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Abstract
Randomized coordinate descent (RCD) is a popular
optimization algorithm with wide applications in
solving various machine learning problems, which
motivates a lot of theoretical analysis on its con-
vergence behavior. As a comparison, there is no
work studying how the models trained by RCD
would generalize to test examples. In this paper,
we initialize the generalization analysis of RCD
by leveraging the powerful tool of algorithmic sta-
bility. We establish argument stability bounds of
RCD for both convex and strongly convex objec-
tives, from which we develop optimal generaliza-
tion bounds by showing how to early-stop the algo-
rithm to tradeoff the estimation and optimization.
Our analysis shows that RCD enjoys better stabil-
ity as compared to stochastic gradient descent.

1 Introduction
Randomized coordinate descent (RCD) is a popular method
for solving large-scale optimization problems which are ubiq-
uitous in the big-data era [Nesterov, 2012; Richtárik and
Takáč, 2014; Richtárik and Takáč, 2016; Zeng et al., 2019].
As an iterative algorithm, it iteratively updates a single ran-
domly chosen coordinate along the negative direction of the
derivative while keeping the other coordinates fixed. Due
to its ease of implementation and high efficiency, RCD has
found wide applications in various areas such as compressed
sensing, network problems and optimization [Richtárik and
Takáč, 2014]. In particular, the conceptual and algorithmic
simplicity makes it especially useful for large-scale problems
for which even the simplest full-dimensional vector opera-
tions are very expensive [Nesterov, 2012].

The popularity of RCD motivates a lot of theoretical anal-
ysis to understand its empirical behavior. Specifically, itera-
tion complexities of RCD are well studied in the literature un-
der different settings (e.g., convex/strongly convex [Nesterov,
2012], smooth/nonsmooth cases [Richtárik and Takáč, 2014;
Richtárik and Takáč, 2016; Lu and Xiao, 2015]) for dif-
ferent variants (e.g., distributed RCD [Richtárik and Takáč,
2016], accelerated RCD [Nesterov, 2012; Ren and Zhu, 2017;
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Gu et al., 2018; Li and Lin, 2020; Chen and Gu, 2016] and
RCD for primal-dual problems [Qu et al., 2016]). These
discussions concern how the empirical risks of the models
trained by RCD would decay along the optimization process.
As a comparison, there is little analysis on how these mod-
els would behave on testing examples, which is what really
matters in machine learning. Actually, if the models are very
complicated, it is very likely that the models would admit a
small empirical risk or even interpolate the training examples
but meanwhile suffer from a large test error. This discrepancy
between training and testing, as referred to as overfitting, is
a fundamental problem in machine learning [Bousquet and
Elisseeff, 2002]. The existing convergence analysis of RCD
is not enough to fully understand why models trained by RCD
have a good prediction performance in real applications. In
particular, it is not clear how the optimization and statistical
behavior of RCD would change along the optimization pro-
cess, which is useful for designing efficient models in prac-
tice. For example, generalization analysis provides a princi-
pled guideline on how to stop the algorithm appropriately for
a best generalization.

In this paper, we aim to bridge the generalization and opti-
mization of RCD by leveraging the celebrated concept of al-
gorithmic stability. We establish stability bounds of RCD as
measured by several concepts, including `1-argument stabil-
ity, `2-argument stability and uniform stability. Under stan-
dard assumptions on smoothness, Lipschitz continuity and
convexity of objective functions, we show clearly how the
stability and the optimization error would behave along the
learning process. This suggests a principled way to early-
stop the algorithm to get a best generalization behavior. We
consider convex, strongly convex and nonconvex objective
functions. In the convex and strongly convex cases, we de-
velop minimax optimal generalization bounds of the order
O(1/

√
n) and O(1/n) respectively, where n is the sample

size. Our analysis not only suggests that RCD has a bet-
ter stability than stochastic gradient descent (SGD), but also
is able to exploit a low noise condition to get an optimistic
bound O(1/n) in the convex case. Finally, we develop gen-
eralization bounds with high probability which are useful to
understand the robustness and variation of the training algo-
rithm [Feldman and Vondrak, 2019].

We survey related work in Section 2 and formulate the
problem in Section 3. We give stability and generalization
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bounds in Section 4 and Section 5. We report experimental
results in Section 6 and present some proofs in Section 7. The
full proofs can be found in the arXiv version of this paper.

2 Related Work
2.1 Randomized Coordinate Descent
RCD was widely used to solve large-scale optimization prob-
lems in machine learning, including linear SVMs [Chang et
al., 2008], `1-regularized models for sparse learning [Shalev-
Shwartz and Tewari, 2009] and low-rank matrix learning [Hu
and Kwok, 2019]. The convergence rate of RCD and its
accelerated variant were studied in the seminal work [Nes-
terov, 2012], where the advantage of RCD over determin-
istic algorithms is clearly illustrated. These results were
extended to structure optimization problems where the ob-
jective function consists of a smooth data-fitting term and
a nonsmooth regularizer [Richtárik and Takáč, 2014; Lu
and Xiao, 2015]. RCD was also adapted to distributed
data analysis [Richtárik and Takáč, 2016; Sun et al., 2017;
Xiao et al., 2019], primal-dual optimization [Qu et al., 2016]
and privacy-preserving problems [Damaskinos et al., 2020].
All these discussions consider the convergence rate of opti-
mization errors for RCD. As a comparison, we are interested
in the generalization behavior of models trained by RCD,
which is the ultimate goal in machine learning.

2.2 Stability and Generalization
We now review the related work on algorithmic stability
and its application on generalization analysis. The frame-
work of algorithmic stability was established in a seminal
paper [Bousquet and Elisseeff, 2002], where the important
uniform stability was introduced. This algorithmic stabil-
ity was extended to study randomized algorithms in Elisse-
eff et al. [2005]. Other than uniform stability, several other
stability measures including hypothesis stability [Bousquet
and Elisseeff, 2002], on-average stability [Shalev-Shwartz
et al., 2010] and argument stability [Liu et al., 2017] have
been introduced in statistical learning theory, whose con-
nection to learnability has been established [Mukherjee and
Zhou, 2006; Shalev-Shwartz et al., 2010]. The uniform sta-
bility of stochastic gradient descent (SGD) was established
for learning with (strongly) convex, smooth and Lipschitz
loss functions [Hardt et al., 2016]. This motivates the recent
work of studying generalization of stochastic optimization
algorithms via several stability [Meng et al., 2017; Charles
and Papailiopoulos, 2018; Kuzborskij and Lampert, 2018;
Yin et al., 2018; Yuan et al., 2019; Lei and Ying, 2020;
Bassily et al., 2020; Lei et al., 2020; Lei and Ying, 2021;
Wang et al., 2021; Yang et al., 2021]. For example, an on-
average model stability [Lei and Ying, 2020] has been pro-
posed to remove the smoothness assumption or Lipschitz con-
tinuity assumption in Hardt et al. [2016]. Recently, elegant
concentration inequalities have been developed to get high-
probability bounds via uniform stability [Feldman and Von-
drak, 2019; Bousquet et al., 2020]. To our knowledge, the
algorithmic stability of RCD has not been studied yet, which
is the topic of this paper.

3 Problem Formulation
Let ρ be a probability measure defined over a sample space
Z = X ×Y , where X is an input space and Y ⊂ R is an out-
put space. We aim to build a parametric model hw : X 7→ R,
where w is the model parameter which belongs to the param-
eter space W ⊆ Rd. The performance of the model hw on
a single example z can be measured by a nonnegative loss
function f(w; z). The quality of a model can be quantified
by a population risk F (w) = Ez[f(w; z)], where Ez denotes
the expectation w.r.t. z. We wish to approximate the best
model w∗ ∈ arg minw∈W F (w). However, the probability
measure is often unknown and we only have access to a train-
ing sample S = {z1, z2, . . . , zn} drawn independently from
ρ. The empirical behavior of hw on S can be measured by a
empirical risk FS(w) = 1

n

∑n
i=1 f(w; zi).

We give necessary notations. For any x ∈ Rd, we denote
the norm ‖x‖p =

(∑d
i=1 |xi|p

)1/p
for p ≥ 1. For any m ∈

N, we denote [m] := {1, . . . ,m}. We use the notation B =

O(B̃) if there exists a constant c0 > 0 such that B ≤ c0B̃,
and use B � B̃ if there exist constants c1, c2 > 0 such that
c1B̃ < B ≤ c2B̃. We say g : W 7→ R is L-smooth if
‖∇g(w)−∇g(w′)‖2 ≤ L‖w −w′‖2 for all w,w′ ∈ W .

We apply a randomized algorithm A to the sample S and
get an output model A(S) ∈ W . We are interested in study-
ing the excess generalization error F (A(S))−F (w∗). Since
E[FS(w∗)] = F (w∗), we have the decomposition

ES,A
[
F (A(S))−F (w∗)

]
=ES,A

[
F (A(S))−FS(A(S))

]
+ ES,A

[
FS(A(S))− FS(w∗)

]
. (1)

We refer to the first term ES,A
[
F (A(S)) − FS(A(S))

]
as

the estimation error, and the second term ES,A
[
FS(A(S)) −

FS(w∗)
]

as the optimization error. A standard approach to
control estimation error is to study the algorithmic stability
of the algorithm A, i.e., how the model would change if we
change the training sample by a single example. There are
several variants of stability measures including the uniform
stability, hypothesis stability, on-average stability and argu-
ment stability [Bousquet and Elisseeff, 2002; Hardt et al.,
2016; Elisseeff et al., 2005], among which the uniform sta-
bility is the most popular one.

Definition 1 (Uniform Stability). A randomized algorithm A

is ε-uniformly stable if for all datasets S, S̃ ∈ Zn differing by
one example, we have supz

[
f(A(S); z)− f(A(S̃); z)

]
≤ ε.

We consider the on-average argument stability, an advan-
tage of which is that it can imply better generalization bounds
without a Lipschitz continuity assumption on loss functions.

Definition 2 (On-average Argument Stability). Let S =
{z1, . . . , zn} and S′ = {z′1, . . . , z′n} be drawn indepen-
dently from ρ. For any i = 1, . . . , n, define S(i) =
{z1, . . . , zi−1, z′i, zi+1, . . . , zn} as the set formed from S by
replacing zi with z′i. We say a randomized algorithm A is
`1 on-average argument ε-stable if ES,S′,A

[
1
n

∑n
i=1 ‖A(S)−

A(S(i))‖2
]
≤ ε, and `2 on-average argument ε-stable if

ES,S′,A

[
1
n

∑n
i=1 ‖A(S)−A(S(i))‖22

]
≤ ε2.
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Lemma 1 gives a connection between on-average stability
and generalization [Lei and Ying, 2020]. Assumption 1 holds
for popular loss including logistic loss and Huber loss.
Assumption 1. Let G1, G2 > 0. Assume for all w ∈ W and
z ∈ Z , ‖∇f(w; z)‖1 ≤ G1 and ‖∇f(w; z)‖2 ≤ G2.

Lemma 1. Let S, S′ and S(i) be constructed as Definition 2.
(a) If Assumption 1 holds, then∣∣ES,A[FS(A(S))− F (A(S))

]∣∣ ≤
G2

n
ES,S′,A

[ n∑
i=1

‖A(S)−A(S(i))‖2
]
.

(b) If for any z, the function w 7→ f(w; z) is nonnegative
and L-smooth, then for any γ > 0 we have

ES,A
[
F (A(S))− FS(A(S))

]
≤ 1

γ
ES,A

[
FS(A(S))

]
+
L(1 + γ)

2n

n∑
i=1

ES,S′,A

[
‖A(S(i))−A(S)‖22

]
.

In this paper, we consider the specific RCD method widely
used in large-scale learning problems. Let w1 ∈ W be the
initial point. At the t-th iteration it first randomly selects a
single coordinate it ∈ [d], and then performs the update along
the it-th coordinate as [Nesterov, 2012]

wt+1 = wt − ηt∇itFS(wt)eit , (2)

where ∇ig denotes the derivative of g w.r.t. the i-th coordi-
nate and ei is a vector in Rd with the i-th coordinate being
1 and other coordinates being 0. Here {ηt} is a nonnegative
stepsize sequence. It is clear that RCD sequentially updates a
randomly selected coordinate while keeping others fixed. In
this paper, we consider the update of only a single coordi-
nate per iteration. Our discussions can be readily extended to
randomized block coordinate descent where the coordinates
are partitioned into blocks, and each block of coordinates is
updated per iteration [Nesterov, 2012].

4 Stability of RCD
In this section, we present our stability bounds of RCD.
To this aim, we first introduce several standard assump-
tions [Nesterov, 2012]. The first assumption is the convexity
of the empirical risk. Note we do not require the convexity of
each loss function, which is used in the stability analysis of
SGD [Hardt et al., 2016; Kuzborskij and Lampert, 2018].
Assumption 2. For any training dataset set S, FS is convex.

Our second assumption is the coordinate-wise smoothness.
Definition 3. We say a differentiable function g : W 7→ R
has coordinate-wise Lipschitz continuous gradients with pa-
rameter L̃ > 0 if the following inequality holds for all α ∈
R,w ∈ W , i ∈ [d] g(w+αei) ≤ g(w)+α∇ig(w)+L̃α2/2.

Assumption 3. For any training dataset S, FS is L-smooth
and has coordinate-wise Lipschitz continuous gradients with
parameter L̃ > 0.

We first consider convex problems. Part (a) of Theorem 2
considers the `1 argument stability, while Part (b) considers
`2 argument stability. The proof is given in Section 7.

Theorem 2. Let Assumptions 2, 3 hold. Let {wt}, {w(i)
t } be

given by (2) with ηt ≤ 2/L̃ based on S and S(i), respectively.
(a) If Assumption 1 holds, then

1

n

n∑
i=1

ES,S′,A

[
‖wt+1 −w

(i)
t+1‖2

]
≤ 2G1

nd

t∑
k=1

ηk. (3)

(b) For any p > 0 the `2 on-average argument stability can
be bounded by

1

n

n∑
i=1

EA
[
‖wt+1 −w

(i)
t+1‖22

]
≤ 4L(1 + 1/p)

n2d
×

t∑
j=1

(
1 + p

)t−j
η2jEA

[
FS(wj) + FS′(wj)

]
. (4)

Remark 1. We compare Theorem 2 with related work.
Under Assumptions 1, 2 and 3, it was shown SGD
with t iterations enjoys the `1 argument stability bound
O(G2

n

∑t
k=1 ηk). Eq. (3) shows RCD admits a better stability

since there is a d in the denominator. Note in the worst case
we can chooseG1 ≤

√
dG2 for which our stability bounds of

RCD are of the order O( G2

n
√
d

∑t
k=1 ηk). A notable property

of Part (b) is that the stability bound (4) does not require the
Lipschitz condition as ‖∇f(w; z)‖2 ≤ G2, which is widely
used in the existing stability analysis [Hardt et al., 2016;
Charles and Papailiopoulos, 2018; Kuzborskij and Lampert,
2018]. Indeed, a key point here is that we replace the Lip-
schitz constant G2 by empirical/population risks F and FS .
Since we are minimizing the empirical risk by RCD, it is rea-
sonable that F and FS would be small and in this case the
algorithm would be more stable. This gives an intuitive con-
nection between stability and optimization: a small optimiza-
tion error is also beneficial to improve stability.

We now consider strongly convex case. Theorem 2 shows
the stability becomes worse as we run more iterations. In
the following theorem, we show the stability can be further
improved if we impose a strong convexity assumption.
Assumption 4. Assume for all S, i ∈ [d],w ∈ W , the func-
tion v 7→ FS(w + vei) is σ-strongly convex, i.e.,

FS(w+ vei) ≥ FS(w+ v′ei) + (v− v′)∇iFS(w+ v′ei)

+ σ(v − v′)2/2, ∀v, v′ ∈ R.

Theorem 3. Let Assumptions 1, 3, 4 hold. Let {wt}, {w(i)
t }

be produced by (2) with ηt ≤ 1/L̃ based on S and S(i), re-
spectively. Then we have EA[‖wt+1 −w

(i)
t+1‖2] ≤ 4G1

nσ .

Remark 2. Stability bounds of the order O(1/(nσ)) were
established for SGD under a strong convexity assump-
tion [Hardt et al., 2016], which are extended to RCD here.
Another difference is that the stability bounds in Hardt et
al. [2016] are established for either the constant stepsize se-
quence ηt ≡ η or the specific stepsize sequence ηt = 1/(tσ).
As a comparison, our results apply to general stepsizes.
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We further consider nonconvex case. We now present sta-
bility bounds for nonconvex problems, which are ubiquitous
in the modern machine learning. We denote

∏t
k=t+1

(
1 +

L̃ηkd
− 1

2

)
= 1 [Ying and Zhou, 2017].

Theorem 4. Let Assumptions 1 and 3 hold. Let {wt}, {w(i)
t }

be produced by (2) based on S and S(i), respectively. Then

EA
[
‖wt+1 −w

(i)
t+1‖2

]
≤ 2G1

nd

t∑
j=1

ηj

t∏
k=j+1

(
1 + L̃ηkd

− 1
2

)
.

We finally consider almost sure bounds. The following the-
orem gives almost sure stability bounds, which is useful to
develop high-probability generalization bounds. We need a
coordinate-wise Lipschitz continuity assumption.

Assumption 5. For all S and [i] ∈ [d], assume |∇iFS(w)| ≤
G̃ for all w ∈ W .

Theorem 5. Let Assumptions 1, 2, 3, 5 hold. Then RCD with
T iterations is 2G2G̃

n

∑T
t=1 ηt-uniformly stable.

5 Generalization of RCD
In this section, we use our stability bounds to develop gen-
eralization bounds for RCD. According to (1), our analysis
requires to handle optimization errors by tools in convex op-
timization (details are given in the arXiv version).

We first consider convex case. We use the technique of
`1 on-average argument stability to develop generalization
bounds under a Lipschitz continuity assumption.

Theorem 6. Let Assumptions 1, 2, 3 hold. Let {wt} be pro-
duced by (2) with ηt ≡ η ≤ 2/L̃. Then

ES,A
[
F (wT )− F (w∗)

]
≤ 2G1G2Tη

nd
+

d‖w1 −w∗‖22
2Tη

+
dF (w1)

T
. (5)

If T � d
√
n, thenES,A

[
F (wT )− F (w∗)

]
= O(1/

√
n).

The first term on the right-hand side of Eq. (5) is related
to estimation error, while the remaining two terms are related
to optimization error. According to (5), we know that esti-
mation error bounds increase as we run more and more itera-
tions, while optimization errors decrease. This suggests that
we should balance these two errors by stoping the algorithm
at an appropriate iteration to enjoy a favorable generalization.

Remark 3. Under the same condition, it was shown that SGD
with T � n can achieve the excess generalization bounds
O(1/

√
n) [Hardt et al., 2016]. Here we show that the same

generalization bounds can be achieved by RCD.

In Theorem 6, we require the boundedness assumption of
stochastic gradients (note the bounded gradient assumption
does not hold for the least square loss). We now show that
this boundedness assumption can be removed by using the
`2-on-average argument stability. A nice property is that it
incorporates the information of F (w∗) in the generalization
bounds. This suggests that better generalization bounds can

be achieved if F (w∗) is small, which are called optimistic
bounds in the literature [Srebro et al., 2010; Zhang and Zhou,
2019]. Here we introduce a parameter γ to balance different
components of the generalization bounds.
Theorem 7. Let Assumptions 2, 3 hold. Let {wt} be pro-
duced by (2) with nonincreasing ηt ≤ 2/L̃. For any γ > 0

such that (1 + T )(1 + γ)L2e
∑T
t=1 η

2
t ≤ n2d/4, we have

ES,A[F (wT )−FS(w∗)] = O
( 1

γ
+
L2(γ + γ−1)T

n2d

T∑
t=1

η2t

)
× F (w∗) +O

(d+ dγ−1∑T
t=1 ηt

+
L2(γ + γ−1)T

n2

)
. (6)

The following corollary gives a quantitative suggestion on
how to stop the algorithm for a good generalization.
Corollary 8. Let Assumptions 2, 3 hold and d = O(n2). Let
{wt} be produced by (2) with ηt ≡ η ≤ 2/L̃.

(a) If (1 + T )(L + n
√
d/T )LeTη2 ≤ n2d/4, then we can

choose T �
√
nd

3
4 to get

ES,A[F (wT )− FS(w∗)] = O(d
1
4n−

1
2 ).

(b) If F (w∗) = O(d
1
2Ln−1) and (1 + T )L2eTη2 ≤ n2d/8,

we can choose T � n
√
d and get

ES,A[F (wT )− FS(w∗)] = O(d
1
2n−1).

Remark 4. If T �
√
nd

3
4 , then (1+T )(L+n

√
d/T )LeTη2 �

nd
3
2 + n

3
2 d

5
4 . Then the assumption in Part (a) holds if

d ≤ cn2 for some appropriate c > 0. If T � n
√
d,

then (1 + T )L2eT � n2d. In this case, the assumption
(1 + T )L2eTη2 ≤ n2d/8 in Part (b) is also easy to satisfy.
Remark 5. As compared to Theorem 6, Part (a) admits a
worse dependency on the dimensionality, which is the cost we
pay for removing the Lipschitz continuity assumption. Fur-
thermore, Part (b) shows that RCD is able to achieve a gen-
eralization bound as fast as O(

√
d/n) if the best model has

a small population risk, while Theorem 6 fails to exploit this
low-noise assumption and can only imply at most the gener-
alization bound O(1/

√
n).

Now, we present generalization bounds of RCD for
strongly convex objective functions.
Theorem 9. Let Assumptions 1, 2, 3, 4 hold. Let {wt} be
produced by (2) with ηt ≡ η ≤ 1/L̃. Then

ES,A
[
F (wT+1)−F (w∗)

]
≤ 4G1G2

nσ
+
(
1−ησ/d

)T
F (w1).

In particular, we can set T � dσ−1 log 1/(nσ) to get
ES,A

[
F (wT+1)− F (w∗)

]
= O(1/(nσ)).

Remark 6. Stability bounds of the order O(1/(nσ)) were
established for SGD under a strongly convex setting [Hardt et
al., 2016], which together with optimization error bounds of
the order O(1/(Tσ)) [Rakhlin et al., 2012], shows that SGD
with n iterations can achieve excess risk bounds O(1/(nσ)).
Here we show that this optimal generalization bound can also
be achieved for RCD with dσ−1 log 1/(nσ) iterations.
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Finally, we present high-probability bounds, which are
more challenging than bounds in expectation and are impor-
tant to understand the variation of algorithms in repeated runs.
Theorem 10. Let Assumptions 1, 2, 3, 5 hold. Let {wt} be
produced by (2) with ηt ≡ η ≤ 2/L̃ and δ ∈ (0, 1). Assume
‖wt‖∞ ≤ R and |f(wt; z)| ≤ R for all t. If we choose
T � n 2

3 d
1
3 log−

2
3 n log−

1
3 (1/δ), then with probability 1− δ

F (w̄T )− F (w∗) = O
((
d/n

) 1
3 log

1
3 n log

2
3 (1/δ)

)
,

where w̄T = 1
T

∑T
t=1 wt is an average of iterates.

6 Experiments
In this section, we present some experimental results to il-
lustrate our stability bounds. We follow the set up in Hardt
et al. [2016], i.e., we consider two neighboring datasets and
run RCD/SGD with ηt ≡ 0.01 on these neighboring datasets
to produce two iterate sequences {wt}, {w′t}. We then plot
the Euclidean distance between two iterate sequences as a
function of the iteration number. We consider the least
square regression for two datasets: ionosphere, svmguide3
and MNIST. We repeat the experiments 100 times and report
the average of results. In Figure 1 we plot the Euclidean dis-
tance as a function of the number of iterations. Experimental
results show that the Euclidean distance for RCD is much
smaller than that with SGD, which is consistent with our the-
oretical results that RCD is more stable than SGD.

7 Proof of Theorem 2
Lemma 11. Let g : Rd 7→ R be convex and have coordinate-
wise Lipschitz continuous gradients with parameter L̃ > 0.
Then for any η ≤ 2/L̃ and any i ∈ [d] we have the following
inequality for any w and w̃

‖w − η∇ig(w)ei − w̃ + η∇ig(w̃)ei‖2 ≤ ‖w − w̃‖2. (7)
Furthermore, if g is σ-coordinate-wise strongly convex and
η ≤ 1/L̃, then (wi denotes the i-th coordinate of w ∈ Rd)

‖w − η∇ig(w)ei − w̃ + η∇ig(w̃)ei‖22
≤ ‖w − w̃‖22 − ησ|wi − w̃i|2. (8)

Proof of Theorem 2. By the update rule (2), we know

‖wt+1 −w
(i)
t+1‖2

= ‖wt − ηt∇itFS(i)(wt)eit −w
(i)
t + ηt∇itFS(i)(w

(i)
t )eit

+ ηt∇itFS(i)(wt)eit − ηt∇itFS(wt)eit‖2
≤ ‖wt−ηt∇itFS(i)(wt)eit−w

(i)
t +ηt∇itFS(i)(w

(i)
t )eit‖2

+ ηt‖∇itFS(i)(wt)eit −∇itFS(wt)eit‖2 (9)

≤ ‖wt −w
(i)
t ‖2 + ηt‖∇itFS(i)(wt)eit −∇itFS(wt)eit‖2,

(10)
where we have used Lemma 11 in the last step. Since S and
S(i) differ by the i-th example, we know

|∇itFS(i)(wt)−∇itFS(wt)| =
1

n

∣∣∇itf(wt; zi)− (11)

∇itf(wt; z
′
i)
∣∣ ≤ 1

n

(∣∣∇itf(wt; zi)
∣∣+∣∣∇itf(wt; z

′
i)
∣∣).

Note that it is uniformly drawn from [d], we further know

Eit
[
|∇itFS(i)(wt)−∇itFS(wt)|

]
≤ 1

nd

d∑
j=1

(∣∣∇jf(wt; zi)
∣∣+
∣∣∇jf(wt; z

′
i)
∣∣)

=
1

nd

(
‖∇f(wt; zi)‖1 + ‖∇f(wt; z

′
i)‖1

)
≤ 2G1

nd
, (12)

where we have used Assumption 1 in the last step. Plugging
the above inequality back into (10), we get

EA
[
‖wt+1 −w

(i)
t+1‖2

]
≤ EA

[
‖wt −w

(i)
t ‖2

]
+

2G1ηt
nd

.

Applying the above inequality recursively gives the stated in-
equality. This completes the proof of Part (a).

We now prove Part (b). According to (2), we know

‖wt+1 −w
(i)
t+1‖22

= ‖wt − ηt∇itFS(wt)eit −w
(i)
t + ηt∇itFS(i)(w

(i)
t )eit‖22

= ‖wt − ηt∇itFS(i)(wt)eit −w
(i)
t + ηt∇itFS(i)(w

(i)
t )eit

+ ηt∇itFS(i)(wt)eit − ηt∇itFS(wt)eit‖22.

By (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 we know

‖wt+1 −w
(i)
t+1‖22 ≤ (1 + p)×

‖wt−ηt∇itFS(i)(wt)eit−w
(i)
t +ηt∇itFS(i)(w

(i)
t )eit‖22

+ (1 + 1/p)η2t ‖∇itFS(i)(wt)eit −∇itFS(wt)eit‖22.
It then follows from Lemma 11 that

‖wt+1 −w
(i)
t+1‖22 ≤ (1 + p)‖wt −w

(i)
t ‖22+

(1 + 1/p)η2t ‖∇itFS(i)(wt)eit −∇itFS(wt)eit‖22, (13)

Note that S and S(i) differ by the i-th example, we can ana-
lyze analogously to (11) and get

|∇itFS(i)(wt)−∇itFS(wt)|2

≤ 2

n2

(∣∣∇itf(wt; zi)
∣∣2 +

∣∣∇itf(wt; z
′
i)
∣∣2).

Since it is uniformly drawn from [d], we further know

Eit
[
|∇itFS(i)(wt)−∇itFS(wt)|2

]
≤ 2

n2d

d∑
j=1

(∣∣∇jf(wt; zi)
∣∣2 +

∣∣∇jf(wt; z
′
i)
∣∣2)

=
2

n2d

(
‖∇f(wt; zi)‖22 + ‖∇f(wt; z

′
i)‖22

)
≤ 4L

n2d

(
f(wt; zi) + f(wt; z

′
i)
)
,

where we have used the self-bounding property according to
the L-smoothness of f in the last step. Putting the above
inequality back into (13) implies

EA
[
‖wt+1 −w

(i)
t+1‖22

]
≤ (1 + p)EA

[
‖wt −w

(i)
t ‖22

]
+

4(1 + 1/p)Lη2t
n2d

EA
[
f(wt; zi) + f(wt; z

′
i)
]
. (14)
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(a) Ionosphere (b) Svmguide3 (c) MNIST

Figure 1: Euclidean distance between two iterate sequences of RCD/SGD on neighboring datasets.

It then follows that

EA
[
‖wt+1 −w

(i)
t+1‖22

]
≤

4L(1 + 1/p)

n2d

t∑
j=1

(
1+p

)t−j
η2jEA

[
f(wj ; zi)+f(wj ; z

′
i)
]
.

Taking an average over i, we derive

1

n

n∑
i=1

EA
[
‖wt+1 −w

(i)
t+1‖22

]
≤

4L(1 + 1/p)

n3d

n∑
i=1

t∑
j=1

(
1+p

)t−j
η2jEA

[
f(wj ; zi)+f(wj ; z

′
i)
]

=
4L(1 + 1/p)

n2d

t∑
j=1

(
1 + p

)t−j
η2jEA

[
FS(wj) + FS′(wj)

]
.

The proof is complete.

8 Conclusions
In this paper, we initialize the generalization analysis of RCD
based on the algorithmic stability. We establish upper bounds
of argument stability and uniform stability for RCD, which
further imply the optimal generalization bounds of the or-
der O(1/

√
n) and O(1/n) in the convex and strongly con-

vex case, respectively. We also consider nonconvex case and
develop high-probability bounds. Remarkably, our analysis
can leverage the low-noise assumption to yield optimistic
generalization bounds O(1/n) in the convex case without a
bounded gradient assumption.

There are several interesting future directions. First, it
would be interesting to extend our analysis to other variants,
such as distributed RCD and RCD for structure optimization.
Second, here we assume the objectives are convex/strongly
convex and each coordinate is sampled with the same proba-
bility during RCD updates. It is interesting to extend our dis-
cussion to nonconvex setting and importance sampling [Nes-
terov, 2012], which are popular in modern machine learning.

Acknowledgments
This work was supported in part by the National Natural Sci-
ence Foundation of China (Grant Nos. 61903309, 61806091,

11771012, U1811461) and the Fundamental Research Funds
for the Central Universities (JBK1806002).

References
[Bassily et al., 2020] Raef Bassily, Vitaly Feldman,
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