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Abstract
Few-shot classification aims to recognize new
classes by learning reliable models from very few
available samples. It could be very challenging
when there is no intersection between the already-
known classes (base set) and the novel set (new
classes). To alleviate this problem, we propose to
evolve the network (for the base set) via label prop-
agation and self-supervision to shrink the distribu-
tion difference between the base set and the novel
set. Our network evolution approach transfers the
latent distribution from the already-known classes
to the unknown (novel) classes by: (a) label propa-
gation of the novel/new classes (novel set); and (b)
design of dual-task to exploit a discriminative rep-
resentation to effectively diminish the overfitting on
the base set and enhance the generalization ability
on the novel set. We conduct comprehensive exper-
iments to examine our network evolution approach
against numerous state-of-the-art ones, especially
in a higher way setup and cross-dataset scenarios.
Notably, our approach outperforms the second best
state-of-the-art method by a large margin of 3.25%
for one-shot evaluation over miniImageNet.

1 Introduction
By learning from large-scale labeled samples, deep learning
methods have upgraded performances of many computer vi-
sion tasks such as classification, detection, etc. Unfortunately,
it is hard to acquire and manually-annotate mass samples. In
contrast, humans can learn from very limited labeled samples
and recognize new classes accurately. For instance, children
can recognize a horse by learning from only few pictures in
a book. Many researchers have tried to enable AI models
to learn from few samples and one major research area is
few-shot learning: the model, which is pre-trained on large-
scale samples for already-known classes, is further extended
to classify new classes with only few labeled examples.

To enable few-shot learning, some existing methods adopt
the meta-learning framework to reduce the gap between the
training samples and the test samples. Metric-based methods
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pay too much attention to the type of embedding space and
overlook how to extract more transferable and discriminative
representation. On the other hand, transfer based methods
learn a good embedding on entire base set, but most of these
methods assume that the base set and the novel set share the
same embedding space, which is obviously not valid. They
learn the embedding on the base set whose already-known
classes are quite different from new classes in the novel set,
the gap between the base set and the novel set makes such
embedding not being generalized to the novel set.

To overcome the gap between the base set and the novel set,
some regularization techniques emerge such as mixup and
manifold mixup. They enhance the generalization through
the mixed images in a batch or feature mixture in the con-
volutional layer, which smooths the feature space and deci-
sion boundaries. For example, EPNet proposes a simple em-
bedding propagation to regularize the feature representation.
But none of these methods considers the distribution differ-
ence between the already-known (base) classes and the novel
classes. In summary, there are two issues for the existing
methods: (1) they assume the base set and the novel set share
the same embedding space. (2) existing regularization meth-
ods in few-shot learning have not yet made full use of the
information provided by the unlabeled data in the novel set.

Based on these observations, we propose to evolve the
network via label propagation and self-supervision to shrink
the distribution difference. Self-supervised Network Evolu-
tion involves the images for the novel classes to generate a
domain-specific network from the base network. A deep clus-
tering method is employed to propagate the labels of the novel
classes to further learn latent distribution from the known
classes to the unknown classes. Because a progressive clus-
tering algorithm is adopted, the incorrect pseudo labels are
inevitably generated. To alleviate the negative effects on la-
bel propagation while the network evolves, self-supervised
learning is designed to combine with the supervised learning
in the Network Evolution to force the model to learn richer
semantic information of the sample itself. Note that manual
annotations of the images for the novel classes are not re-
quired in our model.

Our main contributions are summarized as follows:
(1) A Self-supervised Network Evolution (SNE) model is

developed to deal with the distribution difference between the
already-known (base) classes and the novel/new classes.
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(2) A dual-task is designed to combine a self-supervised
task and a supervised task to exploit a discriminative repre-
sentation.

(3) Extensive experiments are conducted on miniIma-
geNet, CIFAR-FS, and FC-100 to verify the performance of
our proposed method. In particular, our method can achieve
superior performance on a higher way setup and the cross-
dataset scenario evaluation.

2 Related Work
In this section, we provide a review for two most relevant
researches: few-shot learning and self-supervised learning.
Few-shot Learning: Few-shot learning approaches can
be roughly categorized into three divisions: meta-learning
based methods, metric-learning based methods, and transfer-
learning based methods.

Meta-learning-based methods aim to learn a set of
commonly-shared parameters, so that the model can adapt
to the new tasks in few steps. The most classic method is
MAML [Finn et al., 2017], which learns a set of the initial-
ization parameters to adapt to a new task in very few gradient
steps. However, this kind of method usually needs to compute
the costly higher-order gradients. To reduce the computation
load, LEO [Rusu et al., 2019] uses an encoder and relation
network to project the sample into a low-dimensional space
and utilizes a decoder to transfer to high-dimension param-
eters. In our work, we employ a conventional classification
setting to avoid massive computation.

Metric-learning-based methods aim to learn a metric space.
For instance, MatchingNet [Vinyals et al., 2016] is the first
deep metric method to enable few-shot classification. It pre-
dicts the similarity between the support and query embedding
by cosine distance space. ProtoNet [Snell et al., 2017] com-
putes the average of the support set as prototypes to predict
similarity in the Euclidean distance space, while Relation-
Net [Sung et al., 2018] creates a learnable distance space by
CNN. [Bateni et al., 2020] and [Zhang et al., 2020] propose
to use the Mahalanobis distance and Earth Mover distance in
the few-shot task. Metric-based methods focus more on the
choice of the metric space but ignore the feature embedding.
We propose to learn a good feature embedding and address
the distribution difference between the base and novel set.

The key difference between transfer-based methods and
other methods is the setting in the training stage. The meth-
ods using the meta-learning framework in the training stage
mimic the test set to reduce the gap between training and
test sets. In contrast, the transfer-based methods [Chen et
al., 2019] generally train a feature extractor under the con-
ventional classification setting on the base set, and then fine-
tune a cosine classifier. RFS [Tian et al., 2020] learns a lo-
gistic regression classifier instead of a cosine classifier and
obtains competitive performance compared with the meta-
learning based methods. Different from these methods, our
SNE model proposes label propagation and network evolu-
tion to learn more generalization embeddings, which reduces
the distribution difference between the base and novel set.
Self-supervised Learning: Self-supervised learning is
used in many applications, which mainly uses pretext tasks

to mine its own supervised information from large-scale un-
supervised data. In computer vision, most works focus on the
context information to construct a pre-text task. For exam-
ple, [Doersch et al., 2015] splits an image into nine pieces
and then predicts the relative position to learn the semantic
information. [Noroozi and Favaro, 2016] further extends this
method to predict the permutation of the nine patches, which
makes the pretext task more difficult and learns more posi-
tive information. Similar to the context prediction, [Pathak
et al., 2016] erases a part of the image and lets the model
reconstruct the whole image. [Zhang et al., 2016] leverages
the color information by predicting the color of the image
given the gray-scale image. [Gidaris et al., 2018] constructs
the pretext task by predicting the angle of the image provided
with the rotated version of the original image before they are
input to the feature extractor. [Gidaris et al., 2019] employs
the self-supervised technique in the training process on the
base set to enhance the representation ability. In contrast, we
adopt the rotation self-supervision to alleviate the incorrect
label propagation in our network evolution process.

3 Our Proposed Method
In this section, we elaborate the proposed Self-supervised
Network Evolution (SNE) model for the few-shot classifica-
tion task. The task setup is described in Section 3.1 and the
SNE model is described in Section 3.2.

3.1 Few-shot Classification Setup
The few-shot classification dataset is divided into three parts:
base set (Db), validation set (Dv), and novel set (Dn), where
categories from these three sets are distinct (e.g., a cate-
gory in the base set cannot be found in the novel set). The
base set consists of a large number of labeled images Db =
{(xi, yi), i = 1, 2, · · · ,mb} where yi ∈ ybase. The novel
set is composed by relatively small amount of labeled data
Dn = {(xj , yj), j = 1, 2, · · · ,mn} where yj ∈ ynovel. No-
tice that ybase∩ynovel = ∅. The validation set Dv consists of
the classes different from both Db and Dn, and is employed
to determine the hyperparameters. For the episode setting,
we follow the N-way K-shot task. Each episode consists of n
classes randomly selected from the dataset, a labeled support
set (S) containing k images per class, and an unlabeled query
set (Q) including q images per class.

3.2 Self-supervised Network Evolution
Our proposed SNE model is evolved through three stages by
adding various ingredients. First, a base network is learned
from base classes, where a base embedding space is con-
structed. Secondly, to learn latent distributions evolved from
known classes to unknown classes, deep clustering is em-
ployed to propagate pseudo labels of novel classes. Thirdly,
the network is evolved by a designed dual-task, which con-
sists of a self-supervised task and a supervised task con-
strained by pseudo labels of novel classes. The entire archi-
tecture is described in Figure 1.

Embedding Space: The embedding space is built by learn-
ing a base network Nbase through a linear classifier CB on
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Figure 1: The architecture of the proposed Self-supervised Network
Evolution model.

the base set Db = {(xi, yi), i = 1, 2, · · · ,mb}. The classi-
fier is trained to predict the label of the images in the base set
and is formulated by minimizing the standard cross-entropy
objective as shown in Eq. 1 where zxi denotes for the embed-
ding of the input image xi. p(yi|zx, CB) represents the class
probability and is acquired by appending a softmax layer on
the output of the linear classifier.

Ls(xi, yi;CB , Nbase) = − ln p(yi|zxi
, CB) (1)

Label Propagation: In the few-shot setting, the classes
from the base set are never mingled with the classes of the
novel set. On this issue, currently many few-shot methods
directly assume that the base set and the novel set share the
embedding network to extract features, which is obviously
not valid. Transfer learning-based methods can employ the
data and corresponded labels of the target domain to fine-tune
the network, but the utilization of labels from the target do-
main (novel set) shatters the strict few-shot setting. Some
Unsupervised Domain Adaptation (UDA) methods align the
source and target domain by matching the data distribution
using MMD (Maximum Mean Discrepancy), and others fix
the classifier and fine-tune the feature extractor to adapt the
target domain. These UDA methods require the source and
target set have common categories, which is not suitable for
the few-shot problem. To tackle this issue, we propose to
evolve the network from known categories to unknown cat-
egories by learning latent distributions. Specifically, we first
utilize the base embedding network Nbase to extract features
Fn from the penultimate layer on the image xj of the novel
set Dn = {(xj , yj), j = 1, 2, · · · ,mn} . Then, all the fea-
tures are clustered into groups and a pseudo label is propa-
gated to each group. These pseudo labels construct a pseudo
novel set named Dpn = {(xj , ypj), j = 1, 2, · · · ,mn}. In

the process of clustering, we employ SCAN [Gansbeke et al.,
2020] to decouple the feature learning and clustering. Fea-
tures from the embedding space are utilized to find C nearest
neighbors of each image. Then, we apply a loss function (Eq.
2) to maximize the dot product between each image and its
mined neighbors so that images can be automatically grouped
into semantically meaningful clusters. Here, Φη is clustering
function parameterized by a neural network with weights η.
NX stands for the neighbors of sample X . K is the clusters
K = {1, ...K}.

Lscan = − 1

|Dn|
∑
X∈Dn

∑
n∈NX

log〈Φη(X),Φη(n)〉

+ λ
∑
k∈K

Φ′kη logΦ′kη , Φ′kη =
1

|Dn|
∑
X∈Dn

Φkη(X)

(2)

Network Evolution: In the third stage, we first learn a Con-
volutional Network NnovelS with a single task, which mini-
mizes the standard cross-entropy objective with the pseudo
novel set Dpn as described in Eq. 3, where ypj is the pseudo
label of the image in the novel set and p(ypj |zxj

, CS) is the
probability that the input image is predicted as ypj . Com-
pared with Nbase, the network NnovelS evolves to adapt to
the novel set. However, there might exist a mass of incorrect
label propagation, which may confuse the network and finally
damage the performance.

Ls(xj , ypj ;CS , NnovelS ) = − ln p(ypj |zxj , CS) (3)

To restrain the inaccurate label propagation, we design
a dual-task by collaborating a supervised task and a self-
supervised task simultaneously. By orienting input images,
the self-supervised task is defined as the prediction of ori-
ented angles on these images. This enforces the network to
learn more semantic information and focuses on high-level
embedding. In our work, we construct four oriented angles
denoted by r ∈ R = {0◦, 90◦, 180◦, 270◦}. On each input
image, a rotation with angles r in R is operated. We repre-
sent the oriented image by xrj and the corresponding label is
yr. A rotation classifier CR predicts the angle of an image,
which is formulated by ŷ = CR ◦ ẑ, where (a ◦ b) indicates
b is input into a, ŷ is the predicted angle, and ẑ is the feature
of input image extracted by the network NnovelS . Further,
we define the objective of the self-supervision task in Eq. 4,
where p(yrj |zxr

j
, CR) is the probability that the input image

xrj is predicted to be oriented with an angle of r by CR.

Lr(xrj , yrj ;CR, NnovelD ) = − ln p(yrj |zxr
j
, CR) (4)

In the network evolution, we first cluster the features ex-
tracted from the novel set by the networkNbase and propagate
a pseudo label to each cluster to construct the pseudo novel
set Dpn. With the same architecture to Nbase, the network is
further evolved to NnovelD by training under the dual-task,
which is encoded by linear layers named CS and CR, re-
spectively. The first task aims to predict the label of samples
on the pseudo novel set and the optimization objective is de-
scribed in Eq. 3. The second task aims to predict the oriented
angle of the input image and the optimization objective is pre-
sented in Eq. 4. Due to the joint learning of a supervised task
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(a) (b) (c)

Figure 2: The T-SNE visualization of feature distribution executed
on images from the novel set of miniImageNet. The feature embed-
ding is extracted by (a) Base Network; (b) Novel-S Network trained
with a single task; (c) Novel-D Network trained with the dual-task.

and a self-supervised task, multiple objectives are involved,
including an image rotation classification and a standard im-
age classification. Conventionally, linear weighting can be
employed to balance multiple tasks, as formulated in Eq. 5.

Lall = (1− w)Ls + wLr (5)

But it is difficult to tune this weight because an optimal
weighting of each task is impacted by many factors such as
the measurement scale, the magnitude of the noise in each
task, etc. To deal with this multi-task problem, we adopt an
adaptive way (as described in Eq. 6) that considers the ho-
moscedastic uncertainty of each task to combine multiple loss
functions [Kendall et al., 2018].

Lall =
1

2δ21
Ls +

1

2δ22
Lr + log δ1 + log δ2 (6)

where δ1, δ2 ∈ R are parameters learnt through the back-
propagation of the network in the training process. Ls is a
standard classification task as formulated in Eq. 3 and Lr is
a rotation classification task described in Eq. 4.

In addition, we utilize the T-SNE technique [Maaten and
Hinton, 2008] to visualize the distribution of features (2-dim)
extracted from images in the novel set during the network
evolution. The results are reported in Figure 2. The base net-
work Nbase first learns the knowledge from seen classes in
the base set (Figure 2 (a)) and it has the preliminary ability
to generate vaguely discernible feature representation. How-
ever, it has a large inter-class variance, and the embedding of
different classes is mostly mixed. As the network evolves to
NnovelS , the distribution of unseen classes is slightly sepa-
rated into clusters (as shown in Figure 2 (b)) compared with
the feature distribution performed by Nbase in Figure 2 (a).
When the network evolves to NnovelD , the clusters are rather
segregated, as visualized in Figure 2 (c), which demonstrates
the representation ability of our SNE model.

4 Experiments
In this section, we first introduce our experimental setting in-
cluding datasets, implementation details, and evaluation cri-
teria. Extensive experiments are conducted on three widely
used benchmarks for the few-shot classification task and com-
parisons with a number of state-of-the-art methods are re-
ported in Section 4.2. We execute ablation studies in Section
4.3 where the contributions of components in the SNE model
are analyzed. To further verify the robustness of our SNE

model, we evaluate SNE with several other approaches in a
higher way setup and cross-dataset scenarios in Section 4.4.

4.1 Experimental Settings
Datasets: Experiments are executed on three widely used
datasets for few-shot classification: miniImageNet, CIFAR-
FS, and FC100. The miniImageNet dataset is a subset of Im-
ageNet, which contains 100 classes with 600 images per class
randomly selected from the 1000 classes in ImageNet. The
CIFAR-FS dataset is constructed from the standard CIFAR-
100 dataset, which includes 100 classes with 600 images per
class. Both miniImageNet and CIFAR-FS are randomly split
into 3 parts: 64 base classes, 16 validation classes, and 20
novel classes. The FC100 dataset is also built from the stan-
dard CIFAR-100 dataset with 100 classes with 600 images
per class. Different from the above two datasets, the classes
in FC100 are split based on the superclass. Base classes con-
tain 12 superclasses (60 classes), validation classes incorpo-
rate 4 superclasses (20 classes), and novel classes comprise 4
superclasses (20 classes). Images in miniImageNet, CIFAR-
FS, and FC100 are resized to 84x84, 32x32, 32x32.
Implementation Details: We use ResNet-12 as our back-
bone in all experiments. The ResNet-12 contains 4 Residual
blocks, and each residual block consists of 3 convolutional
layers with a 3x3 kernel followed by a Batchnorm2d layer and
a ReLu layer. The first three residual blocks apply a 2x2 max-
pooling layer, and the last residual block employs an adaptive
pooling to ensure the adaptation of different input scales. The
ResNet-12 finally outputs a 640-dimensional embedding. We
adopt SGD optimizer with a momentum of 0.9 and a weight
decay of 5e−4. We train 100 epochs for all the datasets, with
a batch size of 128. The learning rate is set to 0.05 at first and
is declined at the 60th and 80th epoch by a factor of 0.1. In
the training process, the baseline method RFS needs 2.7 hours
and our SNE requires 5.7 hours. In evaluation, one episode
evaluation needs 0.1s for 1-shot and 0.2s for 5-shot. In all
the experimental tables, we use the following denotations. †:
the WRN-28-10 backbone. ♣: the Conv-32F backbone. ♠:
the Conv-64F backbone. ♦: the Capsule Network backbone.
Others: the ResNet12 backbone.
Episode Evaluation Criteria: We use the N-way K-shot
episode evaluation setting. 5-way 1-shot and 5-way 5-shot
are widely used for few-shot classification. Each episode ran-
domly selected 5 classes in the novel set and sample 1/5 im-
age(s) per class as the support set and Q images per class
as the query set. For all the three datasets (miniImageNet,
CIFAR-FS, and FC100), 1000 episodes with Q = 15 are exe-
cuted and we repeat the experiments 10 times and record the
accuracy by averaging these results.

4.2 Comparisons with State-of-the-arts
In this section, we compare our method with state-of-the-art
approaches in the 5-way 1-shot task and the 5-way 5-shot task
for few-shot classification.
Results on MiniImageNet: We compare multiple classic
and state-of-the-art methods on the miniImageNet benchmark
in Table 1. Our method achieves the best accuracy for 1-shot
(71.02±0.08) and ranks number two for 5-shot (84.56±0.05
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Methods 1-shot 5-shot
MAML♣ [Finn et al., 2017] 48.70±1.84 63.11±0.92
ProtoNet♠ [Snell et al., 2017] 49.42±0.78 68.20±0.66
TADAM [Oreshkin et al., 2018] 58.50±0.3 76.60±0.3
RFS [Tian et al., 2020] 62.02±0.63 79.64±0.44
MetaOptNet [Lee et al., 2019] 62.64±0.61 78.63±0.46
S2M2† [Mangla et al., 2020] 64.92±0.18 83.18±0.11
DeepEMD [Zhang et al., 2020] 65.91±0.82 82.41±0.56
EPNet [Rodrı́guez et al., 2020] 66.50±0.89 81.06±0.60
FEAT [Ye et al., 2020] 66.78±0.20 82.05±0.14
ICI [Wang et al., 2020] 66.8±n/a 79.26±n/a
DSN-MR [Simon et al., 2020] 67.09±0.68 81.65±0.69
DPGN [Yang et al., 2020] 67.77±0.32 84.60±0.43
SNE (Ours) 71.02±0.08 84.56±0.05

Table 1: Comparisons of average accuracies (%) with 95% confi-
dence intervals against state-of-the-art methods for 1-shot and 5-shot
classification on the miniImageNet benchmark.

Methods 1-shot 5-shot
ProtoNet♠ [Snell et al., 2017] 55.5±0.7 72.0±0.6
MAML♣ [Finn et al., 2017] 58.9±1.9 71.5±1.0
RFS [Tian et al., 2020] 71.5±0.8 86.0±0.5
ProtoNet [Snell et al., 2017] 72.2±0.7 83.5±0.5
MetaOptNet [Lee et al., 2019] 72.6±0.7 84.3±0.5
J.Kim [Kim et al., 2020] 73.51±0.92 85.65±0.65
ICI [Wang et al., 2020] 73.97±n/a 84.13±n/a
S2M2† [Mangla et al., 2020] 74.81±0.19 87.47±0.13
DSN-MR [Simon et al., 2020] 75.6±0.9 86.2±0.6
Fine-tune† [Dhillon et al., 2020] 76.58±0.68 85.79±0.50
DPGN [Yang et al., 2020] 77.9±0.5 90.2±0.4
SNE (Ours) 79.53±0.05 88.56±0.05

Table 2: Comparisons of average accuracies (%) with 95% confi-
dence intervals against state-of-the-art methods for 1-shot and 5-shot
classification on the CIFAR-FS benchmark.

). Among all the comparative methods, the MAML and Pro-
toNet are the pioneering works in few-shot learning. RFS
employs the same cross-entropy loss to train the feature ex-
tractor, which provides a baseline for ours. RFS obtains an
accuracy of 62.02% for 1-shot, which is 9% behind ours. This
proves the effectiveness of network evolution. The best per-
former for the 5-shot task is DPGN, and it outperforms our
SNE model by a slight gain of 0.04% (84.60% VS. 84.56%).
However, when focusing on the 1-shot task, ours outperforms
DPGN by a large margin of 3.25% (71.02% VS. 67.77%).
Compared to the metric-based methods TADAM and Deep-
EMD, our SNE model leads them by 12.52% and 2.25% for
1-shot, respectively. ICI is a semi-supervised method that em-
ploys the unseen query set to enhance the classifier. Both
our SNE model and ICI employ unlabelled data, but ICI only
achieves an accuracy of 66.8% for 1-shot, which is 4.42%
fewer than ours. This demonstrates that our SNE model pos-
sesses a better ability to transfer latent distribution from seen
classes to unseen classes.

Results on CIFAR-100 Derivatives: We perform experi-
ments on two CIFAR-100 derivatives, including CIFAR-FS
and FC100. Table 2 and Table 3 reflect the results of CIFAR-

Methods 1-shot 5-shot
ProtoNet♠ [Snell et al., 2017] 35.3±0.6 48.6±0.6
MAML♣ [Finn et al., 2017] 38.1±1.7 50.4±1.0
TADAM [Oreshkin et al., 2018] 40.1±0.4 56.1±0.4
MetaOptNet [Lee et al., 2019] 41.1±0.6 55.5±0.6
J.Kim et al [Kim et al., 2020] 42.31±0.73 58.16±0.78
RFS [Tian et al., 2020] 42.6±0.7 59.1±0.6
E3BM [Liu et al., 2020] 43.2±0.3 60.2±0.3
Centroid [Afrasiyabi et al., 2020] 45.83±0.48 59.74±0.56
DeepEMD [Zhang et al., 2020] 46.47±0.78 63.22±0.71
F.Wu et al♦ [Wu et al., 2020] 47.5±0.9 59.8±1.0
SNE (Ours) 50.51±0.05 64.89±0.05

Table 3: Comparisons of average accuracies (%) with 95% confi-
dence intervals against state-of-the-art methods for 1-shot and 5-shot
classification on FC100 benchmark.

miniImageNet CIFAR-FS
ST DT AL 1-shot 5-shot 1-shot 5-shot
× × × 61.19 79.91 66.69 82.46
X × × 66.78 81.15 73.87 84.93
X X × 70.27 84.19 79.35 88.33
X X X 71.02 84.56 79.53 88.56

Table 4: Ablation studies on the components of the proposed SNE
model on miniImageNet and CIFAR-FS. The baseline (the first row)
is the direct utilization of Nbase without network evolution. ST in-
dicates the network evolution with label propagation (Eq. 3), DT
stands for the network evolution by dual-task (Eq. 5), and AL sug-
gests the adaptive multi-task loss (Eq. 6).

Parameter C 15 20 25
1-shot 70.27% 71.02% 69.71%
5-shot 84.64% 84.56% 83.89%

Table 5: Ablation study of the Parameter C on miniImageNet.

Backbone Conv-64F ResNet12 SEResNet12
1-shot 51.78% 71.02% 71.21%
5-shot 65.34% 84.56% 84.35%

Table 6: Ablation study of different backbones on miniImageNet

FS and FC100, respectively. On CIFAR-FS, ours ranks num-
ber one for the 1-shot task and obtains a slightly lower perfor-
mance behind DPGN on the 5-shot task. Compared with the
baseline method RFS, ours enhances the 1-shot task by a gain
of +8.03% and a margin of +2.56% on the 5-shot task. Our
method attempts to learn a good embedding of images rather
than a prototype of a set of images. For FC100, our method
achieves a new state-of-the-art performance both on 1-shot
and 5-shot tasks, which outperforms the second-best SOTA
method by a large margin of 3.01% on the 1-shot evaluation.

4.3 Ablation Study
In this section, an ablation study is conducted on miniIma-
geNet and CIFAR-FS to analyze the impacts of different com-
ponents and parameters in our SNE model. Four settings are
compared: (1) the direct utilization of Nbase without network

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3049



5-way 10-way 15-way 20-way
Methods 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Baseline++ [Chen et al., 2019] 57.53 72.99 40.43 56.89 31.96 48.2 26.92 42.8
LEO [Rusu et al., 2019] 61.76 77.59 45.26 64.36 36.74 56.26 31.42 50.48
S2M2† [Mangla et al., 2020] 64.93 83.18 50.4 70.93 41.65 63.32 35.5 58.36
EPNet† [Rodrı́guez et al., 2020] 70.74 84.34 53.70 72.17 44.55 64.44 38.55 59.01
SNE (Ours) 71.02 84.56 59.32 76.06 52.7 70.46 47.45 65.94

Table 7: Evaluations on a higher way setup. Different values of N (N-way K-shot) are set for the few-shot classification task on miniImageNet.

evolution (baseline); (2) network evolution with label propa-
gation; (3) network evolution with dual-task; (4) SNE model.

The results are summarized in Table 4. Network Evolu-
tion brings a significant improvement of 5.59% on the 1-
shot task compared with the baseline (66.78% VS. 61.19%)
on miniImageNet. It verifies that the network evolution ef-
fectively transfers and adapts the source knowledge (base
classes) to the target domain (novel classes). By bringing the
self-supervised task in the network evolution, a gain of 3.49%
is observed because the impacts of incorrect label propaga-
tion are effectively mitigated. To analyze the effect of the
adaptive multi-task loss, we set the conventional multi-loss
as Lall = 0.5Ls + 0.5Lr. Our full SNE model adopts the
adaptive multi-task loss technique, which boosts the perfor-
mance by a margin of 0.75% against the conventional loss on
miniImageNet. The improvement is not obvious on CIFAR-
FS, and a possible reason is the uncertainty of the task on
CIFAR-FS is not as high as that on miniImageNet.

Besides, we also execute an ablation study to analyze the
effects of C in the C-nearest neighbor of our clustering stage
(see also Section 3.2). Three settings of C are examined, in-
cluding 15, 20, and 25. Table 5 reveals the results, where
20 achieves the best performance in the 1-shot evaluation and
occupies the second place in the 5-shot evaluation, but it only
lags the best performer (C=15) by 0.09% (5-shot). When
C drops to 15, the diversity of C-nearest images decreases,
which results in a decline of 1-shot accuracy. As C increases
to 25, the quality of deep clustering is impacted, which may
also influence the accuracy of the few-shot classification.

Lastly, we analyze the impacts of backbones (Conv-64F,
ResNet12, SEResNet12) on miniImageNet. The results are
shown in the Table 6. ResNet12 and SEResNet12 obtain a
similar result while Conv-64F shows relatively worse results
due to its limited representation ability.

4.4 Evaluations on a Higher Way Setup and
Cross-dataset Scenarios

Impacts of N in N-way K-shot: To testify the robustness of
our model, we evaluate our method in the few-shot scenario
with more categories. We increase the value of N in N-way K-
shot from 5 to 10, 15, and 20. This makes the evaluation more
complicated and closer to a real scenario. The results are
summarized in Table 7. Compared with other state-of-the-art
algorithms, our method achieves the best accuracy in all sce-
narios. With the increase of N, the difficulty of the evaluation
gradually increases and the advantages of our method over
other SOTA methods become more obvious. In the 20-way
scenario, our method improves the second-best performer EP-

miniIN⇒ CIFAR-FS miniIN⇒ FC100
Methods 1-shot 5-shot 1-shot 5-shot
baseline++ 42.23 61.62 33.74 47.46
RFS 58.2 74,8 41.9 55.63
S2M2 52.42 72.9 39.99 56.06
SNE (Ours) 67.79 82.99 63.08 81.41

Table 8: Evaluations on cross-dataset scenarios.

Net by a large gain of 8.9% (38.55% VS. 47.45%) in 1-shot
and 6.93% (59.01% VS. 65.94%) in 5-shot, which proves the
generalization ability to more classes of our SNE model.

Cross-dataset Evaluation: Each dataset has a unique data
distribution. MiniImageNet has higher image resolution and
lower inner-class similarity, while CIFAR-100 derivatives
have lower image resolution and higher inner-class similarity.
In fact, domain differences not only exist in the same dataset
but also exist between datasets in real scenarios. Therefore,
we further evaluate the few-shot classification accuracy over
cross-dataset: miniImageNet ⇒ CIFAR-FS and miniIma-
geNet ⇒ FC100. The experimental results are reported in
Table 8 where miniIN stands for miniImageNet. It is clear
from the results that our method has a great advantage over
other methods in the cross-dataset scenario. This suggests
that our method can transfer the knowledge of base classes to
novel classes even they are from different datasets.

5 Conclusion
In this work, a Self-supervised Network Evolution (SNE)
model is developed to deal with the problem of few-shot
classification. The network evolution encodes the latent dis-
tribution transferring from the already-known classes to the
novel/new classes by label propagation and self-supervised
learning (dual-task design). The dual-task exploits a discrim-
inative representation to effectively alleviate the propagation
of incorrect pseudo labels in the network. We have conducted
extensive experiments to demonstrate our SNE model in var-
ious few-shot scenarios. In the standard few-shot evaluation,
our method can achieve state-of-the-art performance on mini-
ImageNet and CIFAR-FS. Furthermore, our SNE model has
presented a superiority in a higher way setup and the cross-
dataset evaluation as well.
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