
Compositional Neural Logic Programming

Son N. Tran
University of Tasmania

sn.tran@utas.edu.au

Abstract

This paper introduces Compositional Neural Logic
Programming (CNLP), a framework that integrates
neural networks and logic programming for sym-
bolic and sub-symbolic reasoning. We adopt the
idea of compositional neural networks to repre-
sent first-order logic predicates and rules. A voting
backward-forward chaining algorithm is proposed
for inference with both symbolic and sub-symbolic
variables in an argument-retrieval style. The frame-
work is highly flexible in that it can be constructed
incrementally with new knowledge, and it also sup-
ports batch reasoning in certain cases. In the exper-
iments, we demonstrate the advantages of CNLP in
discriminative tasks and generative tasks.

1 Introduction
The integration of neural networks and symbolic knowl-
edge has been an important research topic in artificial in-
telligence for decades. The combination of connectionist
models for low-level information processing and logic pro-
grams for high-level decision making can offer improvements
in inference efficiency and prediction performance [Tow-
ell and Shavlik, 1994; Serafini and d’Avila Garcez, 2016;
Cohen et al., 2017; Tran and d’Avila Garcez, 2018; Riveret
et al., 2020; Yang et al., 2017]. However, the co-existence
of symbolic and sub-symbolic variables makes it challeng-
ing for the reasoning. Although sub-symbolic variables can
be incorporated nicely in neuro-symbolic systems to infer the
truth values of symbolic variables [Donadello et al., 2017;
Manhaeve et al., 2018], there is still a question of how we can
achieve general reasoning where any variables, either they are
symbolic or sub-symbolic, can be inferred. For example, we
would like to have a reasoning algorithm to answer not only
a question + =? but also + = 8. Such type of rea-
soning would provide great flexibility to improve the learning
and inference for both discriminative and generative tasks.

It has been shown that machine reasoning can be done
by manipulating knowledge acquired from learnable mod-
els, such as neural networks [Bottou, 2014]. The composi-
tion of neural networks can offer modularity, explainability,
and recursion [Wang et al., 2019; Pierrot et al., 2019], and

therefore, is well suited for symbolic knowledge representa-
tion and reasoning. In this paper, we present a compositional
approach to integrate neural networks and symbolic knowl-
edge for effective learning and efficient reasoning. In par-
ticular, we propose Compositional Neural Logic Program-
ming framework (CNLP), a neural network-based structure
consisting of different sub-networks, called here as neural
predicates, each represents a first-order logic predicate in a
knowledge base (KB). In this work, we introduce two types
of neural predicates, namely symbolic neural predicate and
compositional neural predicate. A symbolic neural predi-
cate is an auto-encoderNAE

P representing an M -arity (logic)
predicate P of only symbolic arguments. The auto-encoder is
constructed using facts from the predicate. A compositional
neural predicate is a combination of discriminative and gen-
erative networks to present an (M +N)-arity predicate P of
N tensor arguments and M symbolic arguments. We use the
term “tensor” to refer to sub-symbolic representation, such as
real-valued scalars, vectors, matrices, and multi-dimensional
arrays, etc.. In CNLP, neural predicates are chained through
their shared variables to compose a network for logic rules.

For reasoning, we propose a voting backward-forward
chaining algorithm to iteratively select and infer the neu-
ral predicates to deliver the answer for an argument-retrieval
query. The algorithm starts with the head predicate of a rule
and goes backward to work recursively on the predicates in
the body of the rule. During the process, each of those pred-
icates is voted to perform inference and the returned results
are forwarded to infer the unassigned variables of other pred-
icates, and subsequently, the head predicate. To this end, we
design a voting mechanism to prioritise the neural predicates
based on their types and the number of unassigned variables
left to infer, so as to reduce the search complexity. The key
advantage of CNLP is the flexibility that offers three bene-
fits. First, the compositional architecture of CNLP allows it
to represent new knowledge from existing knowledge incre-
mentally. Second, it supports reasoning with both symbolic
variables and tensor variables. Third, as a neural network,
CNLP can perform batch learning, as well as batch reasoning
in certain cases. In the experiments, we show the advantage
of CNLP in both discriminative and generative tasks.

Related work. Reasoning with symbolic and sub-symbolic
variables has been studied in Logic Tensor Network (LTN)
[Serafini and d’Avila Garcez, 2016; Donadello et al., 2017]

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3059

and DeepProbLog [Manhaeve et al., 2018]. LTN employs
neural networks to represent truth values of predicates and
combines them using fuzzy logic connectives to express the
degree of truth of a logic formula. To infer a variable, LTN
needs to search for the assignments that satisfy the formula,
i.e. those have a high degree of truth. Different from that,
CNLP directly infers the values of the variables via a chain-
ing procedure, and therefore is easier to work on a knowledge
base with recursive rules. In DeepProbLog [Manhaeve et al.,
2018], deep neural networks are integrated to produce neu-
ral predicates for the probabilistic logic programming system.
However, DeepProbLog needs to ground the logic program
for each query, unlike CNLP where batch computation can
be applied for learning and reasoning. Furthermore, although
both LTN and DeepProbLog allow real-valued objects to be
fed into the systems the reasoning process still focuses on in-
ferring symbolic variables. As far as we know CNLP is the
first neuro-symbolic system that demonstrates the ability to
reason both symbolic and sub-symbolic variables. The com-
positional structure of CNLP is inspired by the idea of em-
bedding subprograms to compose new programs in Neural
Programmer-Interpreters (NPI) [Reed and de Freitas, 2016]
and AlphaNPI [Pierrot et al., 2019]. However, CNLP is dis-
tinct in that it models the logical relations of subprograms,
known as predicates and rules in the logic world.

2 Compositional Neural Logic
2.1 Overview
A first-order knowledge base (KB) is a set of facts and rules.
A fact is the grounding atom of a predicate from a substitution
θ. For example, P(x, y) is the fact from P(X,Y) when apply-
ing the substitution θ = {X/x, Y/y} that maps the variables
X,Y to the symbolic objects x, y respectively. A first-order
logic rule Phead(.) ← P1(.) ∧ P2(.) ∧ ... ∧ PB(.) consists
of a head predicate Phead and a list of body predicates Pb,
b ∈ {1, ..., B}. We use P(.) to denote a predicate of any arity.
Pb is an intermediate predicate if it is also the head predicate
of other rules. A rule is recursive if its head predicate also
appears in its body. This predicate is known as a recursive
predicate. Finally, we denote a predicate which only appears
in the bodies of rules as in-body predicate. We can query
a knowledge base to validate a fact, e.g. whether P(x, y) is
True or False, or to find all possible values of the unas-
signed variables that satisfy the query. The latter is known as
argument-retrieval query. For example, a query P(X = x, Y)
(or P(x, Y) for short) would ask for the values y of the unas-
signed variable Y that make P(X = x, Y = y) ≡ True,
given the assignment X = x.

In this paper, we generalise the first-order knowledge base
to include real-valued objects in addition to symbolic objects.
A real-valued object can be a scalar (e.g. velocity of a car),
vector (e.g. a word embedding), matrix (e.g. an image), etc..
In what follows we will introduce compositional neural logic,
a method to represent the facts and rules of the generalised
knowledge base as a set of neural networks, one connects to
others through shared variables. We use tensors to represent
the objects and neural networks to represent the predicates.
Such neural networks are called neural predicates. A neural

rule is a group of neural networks, each represents a predicate
in the body of the rule.

2.2 Neural Predicates

Let us denote CS as a set of classes of symbolic objects
and CT as a set of classes of real-valued objects. An i-th
symbolic object of class c-th (CSc) in CS is denoted as oci .
Its grounding is an one-hot vector oc

i ∈ {0, 1}|C
S
c |, where

oc
i [i] = 1 and oc

i [i
′] = 0 for all i′ 6= i. A real-valued ob-

ject of a class CTk ∈ CT is a tensor, for example an audio

segment ∈ R45056, a gray-scale image of a
hand written digit ∈ R28×28, or a natural image of a car
∈ R32×32×3, etc..

Definition 1. A neural predicate is a neural net-
work NP representing a predicate P to form an atom
P(T1, ..., TN , S1, ..., SM) of mixed variables. Here, Tn (n =
1, .., N) is a tensor variable for the real-valued objects of
class CTkn

and Sm (m = 1, ...,M) is a symbolic variable for
the symbolic objects of class CScm .

All variables in a neural predicate (NP) can be inferred, i.e.
given an assignment of a subset of the variables, we would
like to infer the values of unassigned variables. However, the
realization of this neural predicate is non-trivial. Therefore,
in this paper we consider two special cases: a neural predicate
of mixed variables where only one variable can be inferred at
a time; and a neural predicate of all symbolic variables where
multiple variables can be inferred at a time.

Symbolic Neural Predicates
A symbolic neural predicate (SNP) is a neural network pre-
senting an M -arity predicate P of only symbolic variables
(S1, ..., SM). Such neural predicate can be modelled by a
generalised version of the Neural Tensor Network [Socher et
al., 2013], as in LTN [Serafini and d’Avila Garcez, 2016],
where the network is trained from samples of positive and
negative facts. However, similar to [Towell and Shavlik,
1994], we are interested in encoding facts and rules from a
knowledge base into a network’s structure. Therefore, we
propose a method to construct an auto-encoder NAE

P from
all facts of a predicate without the need for learning. In
this auto-encoder, each variable Sm is represented as a pair
of (input,output) vectors (sm,ŝm) to perform a transforma-

tion s1, ..., sM
NAE

P7→ ŝ1, ..., ŝM . NAE
P is characterised by a

set of binary weight matrices {Wm ∈ {0, 1}|C
S
cm
|×J |m =

1, ..,M}, with J is the number of hidden units. To integrate
the facts, we initialise the weights to 0s, and for each fact j-th
P(oc1i1 , ..., o

cM
iM

) we set w1
i1j

= ... = wM
iM j = 1.

Given an assignment of the symbolic variables Sm =
ocmim ∈ C

S
cm , we infer the unassigned variables Sm̂ by using

the symbolic neural predicate to compute ŝm̂, with sm = ocm
im

(the grounding of ocmim) and sm̂ = {0}|C
S
cm̂
| (a vector of zeros)

as inputs. Such inference of the unassigned variables are car-
ried out by the encoding-decoding mechanism. The encoding

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3060

step computes the hidden state h = g(α), where:

αj = (
M∑

m=1

smwm
j ≥

∑
m

sm{1}|C
S
cm
|>) (1)

is the Boolean encoding for the hidden unit j. Here, wm
j is

column j ofWm and {1}|C
S
cm
| is a vector of all ones. αj ≡ 1

(True) indicates that there is a fact that matches the assigned
variables from which we can find the values for the unas-
signed variables. If none of the Boolean encodings is True,
then no answers are given (unable to infer) and h = α is a
zero vector. In the other case, there can be more than one an-
swer for the unassigned variables, and depending on different
circumstances that we want to get all the answers or just one
sample, as follows.

Expandable batch inference. The number of True values
(1s) in the hidden layer corresponds to the number of pos-
sible answers for the unassigned variables. For efficiency,
we need to expand the hidden state vector into a matrix for
batch inference. This can be done by replicating the vec-
tor and multiplying it with an identity matrix I ∈ RJ×J

element-wise, before pruning the rows with all 0s elements,
as h = g(α) = prune-0s-rows(replicate(α)� I).
Sampling. The hidden layer can be treated as a softmax
layer where only one True hidden unit is sampled while the
others will be set as False (0). In this case, h = g(α) =
sample(soft-max(α)).

Both the encoding strategies above can be extended for
batch inference, i.e. multiple inferences at the same time.
After the encoding step, the decoding step is simply a linear
transformation ŝm̂ = f m̂(h) = hW m̂>.

Compositional Neural Predicate
A compositional neural predicate (CNP) is a group of neu-
ral networks to present a predicate P of both symbolic
variables S = {S1, ..., SM} and tensor variables T =
{T1, ..., TN}. We extend the idea of NADE [Larochelle
and Murray, 2011] by factorising the joint distribution
of the variables into a product of conditional distribu-
tions for individual variables p(T1, ..., TN , S1, ..., SM) =∏

n p(Tn|T\n,S)
∏

m p(Sm|T,S\m), where T\n and S\m
are all tensor and symbolic variables except Tn and Sm re-
spectively. The distribution p(Tn|T\n,S) is modelled by a
generative network NG

P,n and the distribution p(Sm|T,S\m)

is modelled by a discriminative network ND
P,m. We denote

the CNP for the predicate P as ND,G
P . Similar to SNP, a

CNP represents a variable from a logic predicate as a pair
input-output vectors (tn,t̂n) or (sm,ŝm). For inference, given
an assignment of tensor variables Tn = okn

T (okn

T ∈ CTkn
),

and symbolic variables Sm = ocmim (ocmim ∈ CS
cm) we infer

unassigned variables Tn̂ and Sm̂ by using NG
P,n̂ and ND

P,m̂ to
compute t̂n̂ and ŝm̂ respectively, with tn = okn

T , sm = ocm
im

,

tn̂ = {0}dim(CTkn̂
), and sm̂ = {0}|C

S
cm̂
| as inputs.

Example 1. Let us construct a SNP for predicate digit(T, S),
where T ∈ R28×28 is a tensor variable of class CT = { ,

, , , , , , , , , ...}, and S is a symbolic variable
of class CS = {0,1, 3, 4, 5, 6, 7, 8, 9}. A compositional
neural network for predicate digit(T, S) is showed in Figure
1. This neural predicate ND,G

digit consists of a discriminative
neural network ND

digit and a conditional generative adver-
sarial network (a.k.a CGAN [Mirza and Osindero, 2014])
NG

digit. The generative network NG
digit consists of two con-

volutional neural networks, a generator (CNN2) and a dis-
criminator (CNN3). CNN2 is trained to fool CNN3, whose
role is to classify fake and real samples, by generating real-
istic samples with random inputs Z. In CNLP, ND,G

digit uses
CNN2 to infer tensor variable T and CNN1 to infer sym-
bolic variable S, given an assignment of the other. For ex-
ample, CNN1 in ND,G

digit would predict S = 6 for the query
digit(T = , S) while the CNN2 would generate T = for
the query digit(T, S = 6).

Figure 1: Compositional Neural PredicateND,G
digit

2.3 Neural Rules
Definition 2. A neural rule is a composition of B neu-
ral predicates NP1 , NP2 , ..., NPB

representing the rule
Phead(.)← P1(.)∧P2(.)∧ ...∧PB(.), whereNPb

andNPb′

(b, b′ ∈ {1, ..., B}, b 6= b′) share the same layers for the vari-
ables which appears in both Pb(.) and Pb′(.).

(a) Compositional Neural Net-
work for the non-recursive rule
P(X,Y)← R(X,Z) ∧ Q(Z, Y)

(b) Compositional Neural Net-
work for the recursive rule
P(X,Y)← R(X,Z) ∧ P(Z, Y)

Figure 2: Neural Rules

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3061

We model a non-recursive rule with no recur-
sive/intermediate predicates by constructing a neural
predicate for the predicates in the body of the rule. The
neural predicates connect together through the shared layers
which present the same variables. An intermediate predicate
in a rule is modelled by chaining to the neural rule where it is
the head. In the case of a recursive rule, the chaining applies
to the rule itself. If two predicates in the body have the same
name Pb = Pb′ , they share the same neural predicate or/and
same chaining to a neural rule (for intermediate predicates).

Example 2. Figure 2a shows a neural rule for a non-
recursive rule P(X,Y) ← R(X,Z) ∧ Q(Z, Y). The neural
rule is composed of two neural networks,NR for R(X,Z) and
NQ for Q(Z, Y). Both NR and NQ connect to the layer for
the variable Z. We use two-way connections to demonstrate
that any variables can be inferred and also can be used for the
inference of other variables. Similarly, Figure 2b illustrates a
neural rule for recursive rule P(X,Y)← R(X,Z)∧P(Z, Y)
with two neural predicates NR and NP. This neural rule has
recursive connections from Z to X and from Y to itself.

2.4 Learning
Training of CNLP can be done in a distributed manner for all
neural predicates. Symbolic neural predicates are constructed
from facts as mentioned in 2.2. The number of hidden units
in a SNP NAE

P is linearly proportional to the number of the
facts for the corresponding predicate P. In the case of compo-
sitional neural predicates, we train the constituent neural net-
works from examples (facts) simultaneously. Since the neu-
ral networks in CNPs are loosely coupled, they retain their
dependency during the training, thus improving efficiency.

3 Reasoning
Reasoning in compositional neural logic is to apply the neural
networks to find answers to argument-retrieval queries. This
can be done by combining search strategies in first-order logic
with inference methods in neural networks. Here, we apply a
search algorithm to select neural networks to infer unassigned
variables until the answers are delivered. For example, in or-
der to answer a query P(X = x, Y) in Example 1, instead
of searching the KB for the objects of Y that satisfy P, we
only need to search for the predicates that support P and use
neural predicates to infer the unassigned variables to find the
answer. In this case, we would search through the predicates
in the body of the rule P(X,Y) ← R(X,Z) ∧ Q(Z, Y) and
select NR to infer Z, given that the assignment X = x is
provided. The result of Z (e.g. z) then is fed to the neural
predicate NQ to infer Y . We apply a similar process for the
other rule P(X,Y) ← R(X,Z) ∧ P(Z, Y) except that at the
last step we need to map {X : Z, Y : Y } and recursively call
a query P(X = z, Y) to find Y , hence the recursive connec-
tions in Figure 2b. The recursion occurs until a termination
condition is met.

3.1 Voting Backward-Forward Chaining
In this section, we propose “voting backward-forward chain-
ing” (VBFC), a novel reasoning algorithm for composi-
tional neural logic. The algorithm is defined as a function

INFER(P, Xassigned, KB, MC) where P is the query pred-
icate, Xassigned is a set of assigned variables, KB is the
knowledge base, and MC is a memory cache. The function
takes in a predicate P and its assigned variables Xassigned

from a query and answers the values for the unassigned vari-
ables. It combines the searching strategy in backward chain-
ing and knowledge deduction in forward chaining with the
use of neural networks. VBFC starts with searching through
the knowledge base (KB) for predicates that match the query.
If there exists a symbolic neural predicate or a composi-
tional neural predicate for P, the neural predicate would be
used to infer unassigned variables. If P is a head predicate,
CNLP works through the predicates in the body of its rule,
in a similar way as backward chaining [Russell and Norvig,
2003]. However, different from the backward chaining algo-
rithm, where facts are searched to confirm or refute a hypoth-
esis, reasoning with CNLP is argument-retrieval which infers
facts, including generating new facts in the process, as in for-
ward chaining [Russell and Norvig, 2003]. After a fact is
inferred, it would be used by other neural predicates or neural
rules for the next inference step. Since CNLP consists of dif-
ferent types of neural predicates, as well as neural rules, we
define a voting procedure to coordinate the reasoning, i.e. to
decide which predicate to infer first to deduce knowledge for
the inference of other predicates. Readers are advised to refer
to Appendix A for the detailed description of the algorithm.

3.2 Batch Reasoning
Batch reasoning refers to the process of executing a batch of
queries at the same time. In general, this is not possible for
arbitrary queries, especially with a recursive knowledge base,
because the inference for each query would expand in differ-
ent paths. Fortunately, in the case where all queries share the
same voting steps, batch reasoning is feasible. In a knowl-
edge base without recursive rules, the voting is decided by
the types of predicates and variables. Therefore, batch rea-
soning can be applied to the queries from the same predicate
with the same list of assigned variables.

3.3 Reasoning With Recursive Rules
When applying Voting Backward-Forward Chaining to re-
cursive rules, we need to merge the results from different
branches and also define the conditions for termination. In the
case where a recursive predicate is voted, the same procedure
will be applied to the neural rule the predicate is chaining to.
A recursion occurs until duplicate inference is detected, i.e.
calling INFER on the same predicates and the assignment of
variables which has been inferred earlier in the process. To
this end, we maintain a memory cache to keep track of the
states of the recursive calls. In Example 3 we demonstrate
how VBFC works with a knowledge base to compare digit
images.
Example 3. Let us consider a knowledge base for compari-
son of digit images (Comparison KB) as follows:
Rules:
icomp(T1, T2, S3)← digit(T1, S1) ∧ digit(T2, S2) ∧ dcomp(S1, S2, S3)

dcomp(S1, S2, S3) ← dcomp(S1, S
∗, S4) ∧ dcomp(S∗, S2, S5) ∧

trans(S4, S5, S3)

Facts:

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3062

dcomp(0, 1, >),.., dcomp(8, 9, <); dcomp(1, 0, >), ..., dcomp(9, 8, >);

trans(>,>,>), trans(<,<,<); digit(, 0),..., digit(, 9), etc.

where T1,T2 are digit images; S1, S2, S
∗ ∈ {0, .., 9};

S3, S4, S5 ∈ {<,>}. There are three neural predicates are
constructed for this KB, namely ND,G

digit , NAE
dcomp, and NAE

trans.
In Figure 3, we show the reasoning graph of CNLP for the

query icomp(T1 = , T2 =?, S3 =>) using the Comparison
KB. Starting with the first rule, the first voting step selects
digit(T1 = , S1) and trigger ND,G

digit to infer S1 = 2. The
next step votes dcomp with assigned variables S1 = 2 and
S3 =>. This is a symbolic predicate, thus NAE

dcomp is used
to infer S2 = 1. Additionally, dcomp is also the head of the
second rule in the knowledge base. Therefore, another round
of voting is carried out for recursive reasoning with this rule
which results in S2 = 0. At the final step, using the inferred

values of S2, the CNPND,G
digit delivers the answers T2 =

[]
.

Figure 3: Reasoning steps for icomp(T1 = , T2 =?, S3 =>).

4 Experiments
4.1 Comparison KB
In this experiment, we use the Comparision KB in Example
3 to demonstrate the learning and reasoning capabilities of
CNLP with recursive rules. 10000 digit images and their la-
bels are extracted from the MNIST dataset1 as the facts for
the digit predicate. We train ND,G

digit on those facts and apply
the CNLP to answers three questions: (a) icomp(∗, ∗, S3):
compare two numbers, for example icomp(, , S3); (b)
icomp(T1, , >): Which numbers are bigger than ? and
(c) icomp(T1, , <): Which numbers are smaller than ?.
We omit the variable names in the queries for ease of presen-
tation.

For the evaluation of the first question, we train a CNLP
and apply it to answer 5000 test queries which achieves

1http://yann.lecun.com/exdb/mnist/

97.62% accuracy. The same CNLP is employed to an-
swer the second question and accurately generates the im-
ages of numbers whose values are bigger than 0, for exam-
ple { , , , , , , , , }. Similarly, the CNLP also
responds correctly to third question icomp(T1, , <), for ex-
ample { , , , , , , , , }.

4.2 Addition
We extend the addition task in [Manhaeve et al., 2018], based
on the MNIST dataset, to demonstrate the advantages of ro-
bust learning and efficient reasoning of CNLP. The addition
function consists of two lists of digit images representing two
numbers and a symbolic variable for the sum of the num-
bers. In this experiment, we not only evaluate the proposed
approach on the reasoning task addition(∗, ∗, ?), but also on
addition(?, ∗, ∗), addition(?, ∗, ?), and addition(?, ?, ∗) to
showcase the capability of general reasoning with CNLP. We
use the notation ∗ for an arbitrary input and ? for an output
we want to infer in a query. The rules in the knowledge base
are:
add1(T1, T2, S3)← digit(T1, S1) ∧ digit(T2, S2) ∧ sum1(S1, S2, S3)

add2([T11, T12], [T21, T22], S4)← add1(T11, T21, S31)
∧ add1(T12, T22, S32) ∧ sum2(S31, S32, S4)

add3([T11, T12, T13], [T21, T22, T23], S5)← add1(T11, T12, S3)
∧ add2([T12, T13], [T22, T23], S4) ∧ sum3(S3, S4, S5)

The knowledge base in this experiment (addition KB) also
has a set of grounding facts of the digit predicate which we
use to train a CNPND,G

digit . We constructNAE
sum1

,NAE
sum2

,NAE
sum3

from the grounding facts of sum1, sum2, and sum3 respec-
tively. T1, T2, T11, T12, T13, T21, T22, T23 are digit im-
ages; S1, S2 ∈ [0, 9] are single-digit numbers; S3, S31,
S32 ∈ [00, 18] are double-digit numbers; S4 ∈ [000, 198]
is triple-digit number; and S5 ∈ [0000, 1998]. We construct a
CNLP incrementally, starting with ND,G

digit and NAE
sum1

for the
first neural rule (add1) in the addition KB. The second neu-
ral rule (add2) is built upon the first neural rule and NAE

sum2
.

Finally, the third neural rule (add3) is composed of the two
former neural rules and NAE

sum3
.

Addition(*,*,?)
We evaluate CNLP and DeepProbLog on the addition task
with single-digit numbers, double-digit numbers, and triple-
digit numbers. All models were trained by Adam optimizer
with the batch size 64. Different from CNLP which uses
batch computation, DeepProbLog accumulates the gradients
from each training query in a batch to update its parameters.
The results show that CNLP takes less time to converge than
DeepProbLog in all three cases single-digit, double-digit, and
triple-digit. We show the learning curve of the triple-digit
case in Figure 4. We also compare the efficiency of inference
between CNLP and DeepProbLog. We run 1000 queries for
the addition(*,*,?) task using a computer with a quad-core
3.6 GHz CPU and 16 GB of RAM. With such type of query,
CNLP can utilise its batch reasoning capability and, there-
fore, is much more efficient than DeepProbLog. The latter
relies on ProbLog inference where the grounding step may
cause a bottleneck. The running time of both models on the
addition of single-digit numbers, double-digit numbers, and
triple-digit numbers are shown in Table 1.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3063

http://yann.lecun.com/exdb/mnist/

Figure 4: Triple digit

Figure 5: Learning curves of CNLP and DeepProbLog for addi-
tion(*,*,?) task with triple digits.

Single Double Triple
CNLP 0.062 0.131 0.374
DeepProbLog 10.504 12.291 15.557

Table 1: Inference time (in seconds) for 1000 queries

Addition(?,?,*)
To show the capability of general reasoning, we evaluate
CNLP in a generative task to produce images of two digits
given their sum. For comparison, we use DCGAN [Radford
et al., 2016] and ACGAN [Odena et al., 2017] as the base-
lines. We double the training data for DCGAN and ACGAN
by duplicating every sample and switch the images. As CNLP
leverages logical reasoning it decomposes the complexity of
the task to smaller tasks, i.e. generating 28× 28 images from
10 labels. This is much easier than generating larger images
(28× 56) from 19 labels, as in DCGAN and ACGAN. Table
2 shows that CNLP achieves better performance than DC-
GAN and ACGAN, as it has a higher inception score and
lower cross-entropy. In Table 3, we present a random set
of samples generated by CNLP, DCGAN, and ACGAN for
add1(T1, T2, 10). We found that most of the samples from
DCGAN and ACGAN are the pairs of digit images for (7,3)
and (3,7), while samples from CNLP are more diverse. An-
other advantage of CNLP over these two generative models
is that it can generalise from the addition of single-digit num-
bers to multi-digit numbers without retraining. Examples of
triple-digit can be found in the 3rd column of Table 4.

Addition(?,*,*) and Addition(?,*,?)
For completeness, we also use the same CNLP from the
above tasks for these tasks. In Table 4, we demonstrate three
patches of samples obtained from the addition(?,*,*) and ad-
dition(?,*,?) tasks (1st and 2nd column), and also from the
addition(?,?,*) task (3rd column), in the case of triple-digit
numbers. As we can see, a single CNLP can deal with differ-
ent types of queries and variables.

4.3 Semantic Image Interpretation
Finally, we apply CNLP to the semantic image interpreta-
tion (SII) task which describes the semantic structure of an
image through the relations of pairs of objects in the im-
age. In this experiment, we use the images of indoor ob-
jects from PASCAL-PART dataset [Chen et al., 2014]. Each
object is represented by a rank-1 tensor consisting of geo-
metric and semantic features extracted from its bounding box

IS Cross-Entropy
ACGAN 12.040± 1.021 1.42
DCGAN 09.137± 0.830 3.65
CNLP 16.534± 1.277 0.159± 0.105

Table 2: Performance of CNLP, DCGAN, and ACGAN for
add1(T1, T2, 10).

CNLP

DCGAN

ACGAN

Table 3: Sample answers for the add1(T1, T2, 10) query.

as in LTN [Donadello et al., 2017]. The task requires the
prediction of the types of objects and whether an object is
a part of another. We use the predicate type(T1, S1) for the
type-of-object relation, i.e. object T1 has the type S1. Nor-
mally, the part-of predicate would be partof(T1, T2) which
is for “T1 is part of T2”. However, to make it work with
the argument-retrieval style of CNLP we convert the predi-
cate to partof(T1, T2, S3), where S3 is the truth indicator of
the predicate. The rule for this task is: partof(T1, T2, S3) ←
type(T1, S1) ∧ type(T2, S2) ∧ part(S1, S2, S3)

The types of the variables in this KB are as follows.
T1, T2 ∈ R64; S1, S2 ∈ C = {bottle, body, cap, potted-
plant, plant, pot, tvmonitor, screen, chair, sofa, diningtable};
and S3 ∈ {0, 1}. The CNLP for this task consists of a
CNP ND

type and a SNP NAE
part . We train ND

type from 8557
examples and construct NAE

part from 121 facts, for example,
part(bottle, bottle, False) and part(cap, bottle, T rue) etc.

We compare the CNLP with other approaches, including
Faster-RCNN (for type prediction), the inclusion ratio base-
line RBPOF (for part-of prediction), and LTN [Serafini and
d’Avila Garcez, 2016; Donadello et al., 2017]. The test set
consists of 2150 type samples and part-of 16674 samples.
For a fair comparison, we also use the RMSProp optimiser
for training as in [Donadello et al., 2017]. The AUC scores
of the approaches are detailed in Table 5 which indicates the
better performance of CNLP in both type prediction and part-
of prediction.

5 Conclusions and Future Work
We proposed CNLP, a compositional neural logic program-
ming framework, to integrate symbolic and sub-symbolic rep-
resentations for reasoning with different types of variables.
The framework consists of multiple neural predicates chained
together to model a knowledge base. The reasoning is con-
ducted through a voting mechanism that supports recursion,
and also batch inference where applicable. In the experiment,
we demonstrated the ability of CNLP to work on both gen-
erative and discriminative tasks. We also show that CNLP
is more efficient than DeepProbLog in the addition task and
more effective than LTN in the image interpretation task. As
future work, we will apply CNLP to a large database to eval-
uate the advantage of the compositional approach at scale.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3064

add3(?, ∗, ∗) add3(?, ∗, ?) add3(?, ?, ∗)

(, ,1495) (, ,1348) (, ,1495)

(, ,1495) (, ,1407) (, ,1495)

(, ,1379) (, ,1424) (, ,1379)

(, ,1379) (, ,648) (, ,1379)

(, ,1533) (, ,843) (, ,1533)

(, ,1533) (, ,1057) (, ,1533)

Table 4: Sample answers of CNLP for the add3(?, ∗, ∗), add3(?, ∗, ?), and add3(?, ?, ∗) queries.

Object type (AUC) Part-of (AUC)
LTN prior 0.800 0.598
LTN expl 0.692 0.492
FRCNN 0.756 -
RBPOF - 0.172
CNLP 0.816± 0.004 0.644± 0.015

Table 5: Area Under the Curve (AUC) on SII task.

A VBFC Algorithm
The algorithm is sketched in Algorithm 1 as an infer-
ence function, namely INFER(P, Xassigned, KB, MC). The
function takes in a predicate P and its assigned variables
Xassigned from a query and answers the values for the unas-
signed variables. VBFC starts with searching through the
knowledge base (KB) for predicates that match the query. If
there exists a symbolic neural predicate or a compositional
neural predicate for P, the neural predicate would be used to
infer unassigned variables (INFER:22,24, a.k.a line 22 and
line 24 in the Algorithm 1). If P is a head predicate, CNLP
works through the predicates in the body of its rule (IN-
FER:4). Each time, a predicate is voted to infer.

We define a voting function VOTE(P , φ), where P is the
list of inferable predicates in a rule’s body and φ is the assign-
ment of values to variables, known as local working memory.
First, any in-body predicates with a single unassigned vari-
able will be voted, as we can always use their corresponding
neural predicates to infer the unassigned variable straightfor-
wardly. If none of them exists, we select the in-body sym-
bolic predicates for voting, because their SNPs are certainly
inferable. When there are no in-body symbolic predicates
left, then we will select intermediate and recursive predicates.
Among the predicates selected for voting, preference will be
given to those with the least unassigned variables, and then,
to those are non-recursive.

In VBFC, the voting idea extends the search strategy of
backward chaining to work with argument-retrieval queries
on both symbolic and tensor variables. During the reason-
ing, voting is performed iteratively, each time a predicate is
selected to infer the unassigned variables (INFER:9). The re-
sults are then added to the working memory for the next round
(INFER:17). The process repeats until no predicates are left
to vote (INFER:10). After all predicates successfully infer

the unassigned variables, we extract the inferred values and
merge them to the answer (INFER:20).

Algorithm 1 Voting Backward-Forward Chaining (sketch)

1: function INFER(P,Xassigned,KB,MC)
2: X∗unassigned = ∅ . List of unassigned variables
3: if {P,Xassigned} /∈ MC then
4: for each rule R ∈ KB whose head predicate is P

do
5: P is a set of predicates in R’s body
6: P ′ = {} is a set of uninferable predicates
7: Initialise a local working memory φ =
{Xassigned}

8: while True do
9: Pvoted,Xvoted

assigned = VOTE(P \ P ′,φ)
10: if Pvoted == NULL then
11: break
12: Xvoted

unassigned

13: =INFER(Pvoted,Xvoted
assigned,KB,MC)

14: if Xvoted
unassigned == ∅ then

15: Add Pvoted to P ′
16: else
17: Add Xvoted

unassigned to φ
18: P ′ = {}
19: Remove Pvoted from of P
20: if P ′ == {} then
21: Merge φ.Xunassigned into X∗unassigned
22: if NAE

P exists then

23: Xassigned
NAE

P7→ Xunassigned

24: else if ND,G
P exists and (|Xunassigned| == 1) then

25: Xassigned
ND,G

P7→ Xunassigned

26: else:
27: Xunassigned = ∅ . Unable to infer
28: Merge Xunassigned into X∗unassigned
29: Add {P,X∗assigned} to MC
30: return X∗unassigned

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3065

References
[Bottou, 2014] Léon Bottou. From machine learning to ma-

chine reasoning. Mach. Learn., 94(2):133–149, February
2014.

[Chen et al., 2014] Xianjie Chen, Roozbeh Mottaghi, Xi-
aobai Liu, Sanja Fidler, Raquel Urtasun, and Alan L.
Yuille. Detect what you can: Detecting and represent-
ing objects using holistic models and body parts. In 2014
IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2014, Columbus, OH, USA, June 23-28,
2014, pages 1979–1986. IEEE Computer Society, 2014.

[Cohen et al., 2017] William W. Cohen, Fan Yang, and
Kathryn Mazaitis. Tensorlog: Deep learning meets proba-
bilistic dbs. CoRR, abs/1707.05390, 2017.

[Donadello et al., 2017] Ivan Donadello, Luciano Serafini,
and Artur d’Avila Garcez. Logic tensor networks for se-
mantic image interpretation. In IJCAI-17, pages 1596–
1602, 2017.

[Larochelle and Murray, 2011] Hugo Larochelle and Iain
Murray. The neural autoregressive distribution estimator.
In Geoffrey Gordon, David Dunson, and Miroslav Dudı́k,
editors, Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics, volume 15
of Proceedings of Machine Learning Research, pages 29–
37, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Du-
mancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic pro-
gramming. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31,
pages 3749–3759. Curran Associates, Inc., 2018.

[Mirza and Osindero, 2014] Mehdi Mirza and Simon Osin-
dero. Conditional generative adversarial nets, 2014. cite
arxiv:1411.1784.

[Odena et al., 2017] Augustus Odena, Christopher Olah, and
Jonathon Shlens. Conditional image synthesis with auxil-
iary classifier GANs. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 2642–2651, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR.

[Pierrot et al., 2019] Thomas Pierrot, Guillaume Ligner,
Scott E Reed, Olivier Sigaud, Nicolas Perrin, Alexandre
Laterre, David Kas, Karim Beguir, and Nando de Freitas.
Learning compositional neural programs with recursive
tree search and planning. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems 32, pages 14673–14683. Curran Associates, Inc.,
2019.

[Radford et al., 2016] Alec Radford, Luke Metz, and
Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks.

In Yoshua Bengio and Yann LeCun, editors, 4th Inter-
national Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016.

[Reed and de Freitas, 2016] Scott Reed and Nando de Fre-
itas. Neural programmer-interpreters. In International
Conference on Learning Representations (ICLR), 2016.

[Riveret et al., 2020] Regis Riveret, Son N. Tran, and Artur
d’Avila Garcez. Neuro-Symbolic Probabilistic Argumen-
tation Machines. In Proceedings of the 17th International
Conference on Principles of Knowledge Representation
and Reasoning, pages 871–881, 9 2020.

[Russell and Norvig, 2003] Stuart Russell and Peter Norvig.
Knowledge, reasoning, and planning. In Artificial Intelli-
gent: A Modern Approach. Pearson Education, 2003.

[Serafini and d’Avila Garcez, 2016] Luciano Serafini and
Artur S. d’Avila Garcez. Learning and reasoning with
logic tensor networks. In AI*IA, pages 334–348, 2016.

[Socher et al., 2013] Richard Socher, Danqi Chen, Christo-
pher D. Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In NIPS,
pages 926–934. 2013.

[Towell and Shavlik, 1994] Geoffrey Towell and Jude Shav-
lik. Knowledge-based artificial neural networks. Artificial
Intelligence, 70:119–165, 1994.

[Tran and d’Avila Garcez, 2018] Son N. Tran and Artur
d’Avila Garcez. Deep logic networks: Inserting and ex-
tracting knowledge from deep belief networks. IEEE
Transaction on Neural Networks and Learning Systems.,
(29):246–258, 2018.

[Wang et al., 2019] Wenguan Wang, Zhijie Zhang, Siyuan
Qi, Jianbing Shen, Yanwei Pang, and Ling Shao. Learning
compositional neural information fusion for human pars-
ing. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5703–5713, 2019.

[Yang et al., 2017] Fan Yang, Zhilin Yang, and William W
Cohen. Differentiable learning of logical rules for knowl-
edge base reasoning. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems 30, pages 2319–2328. Curran Associates, Inc.,
2017.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3066

	Introduction
	Compositional Neural Logic
	Overview
	Neural Predicates
	Symbolic Neural Predicates
	Compositional Neural Predicate

	Neural Rules
	Learning

	Reasoning
	Voting Backward-Forward Chaining
	Batch Reasoning
	Reasoning With Recursive Rules

	Experiments
	Comparison KB
	Addition
	Addition(*,*,?)
	Addition(?,?,*)
	Addition(?,*,*) and Addition(?,*,?)

	Semantic Image Interpretation

	Conclusions and Future Work
	VBFC Algorithm

