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Abstract
If domain knowledge can be integrated as an appro-
priate constraint, it is highly possible that the gen-
eralization performance of a neural network model
can be improved. We propose Sensitivity Direction
Learning (SDL) for learning about the neural net-
work model with user-specified relationships (e.g.,
monotonicity, convexity) between each input fea-
ture and the output of the model by imposing soft
shape constraints which represent domain knowl-
edge. To impose soft shape constraints, SDL uses
a novel penalty function, Sensitivity Direction Er-
ror (SDE) function, which returns the squared er-
ror between coefficients of the approximation curve
for each Individual Conditional Expectation plot
and coefficient constraints which represent domain
knowledge. The effectiveness of our concept was
verified by simple experiments. Similar to those
such as L2 regularization and dropout, SDL and
SDE can be used without changing the neural net-
work architecture. We believe our algorithm can
be a strong candidate for neural network users who
want to incorporate domain knowledge.

1 Introduction
As neural networks have been used in many applications, it
has become a non-negligible issue that, if the model’s gen-
eralization performance is low, the predictions of the model
can cause inappropriate and dangerous decision making [Gill
and Hall, 2019]. In order to prevent the above issue, there
is a well-known approach [Molnar, 2019] which visualizes
the relationships between each input feature and the output of
the model using XAI algorithms such as Partial Dependence
(PD) [Friedman, 2001] and Individual Conditional Expecta-
tion (ICE) [Goldstein et al., 2015] plots and judges whether
approximate shapes of these plots match domain knowledge
(e.g., monotonicity, convexity). However this approach can
only be used for judgment, and it is not an easy task to learn
about the model with relationships matched to domain knowl-
edge especially if there is bias in the data collection.

There are several existing solutions to learn about a neural
network model with user-specified relationships even under
the condition mentioned in the previous paragraph. These

algorithms can be divided into three categories: (1) impos-
ing hard monotonicity constraints by changing the model ar-
chitecture [Archer and Wang, 1993; Sill, 1998; Daniels and
Velikova, 2010; You et al., 2017; Wehenkel and Louppe,
2019], (2) imposing hard convexity constraints by chang-
ing the model architecture [Amos et al., 2017; Gupta et al.,
2018], and (3) imposing soft monotonicity constraints by
changing the learning process [Gupta et al., 2019].

Based on previous research, we develop an algorithm, Sen-
sitivity Direction Learning (SDL), which can impose not only
monotonic constraints but also various kinds of constraints
such as convexity by changing the learning process. The mo-
tivations for our research are: (1) convexity constraints should
also be able to be imposed, because there are many appli-
cations where the output is a convex function of the input
such as air temperature and electric power demand [McMe-
namin, 2008], frequency and impedance [Nguyen and Howe,
1992], various characteristic curves [Horváth et al., 2019;
Mulders et al., 2020], etc., and (2) changing the learning pro-
cess has the advantage that it can be used universally for the
existing neural network architecture.

An overview of SDL is shown in Figure 1. Characteristics
of the learning process of SDL are (1) to calculate not only the
conventional prediction error (such as mean squared error)
but also calculate Sensitivity Direction Error (SDE), and (2)
to train the neural network model to minimize both the predic-
tion error and SDE. SDE is calculated by the SDE function,
which returns the squared error between coefficients of the
approximation curve for each ICE plot and coefficient con-
straints which represent domain knowledge. Since low SDE
means that approximate shapes of each ICE plot matches do-
main knowledge, the generalization performance of the low
SDE model expects to be superior to that of high SDE mod-
els if prediction errors of the models are the same level. In
this paper, five types of relationships (Increase, Decrease,
Convex, Concave, and Negligible), which represent do-
main knowledge, are described. Furthermore, it can be ap-
plicable to other relationships where domain knowledge can
be expressed as coefficient constraints. We call these approx-
imate relationships sensitivity directions and these domain
knowledge knowledge table, which consists of sensitivity di-
rections and values of coefficient constraints for each feature.

We ran two experiments. In experiment 1, it was con-
firmed that SDL actually learned neural network models with
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Figure 1: An overview of Sensitivity Direction Learning (SDL). In this figure, the flowchart describes how SDL works in one iteration during
the neural network training. Upper right figures show an example of ICE plots and approximation curves for each ICE plot. Lower right
table shows an example of a knowledge table consist of user-specified relationships (we call these approximate relationships sensitivity
directions) and coefficient constraints which represent domain knowledge.

Target relationship
Approach Only Including

monotonicity convexity

MN [1998], ELN [2016],
Model MNN [2010], ICNN [2017],

architecture UMNN [2019], DLN [2018],
etc. etc.

Learning process PWL [2019] This paper

Table 1: Positioning of our research.

five types of user-specified relationships using the generated
dataset. In experiment 2, using three actual datasets, it was
confirmed that SDL has the potential to achieve the same or
better prediction performances than five kinds of baseline ma-
chine learning algorithms (three non-shape-constrained and
two shape-constrained algorithms).

2 Related Work
The first algorithm which can impose hard monotonicity con-
straints is to positively or negatively limit the neural net-
work weights using single-layer neural networks [Archer
and Wang, 1993]. Monotonic Networks (MN) [Sill, 1998]
and Monotone Neural Networks (MNN) [Daniels and Ve-
likova, 2010] extended to using multiple layers. Uncon-
strained Monotonic Neural Networks (UMNN) [Wehenkel

and Louppe, 2019] used monotonic activation functions. In
addition, Input Convex Neural Networks (ICNN) [Amos et
al., 2017] can impose hard convexity constraints by us-
ing unique architectures such as convex activation functions
and passthrough layers, and it was extended to the Shape-
Constrained Neural Network (SCNN) [Gupta et al., 2018]
which uses ReLU activation functions instead of convex acti-
vation functions. Ensemble lattice networks (ELN) [Canini et
al., 2016] and Deep lattice networks (DLN) [You et al., 2017]
can impose hard monotonicity and also convexity [Gupta et
al., 2018] constraints by using unique architectures such as
a linear calibrator and an ensemble of lattices. These algo-
rithms have characteristics that can impose hard monotonicity
and/or convexity constraints by changing the model architec-
ture. On the other hand, soft monotonicity constraint algo-
rithms that change the learning process were also proposed.
One of these algorithms uses a point-wise loss (PWL) func-
tion [Gupta et al., 2019] which returns the error between the
partial derivatives of the output of the model with respect to
each input feature and constraints for the sign of each partial
derivative.

As mentioned in Section 1, we consider that (1) convexity
constraints should also be able to be imposed, and (2) chang-
ing the learning process has the advantage that it can be used
universally for the existing neural network architecture. How-
ever as far as we know, there are no studies that satisfy both
factors. Therefore, we believe that our research contributes to
the field as shown in Table 1.
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3 Preliminaries
Our algorithm (SDL) uses Individual Conditional Expecta-
tion (ICE) plots. This section will briefly discuss ICE plots.

For ease of understanding, we will start with the Partial
Dependence (PD) plot which is the previous study of the ICE
plot. The PD plot is one of the model-agnostic methods that
visualizes the relationship between the output of the model
and one input feature based on Equation 1.

f̄(xk) = EXc

[
f̂(xk, Xc)

]
=

1

n

n∑
i=1

f̂(xk, X
(i)
c ) (1)

Where xk is the value of one input feature to visualize the
relationship, and f̂ is the trained model. X(i)

c is the 1-d vec-
tor of all input features of the model without xk, and n is the
sample number of instances in the given dataset and f̄(xk)
is the partial dependence, which means averaging outputs of
the model for each instance in the given dataset while fixing
the value of xk. Therefore, by checking PD plots, the ap-
proximate shape of the relationship between the output of the
model and target input feature can be evaluated.

The ICE plot can visualize the relationships between xk
and each instance of f̂(xk, X

(i)
c ). Compared to checking PD

plots, checking ICE plots is especially important when ap-
proximate shapes of each ICE plot are very different.

4 Sensitivity Direction Learning
Our proposal can be divided into four parts:

1. Variable definition of coefficient constraints that are re-
quired to evaluate whether approximate shapes of each
ICE plot match user-specified relationships.

2. The estimation algorithm about coefficients of the ap-
proximation curve for each ICE plot of the model.

3. The SDE function which returns the squared error be-
tween coefficients of the approximation curve and coef-
ficient constraints which represent domain knowledge.

4. The learning process of SDL during one iteration.

4.1 Variable Definition of Coefficient Constraints
Coefficient constraints mean such as upper and lower limits
for coefficients of the approximation curve for each ICE plot.
We define variables of coefficient constraints for judging the
following five types of sensitivity directions. In addition, the
following definition process can be applicable to other kinds
of sensitivity directions.

Monotonically Increasing
Increase indicates that as the input feature value x increases,
the output value y also increases. To judge for Increase,
the required constraint variable is the lower limit amin of the
inclination a of the approximate straight line y ≈ ax.

Monotonically Decreasing
Decrease is the opposite of Increase, so that the required
constraint variable is the upper limit amax.

Convex
Convex indicates that the initial behavior is Decrease, and
it changes to Increase in the middle. To judge for Convex,
it is necessary to know the inclination a′ of the approximate
straight line dy/dx ≈ a′x, and the x coordinate of the inflec-
tion point xip. Therefore, required constraint variables are
lower limit a′

min of inclination a′ and upper and lower the
limits (xipmax , xipmin ) of xip.

Concave
Concave is the opposite of Convex, so required constraint
variables are the upper limit a′

max of inclination a′ and upper
and lower limits (xipmax , xipmin ) of xip.

Negligible
Negligible indicates that the absolute value of the inclination
is very small, so that required constraint variables are upper
and lower limits (amax, amin).

Summarizing the above arguments, required constraint vari-
ables are following: (1) amin, (2) amax, (3) a′min, (4) a′max,
(5) xipmin

, and (6) xipmax
. We also define the sensitivity

direction type tsd such as Increase, Decrease, Convex,
Concave, and Negligible.

4.2 Estimation Algorithm for Constraint Variables
This subsection presents an algorithm for estimating the three
coefficients (a, a′, xip) from each ICE plot.

Putting it simply, this algorithm applies single regression
analysis on ICE plots as follows:

a
(i)
k =

{
F̂
(
Xk,X

(i)
c

)
− 1

m

∑m
j=1 f̂

(
xk,j ,X

(i)
c

)}
·Xk

Xk ·Xk
(2)

a′
(i)
k =

{
F̂ ′
(
Xk,X

(i)
c

)
− 1

m

∑m
j=1 f̂

′
(
xk,j ,X

(i)
c

)}
·Xk

Xk ·Xk
(3)

x
(i)
ipk

= −

∑m
j=1 f̂

′
(
xk,j ,X

(i)
c

)
− a′(i)k

∑m
j=1 xk,j

ma′
(i)
k

(4)

Where, xk,j is one of arbitrary m values of xk for draw-
ing ICE plots, and Xk is the 1-d vector that is com-
posed of each xk,j (Xk = {xk,1, xk,2, · · · , xk,m}). Like-

wise, F̂
(
Xk, X

(i)
c

)
is the 1-d vector composed of each

f̂
(
xk,j , X

(i)
c

)
and F̂ ′

(
Xk, X

(i)
c

)
is the 1-d vector com-

posed of each of f̂ ′
(
xk,j , X

(i)
c

)
. f̂ ′ is the differential func-

tion of the f̂ by xk. Outputs of the estimation algorithm
are three matrices (Ak, A′

k, and Xipk
) shown in AT

k ={
a
(1)
k , a

(2)
k , · · · , a(n)k

}
, A′T

k =
{
a′

(1)
k , a′

(2)
k , · · · , a′(n)k

}
, and

XT
ipk

=
{
x
(1)
ipk
, x

(2)
ipk
, · · · , x(n)ipk

}
.
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Algorithm 1 calcSDE
Input: Ak, A′

k, Xipk

Input: Nk : [tsd, amax, amin, a
′
max, a

′
min, xipmax

, xipmin
]

Output: esdk
# SDE of feature k

1: if tsd is Increase or Decrease or Negligible then
2: esdk

← calcDev(Ak, amax, amin)
3: else if tsd is Convex or Concave then
4: esdk

← calcDev(A′
k, a

′
max, a

′
min)

5: esdk
← esdk

+ calcDev(Xipk
, xipmax

, xipmin
)

6: else
7: esdk

← 0.0
8: end if

Algorithm 2 calcDev
Input: X , xmax, xmin

Output: d # Constraint violation
1: d← 0.0
2: for i = 1 : n do
3: x← X[i]
4: d← d + {MAX(x, xmax)− xmax}2 # Violating a up-

per constraint
5: d← d + {xmin−MIN(x, xmin)}2 # Violating a lower

constraint
6: end for
7: d← d/n

4.3 SDE Function
The SDE function returns the squared error between coef-
ficients (Ak, A′

k, and Xipk
) and coefficient constraints Nk

(Nk = {tsd, amax, amin, a
′
max, a

′
min, xipmax

, xipmin
}). The al-

gorithm of SDE function is shown in Algorithm 1. Where,
esdk

is the value of SDE of the feature k. esdk
is calculated

by the calcDev function according to the sensitivity direction
type tsd. The calcDev function, as shown in Algorithm 2, cal-
culates the constraint violation d by using the input 1-d vector
X and upper and lower limits (xmax, xmin). for each element
x in X . Therefore, a high esdk

indicates that the relationship
between the input feature k and the output of the model is
differ from the user-specified relationship.

4.4 Sensitivity Direction Learning Algorithm
We will explain how SDL works in one iteration during the
neural network training as shown in Algorithm 3. Where,
the training dataset DT consists of l input features and one
target, and N is the matrix composed of each Nk (NT =
{N1, N2, · · · , Nl}). Mixing ratio r is the hyperparameter
used to adjust the priority of SDE (esd) over the predic-
tion error (ep), and Dx consists of all input features ex-
tracted from the minibatch, and the rest is the output vec-
tor Dy . L is the conventional loss function such as the
mean squared error function. f̂NN is the neural network
model, and Xc is the matrix composed of each X(i)

c (XT
c ={

X
(1)
c , X

(2)
c , · · · , X(n)

c

}
).

In each iteration, SDL calculates the prediction error (ep)
between f̂NN(Dx) and Dy , and also calculates SDE (esd).

Algorithm 3 Sensitivity Direction Learning (SDL)
Input: Training dataset DT , Knowledge table N
Parameter: Mixing ratio r

1: for Each minibatch (Dx, Dy) sampled from DT do
2: ep ← L

(
f̂NN(Dx), Dy

)
# Prediction error

3: esd ← 0.0 # Intialize SDE
4: for k = 1 : l do
5: Nk ←N [k]
6: Xc ←Dx without k
7: Xk ← Aquire m samples from the domain of xk
8: Ak, A′

k, Xipk
←Xc, Xk and Equation 1 ∼ 4

9: esd ← esd + calcSDE(Ak, A′
k, Xipk

, Nk)
10: end for
11: e← ep + r · esd
12: Update parameters with e
13: end for

And next, updates parameters of the neural network to reduce
e which is the sum of ep and r · esd. In the loop of each
feature k, firstly SDL extracts Nk from N and Xc from Dx,
secondly extracts Xk which consists of m values from the
domain of xk, and finally, SDL calculates SDE of feature k
based on Algorithm 1. SDL minimizes both the prediction
error and SDE, so that the neural network model with user-
specified relationships can be obtained.

5 Experiments
We ran two experiments to answer the following basic re-
search questions:

• Whether does SDL actually work to learn about the
model with user-specified directions?

• Under what conditions is SDL effective in improving the
generalization performance?

5.1 Experiment 1
In this experiment, we confirmed that SDL actually works to
learn about the model with user-specified sensitivity direc-
tions using the generated dataset.

Dataset
In order to clearly confirm that SDL actually works to learn
about the model with user-specified relationships, the dataset
should be have relationships differed from user-specified re-
lationships. Considering this requirement, we generated the
dataset which consists of 200 instances and six columns as
following steps: (i) the 1-d vector U is defined to be between
0.0 and 1.0 in 0.005 steps, and (ii) y is set to U , and each
feature (x1 ∼ x5) is set to the sum of U and Gaussian noise
(σ = 0.1).

As is clear from above steps, there are only strong correla-
tions between each of five features (x1 ∼ x5) and the output
y. Therefore it can be said that if a model is learned with-
out shape constraints, there is very little possibility that the
trained model has convexity relationships.
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Feature Sensitivity Coefficient
name direction type constraints

x1 Convex
0.18 < a′,

−0.58 < xip < 0.58

x2 Concave
a′ < −0.75,

−0.31 < xip < 0.31
x3 Increase 0.53 < a
x4 Decrease a < −0.64
x5 Negligible −0.08 < a < 0.08

Table 2: One knowledge table out of 10 in experiment 1.

Mixing ratio SDE (Med.) SDE (SD)

0.0 (Vanila NN) 8.54 ∗ 103 4.02 ∗ 106

0.01 2.03 1.10
0.10 0.64 0.47
1.00 0.24 0.35

10.00 0.27 0.37

Table 3: Evaluation results of each mixing ratio.

Knowledge Table
In this experiment, 10 kinds of knowledge tables are tested.
In each table, five sensitivity directions are set for each and
every input feature and coefficient constraints are populated
with random samples from a uniform distribution over [0, 1)
(only if the sensitivity direction is Negligible, from a uni-
form distribution over [0, 0.1)). As an example, one knowl-
edge table is shown in Table 2.

Model Parameters
The neural network architecture and learning conditions are
the same as in a Keras tutorial1, as an example to show the
general settings. On the other hand, the number of epochs is
set to 200 after checking for learning curves.

In the SDL algorithm, the mixing ratio r, which used to
adjust the priority of SDE over the prediction error, is the
most important hyperparameter, so that five kinds of candi-
dates ({0.0, 0.01, 0.10, 1.0, 10.0}) are tested.

Experimental Results
Table 3 shows medians and standard deviations of SDE for
the test dataset for each mixing ratio. In this experiment,
50 instances were randomly extracted from the dataset as the
test dataset, and the rest instances were used as the training
dataset. Each median and standard deviation were calculated
from each result for 10 different knowledge tables. As can
be seen from this table, when the mixing ratio is 0.0, which
means learning without SDL, the median of SDE was ex-
tremely worse. Therefore, it was confirmed that the low SDE
was due to the SDL. In addition, the minimum median is 0.24
when the mixing ratio is 1.0, so that in this experiment, it is
considered that the optimum mixing ratio value is around 1.0.
This approach is considered to be generally applicable to the
search for an appropriate mixing ratio.

1https://www.tensorflow.org/tutorials/keras/regression/

(a) Prediction error and SDE (b) SDE of each feature

Figure 2: Learning curves for SDL in experiment 1.

(a) x1 (b) x2 (c) x3

(d) x4 (e) x5

Figure 3: PD and ICE plots in experiment 1.

Figure 2 and 3 show the results under the conditions that
the mixing ratio is set to 1.0 and the knowledge table is used
shown in Table 2. Figure 2a shows learning curves of the
prediction error and SDE for the training and the test dataset.
From Figure 2a, it can be seen that both the prediction er-
ror and SDE approximately converged at about 50 epochs.
That is, it was confirmed that the two kinds of errors did not
conflict. Figure 2b shows learning curves of SDE of each
input feature. From this figure, SDE of each input feature
(x1 ∼ x5) all converged around 50 ∼ 100 epochs so that it
can be said that SDL properly trained model with all of user-
specified sensitivity directions shown in the knowledge table.
Figure 3 shows PD and ICE plots of the trained model. Each
ICE plot (50 black lines) corresponds to each instance of the
test dataset and each PD plot (red line) is the average of black
lines. From each figure, it can be said that sensitivity direc-
tions judged visually are as specified to Table 2.

Therefore, it was confirmed that SDL actually worked to
learn about models with user-specified sensitivity directions.

5.2 Experiment 2
In this experiment, using three actual datasets and 5-fold
cross validation, we confirmed that SDL has the potential to
provide the same or better prediction performances than five
kinds of baseline algorithms, such as ELN, which is the one
of the state-of-the-art shape-constrained algorithm. Further-
more, we will discuss when SDL can be effective.

Dataset
Three actual datasets were chosen from the UCI Machine
Learning Repository [Dua and Graff, 2017]. The first one is
the Bike Sharing dataset [Fanaee-T and Gama, 2014] which
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(a) Bike Sharing (qcut=5) (b) Bike Sharing (qcut=9)

(c) CCPP (qcut=9) (d) Bias correction (qcut=9)

Figure 4: Four examples of biased separation results in experiment
2. In each cross validation, the original training dataset is quantile-
based discretized in the direction of the first principal component,
and only the data at the center of the discretization is extracted as
the biased training dataset. Five or nine for the number of divisions
(qcut) are used. Principal component analysis is performed on two
variables: the standardized output and one standardized input feature
that has the highest absolute value of the correlation coefficient. The
test dataset is used as-is without any changes.

consists of 731 instances and 11 features and has the char-
acteristics that the output (count of total rental bikes (cnt))
may increase as the feeling temperature (atemp) increases.
The second one is the Combined Cycle Power Plant (CCPP)
dataset[Tüfekci, 2014] which consists of 9568 instances and
four features and has the characteristics that the output (en-
ergy output (ET)) may decrease as ambient temperature (AT)
increases. The last one is the Bias correction of numeri-
cal prediction model temperature forecast dataset[Cho et al.,
2020] which consists of 7750 instances and 23 features and
has the characteristics that the output (Next Tmax) may in-
crease as Present Tmax increases.

As mentioned in Section 1, the problem that SDL aims
to solved is to improve the low generalization performance
due to the bias in the data collection. Therefore, in these
experiments, separation conditions between training and test
datasets are intentionally biased. From Figure 4a and 4b,
looking at the entire graph, atemp and cnt are related to
strong positive correlation, but looking at the only training
dataset, atemp and cnt are related to strong negative correla-
tion. Similarly, from Figure 4c, the correlation between AT
and PE is inverted, and from Figure 4d, the correlation be-
tween Next Tmax and LDAPS Tmax lapse is inverted.

Knowledge Table
Increase is set in the sensitivity direction of atemp and
temp in the Bike Sharing dataset and of Present Tmax and
LDAPS Tmax lapse in the Bias correction dataset, and 15
kinds of amin candidates (between 0.0 and 1.4 in 0.1 steps)
are tested. Decrease is set in the sensitivity direction of AT
and RH in CCPP dataset, and 15 kinds of amax candidates
(between 0.0 and -1.4 in -0.1 steps) are tested. The same amin

or amax values are set for the two features in each dataset.

Model Parameters
Hyperparameters of SDL are the same as experiment 1 ex-
cept the optimization function is SGD, learning rate is set to
0.1, and mixing ratio set to 1.0. To benchmark SDL perfor-
mance, as baseline algorithms, three non-shape-constrained
algorithms (1) ∼ (3) and two shape-constrained algorithms
(4), (5) are selected: (1) Linear Regression (LR), (2) Random
Forest (RF),(3) Neural Networks (NN), (4) Ensemble Lat-
tice Networks (ELN), and (5) Constrained Linear Regression
(CLR). Hyperparameters of RF are used with the default set-
ting of scikit-learn 0.22.1[Pedregosa et al., 2011], and those
of NN are the same as SDL. The basic network architecture
and learning conditions of ELN are the same as in a lattice tu-
torial2. CLR means linear regression with simple weight cap-
ping by using non-negative least squares solver of scipy [Vir-
tanen et al., 2020] so that regression coefficients of the CLR
model satisfy coefficient constraints given from knowledge
table. For ELN, we tune the 16 kinds of combinations of four
kinds of num lattices G (3, 6, 12, 24) and lattice rank S (1,
int(l/3), int(2l/3), l), and for CLR and SDL, we tune 15 kinds
of amin or amax in each dataset.

Experimental Results
Table 4 shows root mean squared error (RMSE), coefficient
of determination (R2) and training/inference time of each al-
gorithm for each dataset. Each Med., SD, and Avg. were
calculated from the results of 5-fold cross validation. The
execution environment is Ubuntu 18.04 LTS (40 CPUs (3.00
GHz), 128 GB of Memory). In case of ELN, CLR, and SDL,
tuned results, which achieved lowest median RMSE, are dis-
played, and tuned hyperparameters shown in rows of Param.

From Table 4 and Figure 5, RMSE and R2 of shape-
constrained algorithms were significantly better for non-
shape-constrained algorithms so that shape constraints are ef-
fective when the biased dataset is used. Comparing shape-
constrained algorithms, although SDL required the most
training time, SDL achieved the best RMSE and R2 in the
Bike Sharing and the Bias correction datasets and the second
best results in the CCPP dataset, so that it can be said that
SDL has the potential to provide the same or better general-
ization performance than ELN and CLR.

Comparing training times of SDL and NN, since SDL re-
quired an additional training time about 12 times on average,
this result means that it will take about 6 times more training
time to learn one feature that is set a knowledge table than to
learn a NN model. Since SDL can be particularly effective
in the situation where data collection is biased, the number of
the training dataset will be small in practical use. Therefore,
we think the training time is unlikely to be a major problem.
Nevertheless, if faster learning is needed, it is considered to
use neural network techniques that make learning more effi-
cient, or to make SDE calculation once every few iterations.

The superiority or inferiority of prediction performances
between CLR and SDL tends to be similar to between LR
and NN, so that it can be considered that the complexity of the
task is related to these performances. In other words, if the
task required an expressive power of neural networks, SDL is

2https://www.tensorflow.org/lattice/tutorials/shape constraints/
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Bike Sharing (qcut=5) Bike Sharing (qcut=9)
RMSE R2 Avg. time [sec] RMSE R2 Avg. time [sec]

Algo. Med. SD Med. SD Training Test Med. SD Med. SD Training Test

LR 0.934 0.064 -7.757 1.455 0.001 0.001 1.284 0.037 -5.672 0.776 0.001 0.001
RF 0.969 0.101 -12.64 3.191 0.113 0.006 1.341 0.037 -6.669 1.208 0.101 0.006
NN 0.908 0.088 -5.728 1.951 1.642 0.001 1.282 0.046 -4.996 1.474 1.189 0.001
ELN 0.591 0.056 -0.098 0.124 18.65 1.786 0.621 0.063 -0.176 0.268 23.51 2.458
CLR 0.529 0.062 0.663 0.107 0.004 0.001 0.547 0.047 0.644 0.066 0.004 0.001
SDL 0.510 0.054 0.676 0.105 22.45 0.001 0.515 0.049 0.708 0.090 15.72 0.001

Param. ELN: (G, S)=(6, 7), CLR: amin=0.3, SDL: amin=0.5 ELN: (G, S)=(12, 7), CLR: amin=0.3, SDL: amin=0.5

CCPP (qcut=9) Bias correction (qcut=9)
RMSE R2 Avg. time [sec] RMSE R2 Avg. time [sec]

Algo. Med. SD Med. SD Training Test Med. SD Med. SD Training Test

LR 0.991 0.019 -69.68 8.015 0.001 0.001 1.767 0.032 -3.473 0.087 0.001 0.001
RF 1.149 0.061 -26.00 10.97 0.252 0.019 1.483 0.023 -5.894 0.379 0.780 0.019
NN 1.369 0.063 -9.397 1.653 11.04 0.003 1.481 0.046 -5.589 0.377 11.03 0.003
ELN 0.862 0.034 -19.97 14.21 74.19 1.378 1.019 0.022 -5.417 0.515 56.41 1.776
CLR 0.328 0.008 0.894 0.003 0.004 0.001 0.794 0.018 -0.058 0.137 0.007 0.001
SDL 0.414 0.031 0.817 0.037 141.59 0.003 0.759 0.024 0.079 0.087 119.01 0.003

Param. ELN: (G, S)=(12, 4), CLR: amax=0.5, SDL: amax=0.7 ELN: (G, S)=(3, 15), CLR: amin=0.9, SDL: amin=1.1

Table 4: Evaluation results of each algorithm for each dataset (5-fold cross validation).

(a) LR (b) RF (c) NN

(d) ELN (e) CLR (f) SDL

Figure 5: PD and ICE plots in the Bike Sharing dataset (qcut=5).
Only shape-constrained algorithms (ELN, CLR, and SDL) learned
models with correct positive directions.

likely to perform better than CLR. When those performances
of ELN and SDL are compared, SDL was superior in this
experiment. It is considered that this is because ELN does
not have hyperparameters equivalent to amin and amax (when
amin or amax were set to 0.3, those performances of SDL
tended to equivalent to ELN), so that it can be said that SDL
has an advantage if there is domain knowledge of values of
coefficient constraints.

Figure 6 shows the change in RMSE for different values of
amin or amax in each dataset. As can be seen from figures, if
there is no knowledge of optimal values of amin or amax, it
is better to set smaller values, such as 0.2, because too large
values may adversely affect the performance. Alternatively,
it is effective to tune values as in this experiment.

(a) Bike Sharing (b) CCPP (c) Bias correction

Figure 6: Results of hyperparameter tuning of SDL.

6 Conclusion
This paper proposes Sensitivity Direction Learning (SDL) for
learning about a neural network model with user-specified re-
lationships by imposing soft shape constraints which repre-
sent domain knowledge. We believe that our research con-
tributes to the field of learning about a neural network model
by imposing soft shape constraints. From experimental re-
sults, it is considered that SDL can be highly applicable if the
following conditions are met: (1) you have domain knowl-
edge about sensitivity directions and especially about values
of coefficient constraints, and (2) you expect an expressive
power of neural networks. As an example of use cases, we are
using SDL to learn about a model for the equipment which
handles complex physical phenomena such as combustion,
chemical process, etc, and using the trained model for op-
timization of operating parameters.
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