). By consid-
ering that different objects have different reflection character-
istics, we partition the hyperspectral images into multiple ho-
mogeneous regions, with each region representing the same
class of object. For each region across different bands, we
constructs a corresponding similarity graph to reflect the sim-
ilarity between band pairs. Then, a spatial-spectral weighted
multiple graph fusion strategy is designed to learn a unified
graph for final band clustering. The optimal bands are select-
ed based on the clustering results. Extensive experiments on
three datasets are conducted to demonstrate the superiority of
RMGF when compared with other state-of-the-art methods.
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