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Abstract
Although Label Distribution Learning (LDL) has
found wide applications in varieties of classifica-
tion problems, it may face the challenge of objec-
tive mismatch – LDL neglects the optimal label for
the sake of learning the whole label distribution,
which leads to performance deterioration. To im-
prove classification performance and solve the ob-
jective mismatch, we propose a new LDL algorithm
called LDL-HR. LDL-HR provides a new perspec-
tive of label distribution, i.e., a combination of the
highest label and the rest label description de-
grees. It works as follows. First, we learn the
highest label by fitting the degenerated label dis-
tribution and large margin. Second, we learn the
rest label description degrees to exploit generaliza-
tion. Theoretical analysis shows the generalization
of LDL-HR. Besides, the experimental results on
18 real-world datasets validate the statistical supe-
riority of our method.

1 Introduction
In traditional supervised learning paradigms, such as Single-
Label Learning (SLL) and Multi-Label Learning (MLL), the
relation between instances and labels is deterministic: 0 for
relevant and 1 for irrelevant [Zhang and Zhou, 2014]. Nev-
ertheless, in many real-world scenarios, label ambiguity is
widespread [Gao et al., 2017], i.e., the relation between in-
stances and labels contains some uncertainty [Rupprecht et
al., 2017], which may limit the applications of SLL and
MLL. To address that, Geng [2016] proposes a new learning
paradigm called Label Distribution Learning (LDL). Instead
of 0/1 labels, LDL annotates each instance with a label distri-
bution. A label distribution is a vector of real-values whose
elements are called the label description degrees that specify
the relative importance of labels to instances. LDL can handle
label ambiguity and attracts lots of attention.

As an effective solution to label ambiguity, LDL has seen
many classification applications such as age estimation [Shen
et al., 2017], head-pose estimation [Geng and Xia, 2014],
sentiment analysis [Yang et al., 2017], emotion recognition
∗Corresponding author.

[Li and Deng, 2019], beauty perception [Liang et al., 2018],
etc. Generally, applications of LDL involve two phases.
First, in the training phase, an LDL function is learned from
the training set with label distributions. Second, in the test
phase, the learned LDL function is regarded as a classifier –
for an unknown instance, the label that has the highest pre-
dicted label description degree by the learned LDL function
is regarded as the predicted label. Take head-pose estimation
[Geng and Xia, 2014] as an example. First, an LDL function
is learned from the pose images described by label distribu-
tions. Then, for an unknown image, the pose label that has
the highest predicted label description degree is considered
as the predicted pose.

Although LDL has found wide classification applications,
it faces the challenge of objective mismatch [Wang and
Geng, 2019; Gao et al., 2018]. That is, the objective of LDL
mismatches that of classification. The objective of LDL is to
learn the whole label distribution, while the goal of classifica-
tion is to learn the optimal label – LDL may neglect the opti-
mal label for the sake of learning the whole label distribution.
Fig. 1 explains the objective mismatch by examples. Even
though the learned LDL function of Fig. 1a has a smaller
L1-norm loss, the predicted label (y2) is different from the
optimal one (y1). The learned LDL function of Fig. 1b has
a larger L1-norm loss but the predicted label (y2) equals the
optimal one (y2). Gao et. al [2018] first pointed out the ob-
jective mismatch in age estimation. Wang and Geng [2019]
designed a specialized LDL algorithm to alleviate the objec-
tive mismatch. Besides these two, existing works on LDL
seldom notice the objective mismatch.

To solve the objective mismatch, we propose in this paper
a new LDL method called LDL-HR. We view label distribu-
tion equivalently as a combination of the highest label (i.e.,
the label with the highest description degree) and the rest la-
bel description degrees (i.e., all description degrees except
that of the highest label). We prove that both the highest la-
bel and the rest label description degrees are necessary for the
generalization of LDL (Theorems 1 and 2). Inspired by that,
LDL-HR jointly learns the highest label and the rest label de-
scription degrees. We conduct extensive experiments on 18
real-world datasets. The experimental results show the better
classification performance of LDL-HR. Further analysis val-
idates the usefulness of learning the highest label and the rest
label description degrees.
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(a) L1-norm loss: 0.2; 0/1 loss: 1
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(b) L1-norm loss: 0.6; 0/1 loss: 0

Figure 1: Illustration of the objective mismatch. For (a), the learned
LDL function has a smaller L1-norm loss while the predicted label
(y2) is different from the optimal one (y1). However, for (b), the
predicted LDL function has a larger L1-norm loss but the predicted
label (y2) equals the optimal one (y2).

Our contributions are as follows. First, we present a novel
perspective of label distribution – a combination of the high-
est label and the rest label description degrees. Theoretical
findings show that both the highest label and the rest label de-
scription degrees are necessary for the generalization of LDL
algorithms. Second, we propose a new LDL method LDL-
HR. Inspired by the theoretical findings, LDL-HR jointly
learns the highest label and the rest label description degrees.
Experimental results validate the effectiveness of LDL-HR.

2 Preliminaries
2.1 Notations
Denote by X ⊂ Rq the input space and Y = {y1, · · · , ym}
the label space. Each x ∈ X is annotated with a label dis-
tribution D = [dy1x , · · · , dymx ]>, where dyjx is called the label
description degree and satisfies dyjx ≥ 0 and

∑m
j=1 d

yj
x = 1

[Geng, 2016]. Given a training set with n examples S =
{(x1, D1), (x2, D2), · · · , (xn, Dn)}, the goal of LDL is to
learn a multi-output function p : X → Rm which minimizes
the difference between the outputs of p and the ground-truth
label distributions [Geng, 2016].

Let ‖ · ‖2 and ‖ · ‖F respectively denote the L2-norm and
Frobenius norm, and [m] be the set {1, · · · ,m}. Let sign(·)
be the sign function and I(·) be the indicator function. Let D
be the (unknown) underlying distribution over X . Define

yx = arg max
ȳ∈Y

dȳx (1)

i.e., the highest label that has the optimal label description
degree. Let y ∈ Y be the random label variable. Suppose that
the label distribution function is the conditional probability
distribution function, i.e., dyjx = P(y = yj |x). Let L∗1 be the
Bayes error [Devroye et al., 1996].

2.2 LDL and Classification
Classification with LDL can be formulated as follows. First,
an LDL function h is learned from S by optimizing

min
W

∑
i

`(Di, h(xi;W )), (2)

where W is the parameter, and ` is a loss function. Second,
a classifier is defined

f(x) = arg max
ȳ∈Y

hȳx, (3)
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(b) Degenerated label dist.

Figure 2: Illustration of learning the ground-truth and the degener-
ated label distributions (red bars), where the blue bars denote the
learned label distributions. The L1-norm losses of both (a) and (b)
equal 0.2. However, the predicted label (y1) of (b) equals the optimal
one (y1), while the predicted one (y2) of (a) doesn’t.

where hȳx is the predicted label description degree of ȳ to x.
That is, the label having the highest predicted label descrip-
tion degree by h is regarded as the predicted label. The goal
of LDL-HR is to minimize the error P(f(x) 6= y).

3 The LDL-HR Method
This section explains the proposed method. First, we address
the objective mismatch by learning the highest label. Second,
we learn the rest label description degrees to exploit general-
ization. Third, we elaborate on the optimization method.

3.1 Learn the Highest Label
As discussed in Section 1 that LDL faces the challenge of
objective mismatch when adopted to classification problems.
To alleviate that, we learn the highest label by learning the
degenerated label distribution and large margin.

To start, we define the degenerated label distribution.
Specifically, for each x, define D̄ = [d̄y1x , d̄

y2
x , · · · , d̄ymx ]>,

where d̄yjx is defined by

d̄
yj
x =

{
1 if yj = yx
0 otherwise. (4)

That is, we assign a degree of 1 to the highest label and 0s
to other labels. When learning the degenerated label distri-
bution, an LDL model would mainly focus on the highest la-
bel because the label description degree of the highest label
dominates those of other labels. Thereby, the degenerated la-
bel distribution is helpful to alleviate the objective mismatch.
Fig. 2 shows an example of learning the ground-truth and
the degenerated label distributions, where the red bars are the
ground-truth and the degenerated distributions, and the blue
bars are the learned distributions. From Fig. 2, we can see
that i) the learned LDL functions of both (a) and (b) achieve
L1-norm losses of 0.2, and ii) the predicted label of (b) (y1)
equals the optimal label (y1) while the predicted label of (a)
(y2) doesn’t, which shows the advantage of learning the de-
generated label distribution. Besides, learning the degener-
ated label distribution also has theory guarantee, which is
shown by the next theorem.

Theorem 1. Let D̄ be the degenerated label distribution as
defined in Eq. (4). Let h be a learned LDL function, and f
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be the classifier as defined in Eq. (3). Then, the expected 0/1
loss of f satisfies the following bound

P(f(x) 6= y)− L∗1 ≤ Ex∼D

[∑
ȳ

|hȳx − d̄ȳx|

]
. (5)

Theorem 1 says that the expected 0/1 loss of a classifier
would approach the Bayes error if the outputs of the learned
LDL function is close to the degenerated label distribution
in L1-norm distance sense. That is, to learn a classifier with
small 0/1 loss, it suffices to minimize the L1-norm distance
between the LDL function and the degenerated distribution.

By Theorem 1, we use L1-norm loss to learn the degener-
ated label distribution. Similar to [Geng, 2016], we adopt the
maximum entropy model [Berger et al., 1996] defined by

hylx =
exp(wl · x)∑m
j=1 exp(wj · x)

, for l ∈ [m].

Then, LDL can be cast as the following optimization problem

min
W

∑
i,j

|hyjxi − d̄
yj
xi |+

λ1

2
‖W ‖2F, (6)

where W = [w1, · · · ,wm] is the model parameter, and λ1 is
the regularization parameter.

Next, we borrow large margin theory [Cortes and Vapnik,
1995] to further improve classification performance. Our ba-
sic idea is to encourage the predicted label description degree
of the highest label to be larger than those of other labels by a
margin ρ > 0. Then, the predicted label would be consistent
with the highest one, which alleviates the objective mismatch.
Recall the highest label yxi = arg maxȳ d

ȳ
xi

. Adding large
margin to Eq. (6), we have the next optimization problem

min
W ,ξ

∑
i,j

|hyjxi − d̄
yj
xi |+

λ1

2
‖W ‖2F + λ2

∑
i,j:yj 6=yxi

ξi,j
ρ

s.t. h
yxi
xi − h

yj
xi ≥ ρ− ξi,j ,

ξi,j ≥ 0, ∀i ∈ [n], ∀j ∈ {l|l ∈ [m], yl 6= yxi}

(7)

where ξi,j is a slack variable, and λ2 is a trade-off parame-
ter. The constraints encourage the predicted label description
degree of yxi to be larger than those of other labels by ρ.

3.2 Learn the Rest Label Description Degrees
Observe that model (7) only learns the highest label and ne-
glects the rest label description degrees (i.e., the label de-
scription degrees of all labels except the highest one), which
loses lots of supervision information. As shown in Fig. 2
that, the ground-truth label distribution has much more super-
vision information than the degenerated one, particularly for
the labels except the highest label. Indeed, the rest label de-
scription degrees are necessary for the generalization of LDL.
Concretely, let f ′ be the sub-optimal classifier defined by

f ′(x) = arg max
ȳ∈Y\{yx}

dȳx, (8)

which outputs the highest label in the rest label descrip-
tion degrees (the label with the second highest label descrip-
tion degree). Define the expected 0/1 loss of f ′ by L∗2 =
P(f ′(x) 6= y). The next theorem shows the generalization of
LDL w.r.t. learning the rest label description degrees.

Theorem 2. Let h be a learned LDL function, and f be the
classifier as defined in Eq. (3). Then, the expected 0/1 loss of
f satisfies the following bound

P(f(x) 6= y) ≤ L∗2 + Ex∼D

∑
ȳ 6=yx

|dȳx − hȳx|

 . (9)

Theorem 2 says that the expected 0/1 loss of the classifier
can be bounded by the sum of two items. The first one is the
expected 0/1 loss of the sub-optimal classifier, and the second
one is the expected L1-norm distance between the outputs of
the learned LDL function and the rest label description de-
grees. In another word, even if the expected 0/1 loss of the
classifier doesn’t reach the Bayes error, it can still be bounded
by that of the sub-optimal classifier as long as the outputs of
the learned LDL function is close to the rest label description
degrees in L1-norm distance sense. By Theorem 2, we learn
the rest label description degrees with L1-norm loss to exploit
generalization, and re-cast Eq. (7) as the following

min
W ,ξ

n∑
i=1

m∑
j=1

|hyjxi − d̄
yj
xi |+ λ2

n∑
i=1

∑
j:yj 6=yxi

ξi,j
ρ

+
λ1

2
‖W ‖2F + λ3

n∑
i=1

∑
j:yj 6=yxi

|hyjxi − d
yj
xi |

s.t. h
yxi
xi − h

yj
xi ≥ ρ− ξi,j ,

ξi,j ≥ 0, ∀i ∈ [n], ∀j ∈ {l|l ∈ [m], yl 6= yxi
}

(10)

where λ3 is a trade-off parameter, and the last item learns the
rest label description degrees. We defer the proofs for the
theorems to the Supplementary Material1.

3.3 Optimization
It’s challenging to solve Eq. (10) directly due to the large
number of constraints (2n(m − 1) constraints). Here, we
solve it by iterative methods. Define `ρ(x) = max{0, 1 −
x/ρ}. Then, Eq. (10) can be equivalently re-written as

min
W ,ξ

λ1

2
‖W ‖2F +

∑
i,j

|hyjxi − d̄
yj
xi |

+ λ2

∑
i,j:yj 6=yxi

`ρ(h
yxi
xi − h

yj
xi) + λ3

∑
i,j:yj 6=yxi

|hyjxi − d
yj
x |

Define ωi,j = sign(h
yj
x − d̄yjx ), ω̄i,j = sign(h

yj
x − dyjx ), and

ω̂i,j = I(hyxi
xi − h

yj
xi ≤ ρ). The gradient of the preceding

objective function can be obtained through

5w = λ1w + λ2

∑
i,j:yj 6=yxi

ω̂i,j · ∂(h
yj
xi − h

yxi
xi )/∂w

+
∑
i,j

ωi,j · ∂h
yj
xi/∂w + λ3

∑
i,j:yj 6=yxi

ω̄i,j · ∂h
yj
xi/∂w,

where the gradient of maximum entropy can be calculated as
∂hȳxi

/∂wl =
(
I(ȳ = yl) · hylxi

− hylxi
· hȳxi

)
· x.

Since the problem is a convex optimization problem, a quasi-
Newton algorithm L-BFGS [Nocedal and Wright, 2006] is
applied to efficiently solve it.

1Available at: https://github.com/wangjing4research/LDL HR
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4 Generalization
This section analyzes the generalization of LDL-HR. For
an LDL function h, let f be the classifier defined in Eq.
(3). Next, define R̂(h) = 1

n

∑
i,j |h

yj
xi − d̄

yj
xi |, R̄(h) =

1
n

∑
i,j:yj 6=yxi

|hyjxi − d
yj
xi |, and the error R(h) = P(f(x) 6=

y). Let SF be the softmax function. For simplicity, let
supx∈X ‖x‖2 ≤ Λ1 for a constant Λ1 > 0.

Theorem 3. Define F = {x 7→W>x | ‖wj‖2 ≤ Λ2, ∀j ∈
[m]} and H = {x 7→ SF(g(x)) | g ∈ F}2. Then, for any
δ > 0, with probability at least 1 − δ, the following bound
holds for all h ∈ H

R(h) ≤ R̂(h) +
4
√

2m2Λ1Λ2√
n

+ (1− 1

n

n∑
i=1

d
yxi
xi ) + 2

√
ln 4

δ

2n
.

Theorem 3 bounds the error by the sum of four items. The
first one is the empirical L1-norm loss, the second is an upper
bound on the Rademacher complexity [Bartlett and Mendel-
son, 2002] for H, the third one is an empirical estimation of
the Bayes error, and the last one can be ignored. Next, let
y′x = f ′(x), where f ′ is defined in Eq. (8).

Theorem 4. Let H be the hypothesis space defined in The-
orem 3. For any δ > 0, with probability at least 1 − δ, the
following bound holds for all h ∈ H

R(h) ≤ R̄(h) +
4
√

2m2Λ1Λ2√
n

+ (1− 1

n

n∑
i=1

d
y′xi
xi ) + 2

√
ln 4

δ

2n
.

Theorem 4 bounds the error by the sum of four items,
where the first one is the empirical L1-norm loss w.r.t. the rest
label description degrees, the second one bounds the com-
plexity of H, the third one is an empirical estimation of the
generalization error of f ′. By Theorems 3 and 4, both the
highest label and the rest label description degrees are help-
ful for the generalization of our model.

5 Experiments
5.1 Methodology
Experimental Datasets. Table 1 summarizes the statistics
of the experimental datasets. The first 15 datasets (from Al-
pha to SBU 3DFE) are collected by Geng [2016]. The last
three datasets M2B [Nguyen et al., 2012], SCUT-FBP [Xie
et al., 2015], and fbo5500 [Liang et al., 2018] are about
facial beauty perception. For M2B, the label distributions
are transformed from k-wise comparisons [Ren and Geng,
2017]. For fbp5500, we use the trained ResNet to extract 512-
dimensional features. In the sequel, each dataset is denoted
by its first three letters (Spoem and Spo5 are denoted by Spoe
and Spo5 to distinguish them from Spo).

Evaluation Metrics. Our motivation is to improve the clas-
sification performance and solve the objective mismatch of
LDL. Hence, the commonly used LDL metrics are not used.
To evaluate the classification performance of algorithms, we

2The maximum entropy model is equivalent to a functional com-
bination of the softmax function and a linear function.

ID. Dataset #Examples #Features #Labels

1 Alpha 2,465 24 18
2 Cdc 2,465 24 15
3 Cold 2,465 24 4
4 Diau 2,465 24 7
5 Dtt 2,465 24 4
6 Elu 2,465 24 14
7 Heat 2,465 24 6
8 Spo 2,465 24 6
9 Spo5 2,465 24 3

10 Spoem 2,465 24 2
11 Scene 2,000 294 9
12 Gene 17,892 36 68
13 Movie 7,755 1,869 5
14 SJAFFE 213 243 6
15 SBU 3DFE 2,500 243 6
16 M2B 1,240 250 5
17 SCUT-FBP 1,500 300 5
18 fbp5500 5,500 512 5

Table 1: Statistics of the experimental datasets

regard the highest label (i.e., yx) as the ground-truth label and
use 0/1 loss, i.e., `0/1(f(x), yx) = I(f(x) 6= yx). To further
analyze the generalization ability of algorithms, we use the
error probability proposed in [Wang and Geng, 2019]. Let
ȳ = f(x), then the error probability is defined by

`ep(y, f(x)) = P(y 6= ȳ | x) = 1− P(y = ȳ | x) = 1− dȳx

Baselines. We compare LDL-HR against seven methods,
details of which are summarized as follows.

• Logistic Regression (LR): the maximum entropy model
can be viewed as a multi-nomial LR. Accordingly, we
compare LDL-HR against LR.

• Support Vector Machine (SVM) [Chang and Lin, 2011]:
LDL-HR uses large margin, which can be viewed as an
SVM. Here, one-vs-rest SVM is compared against.

• SA-BFGS [Geng, 2016]: it uses the maximum entropy
model to learn label distribution, where KL divergence
is employed as the learning metric.

• LDL-SVR [Geng and Hou, 2015]: it adopts the multi-
output Support Vector Regression (SVR) model to learn
label distribution.

• EDL-LRL [Jia et al., 2019]: it exploits the local low-
rank structure of label distribution to consider local label
correlation when learning label distribution.

• LDL-SCL [Jia et al., 2021]: it encodes label correlations
as additional features, and jointly learns label distribu-
tion and label correlation.

• LDL4C [Wang and Geng, 2019]: it’s a specialized LDL
method for classification with label distribution, where
instances are weighted and large margin is used.

Parameter Settings. The parameters of the baselines are
set as follows. For SVM and LDL-SVR, the linear kernel
is used and C = 1. For LDL-SVR, ε = 0.1. For SA-
BFGS, EDL-LRL, and LDL-SCL, the default parameters are
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used. For LDL4C, C1 and C2 are selected from the can-
didate set {10−3, · · · , 103} and ρ is selected from the pool
{0.001, 0.01, 0.1}. For LDL-HR, λ1 = 0.001, λ2 and λ3 are
tuned from the candidate set {10−3, · · · , 1}, and ρ = 0.01.
We first tune the parameters of each method by 10-fold cross-
validation, and then run each method with the best parame-
ters for 10 times random data partitions (90% for training and
10% for testing). The mean performance and the standard
deviation are reported.

5.2 Results and Discussion
Tables 2 and 3 tabulate the experimental results of each com-
paring method in terms of 0/1 loss and error probability, re-
spectively. The best results are highlighted in boldface. Fur-
ther, we conduct the pairwise t-test at a confidence of 0.05
and use •/◦ to indicate whether LDL-HR is statistically su-
perior/inferior to the comparing methods.

According to Tables 2 and 3, LDL-HR ranks first in 72.2%
and 77.8% cases in terms of 0/1 loss and error probability
respectively, and achieves significantly superior performance
against other methods in 64.3% and 52.4% cases in terms of
0/1 loss and error probability, respectively. LDL-HR is com-
parable to LR and SVM in terms of 0/1 loss, and outperforms
them by a large margin in terms of error probability, which
implies the better generalization of LDL-HR. The reason is
that LDL-HR learns, besides the highest label, the rest la-
bel description degrees, which is consistent with our theoret-
ical finding (Theorem 2). Compared with SA-BFGS, LDL-
SVR, EDL-LRL, and LDL-SCL, LDL-HR achieves statisti-
cally better performance in terms of 0/1 loss and compara-
ble performance in terms of error probability. On one hand,
LDL-HR solves the objective mismatch and has better clas-
sification performance by learning the highest label. On the
other hand, LDL-HR achieves comparable generalization to
the LDL algorithms by learning the rest label description de-
grees. Moreover, LDL-HR achieves comparable performance
to LDL4C with the win/tie/lose counts of 7/11/0 and 2/16/0
in terms of 0/1 loss and error probability, respectively. It’s
noteworthy that LDL-HR has much better mean performance
(top-1 times of 13 and 14) than LDL4C (top-1 times of 4 and
8) for both 0/1 loss and error probability.

5.3 Parameter Sensitivity Analysis
LDL-HR has four parameters, including the regularization
parameter λ1, the trade-off parameters λ2 and λ3, and the
margin ρ. To show the robustness of λ1, λ2, and λ3, we tune
them from {10−4, · · · , 104}. Fig. 3a and 3b show the results
of the grid-search for λ2 and λ3 on Alpha, Movie in terms of
0/1 loss. Accordingly, λ2 = 0.1 and λ3 = 0.1 bring satis-
fying performance. Fig. 3c presents the sensitivity of λ1 on
M2B, Movie, Scene, and SBU 3DFE. By Fig. 3c, LDL-HR
with λ1 = 0.001 has better performance. To show the sen-
sitivity of ρ, we tune it from the set {10−4, · · · , 10−1}. Fig.
3d shows the sensitivity of ρ . We can see from Fig. 3d that
LDL-HR is robust w.r.t. ρ, which can be set to 0.01.

5.4 Ablation Study
We conduct ablation studies to analyze the usefulness of
learning the highest label and the rest label description de-
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Figure 3: Parameter sensitivity. (a) and (b) are the sensitivity of λ2

and λ3. (c) is the sensitivity of λ1. (d) is the sensitivity of ρ.
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Figure 4: Detailed results of LDL-H, LDL-`1, and SA-BFGS in
terms of 0/1 loss.

grees. We first derive a degenerated version LDL-H that only
considers the highest label by setting λ2 = 0 and λ3 = 0.

LDL-H only learns the degenerated label distribution. To
see the effectiveness of that, we replace the degenerated la-
bel distribution with the ground-truth one, and denote the
method by LDL-`1 (learns the ground-truth label distribution
with L1-norm loss). We compare LDL-H with LDL-`1. Be-
sides, we also compare LDL-H with SA-BFGS that only dif-
fers from LDL-H in learning the ground-truth label distribu-
tion with KL divergence. Fig. 4 presents the detailed results
of LDL-H, LDL-`1, and SA-BFGS in terms of 0/1 loss on
some datasets. To show the usefulness of learning the rest la-
bel description degrees, we compare LDL-HR (with λ2 = 0)
against LDL-H since they are only different in that LDL-H
ignores the rest label description degrees. We further conduct
the Wilcoxon signed-rank tests [Demšar, 2006] for LDL-H
against LDL-`1 and SA-BFGS, and LDL-HR against LDL-
H, which are reported in Table 4 (win/tie/lose at 0.05 signif-
icance level). According to Table 4, learning the highest la-
bel brings statistically better classification performance, and
learning the rest label description degrees leads to statistically
superior generalization.
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LR SVM SA-BFGS LDL-SVR EDL-LRL LDL-SCL LDL4C LDL-HR

Alp 79.07±2.90• 78.74±2.91 89.74±2.47• 90.83±2.02• 89.70±2.37• 91.24±1.73• 78.70±2.34 78.30±3.06
Cdc 82.47±2.36 82.47±2.25 82.56±2.20 82.43±1.99 82.60±2.14 82.68±2.26 81.78±2.20 81.54±2.78
Dia 66.69±1.88 68.07±1.89• 69.66±3.88• 70.83±3.75• 69.90±3.96• 70.23±3.72• 66.45±1.73 65.36±1.91
Elu 80.85±3.22 81.01±3.19 90.39±1.86• 90.87±1.81• 90.43±1.82• 90.91±2.17• 80.28±1.35 80.49±2.95
Hea 67.43±2.53• 67.88±4.04 70.14±2.88• 70.55±2.13• 70.02±2.88• 69.62±2.52• 67.54±3.21• 66.66±2.81
Col 58.17±3.10 57.93±3.70 58.05±3.60 58.01±3.57 58.09±3.55 57.81±3.37 57.53±3.00 56.84±3.54
Dtt 63.00±2.04 65.48±3.86• 63.24±2.37 63.25±2.05 63.45±2.26 63.49±2.29 62.68±2.72 62.39±2.60
Spo 54.69±3.34 54.77±3.32 55.66±3.53• 56.23±3.38• 55.70±3.57• 55.87±3.52• 54.73±1.89 54.73±3.13

Spo5 54.64±2.34 54.85±2.82 57.08±2.90• 60.77±3.77• 56.84±2.81• 59.23±4.02• 53.43±3.05 53.51±2.90
Spoe 41.13±3.01 49.86±4.57• 43.57±2.64• 46.33±3.11• 43.49±2.62• 44.02±2.34• 40.08±2.23 39.88±3.15
SJA 74.70±6.86• 74.70±6.86• 51.23±10.5• 80.65±8.24• 80.65±8.24• 75.15±7.82• 39.39±9.80• 38.92±11.3
Sce 43.30±4.09• 41.90±3.50 61.80±3.59• 71.90±2.79• 62.10±3.27• 66.60±4.24• 41.95±2.37• 41.45±3.52
SBU 65.32±4.06• 68.72±3.50• 55.88±2.56 65.68±3.55• 66.12±2.79• 52.20±2.95 56.92±2.77• 54.52±2.65
SCU 48.47±3.54• 62.87±4.76• 69.80±3.32• 46.80±3.30 61.33±4.49• 54.13±6.70• 46.53±2.27• 45.20±3.41
M2B 51.94±4.69• 52.10±4.02• 53.87±5.55• 50.40±4.29• 50.81±3.71• 48.15±2.47• 48.06±3.02• 46.21±2.65
Gen 92.80±0.56• 95.71±0.43• 95.67±0.53• 98.31±0.22• 96.03±0.48• 95.92±2.04• 92.75±0.80 92.62±0.47
Mov 42.40±1.97• 57.52±2.78• 45.97±1.47• 41.88±1.44 47.72±2.07• 42.85±1.12• 40.86±1.56 41.11±1.94
fbp 23.75±1.69• 40.53±5.11• 21.11±1.83 21.15±1.51 32.42±3.01• 21.82±1.28• 22.82±2.08• 20.84±1.63

Table 2: Experimental results (mean±std.%) of the comparing methods in terms of 0/1 loss.

LR SVM SA-BFGS LDL-SVR EDL-LRL LDL-SCL LDL4C LDL-HR

Alp 94.48±0.08• 94.52±0.07• 94.28±0.04 94.28±0.03• 94.28±0.04 94.30±0.03• 94.26±0.02 94.25±0.04
Cdc 92.98±0.06• 92.96±0.05• 92.89±0.05• 92.88±0.06 92.89±0.05 92.88±0.06 92.87±0.05 92.87±0.05
Dia 84.61±0.18• 85.01±0.26• 84.30±0.17 84.31±0.14 84.30±0.16 84.29±0.16 84.28±0.10 84.27±0.12
Elu 92.86±0.12• 92.92±0.13• 92.62±0.06 92.61±0.05 92.62±0.06 92.61±0.05 92.60±0.05 92.60±0.04
Hea 82.53±0.18• 82.56±0.29• 82.43±0.20• 82.43±0.19• 82.43±0.20• 82.42±0.18• 82.33±0.18 82.30±0.21
Col 73.04±0.29 72.97±0.35 73.01±0.32• 72.98±0.33 73.01±0.31• 72.98±0.30 72.96±0.31 72.96±0.34
Dtt 74.14±0.16 74.40±0.30• 74.19±0.19• 74.20±0.20• 74.19±0.19• 74.19±0.15• 74.12±0.21 74.09±0.20
Spo 81.01±0.42 81.01±0.43 81.07±0.42 81.08±0.41• 81.08±0.41 81.05±0.43 81.00±0.41 81.00±0.42

Spo5 65.51±0.37 65.50±0.48 65.43±0.49 66.31±0.71• 65.40±0.48 65.39±0.43 65.26±0.58 65.26±0.65
Spoe 47.42±0.75• 48.69±0.77• 47.06±0.54 48.32±0.86• 47.04±0.55 47.09±0.52 47.00±0.62 46.97±0.75
SJA 83.64±2.18• 83.64±2.18• 76.89±1.25• 81.88±1.13• 81.88±1.13• 81.96±1.79• 75.73±2.04 75.67±1.19
Sce 66.15±3.01• 65.48±2.83 66.80±2.56• 66.43±2.44• 65.85±2.31• 67.82±3.42• 64.50±1.58 64.76±2.09
SBU 80.28±0.58• 81.17±0.55• 76.77±0.57 80.06±0.53• 79.91±0.50• 75.97±0.43◦ 77.34±0.54• 76.85±0.62
SCU 55.22±1.43• 64.80±3.99• 71.63±2.06• 54.35±1.13• 65.05±2.87• 58.81±3.07• 54.14±1.41 54.10±1.17
M2B 56.32±2.79• 56.86±2.25• 57.68±4.05• 55.15±2.77 55.28±2.71 54.08±2.26 53.58±2.40 53.54±1.74
Gen 98.26±0.06• 98.39±0.06• 98.20±0.04 98.24±0.02 98.21±0.04 98.28±0.04• 98.16±0.06 98.20±0.06
Mov 67.74±0.33• 71.59±0.66• 68.47±0.20• 67.65±0.27 68.86±0.46• 67.88±0.26• 67.43±0.30 67.60±0.34
fbp 45.04±0.63• 52.93±2.75• 44.30±0.70 44.02±0.61 49.45±1.72• 44.28±0.47 44.55±0.61• 44.07±0.62

Table 3: Experimental results (mean±std.% ) of the comparing methods in terms of error probability.

Metric LDL-H vs. Metric LDL-HR vs.

LDL-`1 SA-BFGS LDL-H

`0/1 win[3.95e-2] win[4.95e-2] `ep win[9.80e-4]

Table 4: Summary of the results (win/tie/lose[p-value]) of the
Wilcoxon signed-rank tests.

6 Conclusion
LDL has found extensive applications in many fields. How-
ever, it may face the challenge of objective mismatch when
adopted to classification problems, which leads to perfor-
mance deterioration. To solve that, we propose a new LDL
method called LDL-HR. LDL-HR directly learns the highest

label to alleviate the objective mismatch, and learns the rest
label description degrees to exploit generalization. Theoreti-
cal analysis shows the generalization of our method. Besides,
extensive experiments on 18 real-world datasets show the sta-
tistically better classification performance of our method.

However, LDL-H only applies to SLL and not to MLL. In
the future, we will explore how to extend LDL-HR to MLL.
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