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Abstract

Neural topic modeling provides a flexible, efficient,
and powerful way to extract topic representations
from text documents. Unfortunately, most exist-
ing models cannot handle the text data with net-
work links, such as web pages with hyperlinks
and scientific papers with citations. To resolve
this kind of data, we develop a novel neural topic
model, namely Layer-Assisted Neural Topic Model
(LANTM), which can be interpreted from the per-
spective of variational auto-encoders. Our ma-
jor motivation is to enhance the topic represen-
tation encoding by not only using text contents,
but also the assisted network links. Specifically,
LANTM encodes the texts and network links into
the topic representations by an augmented net-
work with graph convolutional modules, and de-
codes them by maximizing the likelihood of the
generative process. The neural variational infer-
ence is adopted for efficient inference. Experimen-
tal results validate that LANTM significantly out-
performs the existing models on topic quality, text
classification and link prediction.

1 Introduction

Neural topic modeling [Miao et al., 2017; Srivastava and Sut-
ton, 2017] refers to extract latent topics from text data by us-
ing Neural Variational Inference (NVI) [Miao et al., 2016],
which combines stochastic variational inference with deep
neural networks [Kingma and Welling, 2014; Mnih and Gre-
gor, 2014; Rezende et al., 2014]. Thanks to the black-box na-
ture of NVI, the neural topic models are flexible, efficient, and
powerful for various types of model structures, beyond tradi-
tional topic models such as Latent Dirichlet Allocation (LDA)
[Blei et al., 2003]. As the art marrying topic modeling with
deep neural networks, it has recently attracted much attention
from the machine learning community [Zhang et al., 2018;
Dieng et al., 2020; Burkhardt and Kramer, 2019; Liu et al.,
2019; Isonuma et al., 2020; Zhu et al., 2020].

*Corresponding Author
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Nowadays, the text data with network links are becom-
ing pervasive in many real-world scenarios, e.g., web pages
with hyperlinks, scientific papers with citations, and Tweets
with friendships, to name just a few. This kind of data chal-
lenges the neural topic modeling for simultaneously express-
ing the textual contents and network links of texts. More for-
mally, we describe the text data with network links and the
corresponding problem of neural topic modeling as follows:
Consider a text document collection 2 = {X,II}, where
X = {xq}i, and IT = {m;;}7;_, denote the texts and
the links between texts, respectively. Each text 24 € RV
is represented by a vector of the vocabulary; and for each
link, 7;; = 1 indicates that the texts x; and x; are connected,
and m;; = 0 otherwise. Generally, the objective of neural
topic modeling over {2 is to extract latent topic representa-
tions of texts, which can effectively represent content themes
and maintain the network links simultaneously.

To our knowledge, there are only very few previous in-
vestigations on this subject, e.g., the conventional Relational
Topic Model (RTM) [Chang and Blei, 2009] and its neu-
ral variant Neural Relational Topic Model (NRTM) [Bai et
al., 2018]. The NRTM can be interpreted as a deep auto-
encoder, where it encodes the texts into their correspond-
ing topic representations and adopts them to separately re-
construct the texts and network links. In this work, we aim
to enhance the topic representation encoding beyond NRTM
by not only using text contents, but also the assisted net-
work links. Motivated by this, we propose a novel neural
topic model, namely Layer-Assisted Neural Topic Model
(LANTM). which can also be interpreted from the perspec-
tive of Variational Auto-Encoders (VAE). Encoding: We treat
the network links as a text graph, therefore we design an aug-
mented encoder network with two channels, where one is the
Multi-Layer Perception (MLP) for texts and the other is the
Graph Convolutional Network (GCN) for network links. To
extract high-quality topic representations, the two channels
work in a layer-assisted manner, where the MLP representa-
tion of each layer is aggregated with the corresponding GCN
representation learned from network links. Decoding: We
adopt the topic representations to reconstruct the texts and
network links by maximizing the likelihood of the generative
process of LANTM. The overall framework of LANTM is il-
lustrated in Fig.1. We use NVI to efficiently solve LANTM.
We evaluate LANTM on topic quality, text classification and
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Figure 1: Overview of the model structure of LANTM.

link prediction. Experimental results validate that LANTM
significantly outperforms the state-of-the-art baseline models.
To sum up, our contributions are outlined below.

1. We propose a novel neural topic model LANTM for the
text data with network links, and describe its genera-
tive process and model training with NVI in Sections
3.1 and 3.2.

2. We develop an augmented encoder network, which
jointly encodes the text content and network links into
topic representations, described in Section 3.3.

3. We evaluate LANTM on 5 benchmark datasets. Em-
pirical results indicate that LANTM significantly outper-
forms existing models, shown in Section 4 .

2 Related Work

To our knowledge, the hierarchy of topic modeling falls into
standard probabilistic models and neural topic models.

The underlying idea of standard probabilistic models sup-
poses that the word tokens of texts are drawn from the latent
distributions associated with topics. For example, the repre-
sentative LDA model [Blei et al., 2003] assumes that each
word token is drawn from a selected topic distribution over
words, and the topic is previously drawn from the topic pro-
portions of texts. During the past decades, many extensions of
LDA have been widely developed as surveyed in [Blei, 2012;
Boyd-Graber et al., 2017]. However, to be efficiently inferred
by conventional methods [Jordan et al., 1999; Griffiths and
Steyvers, 2004; Mimno et al., 2012; Li et al., 2016], most of
these methods are defined as shallow models with only three
or four layers, .

Beyond LDA-based models, neural topic models [Miao et
al., 2017; Srivastava and Sutton, 2017; Zhang et al., 2018;
Dieng et al., 2020; Burkhardt and Kramer, 2019; Liu et al.,
2019; Isonuma et al., 2020; Zhu et al., 2020] are solved
by the generic black-box NVI [Kingma and Welling, 2014;
Mnih and Gregor, 2014; Rezende et al., 2014]. Therefore,
they are more flexible, and allowed for more complex and
deeper generative processes, growing the expressive capacity.
To be specific, under the spirit of NVI, the variational distri-
bution of latent topical variables is defined as a variational
neural network that ingests texts and outputs latent topical
variables. With the reparameterization technique [Kingma
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and Welling, 2014], the variational objective can be approxi-
mated by drawing Monte Carlo samples, and then optimized
by gradient-based methods, regardless of the network archi-
tecture. Or they can be interpreted as VAE, where the varia-
tional distribution serves as an encoder network from texts to
latent topical variables, and texts are reconstructed by draw-
ing from latent distributions associated with topics as the de-
fined generative process of the model.

Existing neural topic models mainly focus on the pure
text data, however there are rare works motivated by han-
dling the text data with network links [Bai et al., 2018;
Zhang and Lauw, 2020]. The NRTM [Bai et al., 2018] ex-
tends the traditional RTM [Chang and Blei, 2009] by leverag-
ing the stacked VAE. The model defines an encoder-decoder
process for texts, and jointly trains a link prediction network
by treating the concatenation of topic proportions as the in-
put. Besides, the Adjacent-Encoder-X (AdjEnc-X) [Zhang
and Lauw, 2020] directly treats the network links as the
supplemental features of texts, and constructs a noisy auto-
encoder to learn topic proportions. Orthogonal to those mod-
els, LANTM treats the text content and links as bag-of-words
and graph data, respectively, and encodes them by using
an augmented network with graph convolutional modules.
Therefore, LANTM enables to learn better topic representa-
tions that benefits from the joint learning of different types of
data and the layer-assisted manner.

3 The LANTM Model

In this section, we introduce Layer-Assisted Neural Topic
Model (LANTM) for modeling text data with network links.
We describe the generative process of LANTM as well as
model training with NVI, and then interpret LANTM from the
perspective of VAE.

3.1 Model Definition

Basically, LANTM can be regarded as an extension of RTM
[Chang and Blei, 2009], thus its model definition is mainly
inherited from RTM. We now introduce the generative pro-
cess of LANTM for the content of texts and the links simulta-
neously. More formally, given a corpus we suppose that there
exist totally K topics {¢ < |, where each topic ¢ € RY
is represented by a multinomial distribution over the vocabu-
lary. And each text is represented by a mixture of topics. To
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generate a text d, it draws a topic proportion 8, from a logistic
normal distribution LN (119, X¢) formulated below:

5d ~ N(Mo, EO)7 Hd = softmax(&d), (1)

where 04 denotes the corresponding unnormalized topic pro-
portion.! Each word token in text d is generated by first draw-
ing a topic indicator zg4,, from 6, and then drawing x4, from
the selected topic ¢,,,. On the other hand, for each text pair
{7, 7}, it generates a link indicator ;; drawn from a Bernoulli
distribution parameterized by the cosine similarity between
their corresponding topic proportions. The motivation coin-
cides with the fact that the texts with similar topic proportions
are more likely to share a link.

For clarity, we summarize the generative process of
LANTM as follows:

1. For each text d € [D]
a. Draw an unnormalized topic proportion 64 ~ N (110, 20)
b. Compute the topic proportion §; = softmax ()
c. For each word token z4r,, n € [Ng]
i. Draw a topic assignment zq,, ~ Cat(60q)
ii. Draw a word 24, ~ Cat(¢.,, )
2. For each text pair ¢, j € [D]
a. Draw a link indicator 7;; ~ Bernoulli(cos(6;, 6;))

By revisiting the model definitions of RTM [Chang and
Blei, 2009] and LANTM, we show that the major difference is
the generative ways of the topic proportion € per-text, which
can be interpreted as the latent representation of text. As a
neural topic model with NVI, in LANTM the topic propor-
tion ¢ can be inferred by more flexible and powerful encoder
network based on the observations of word tokens and links,
beyond RTM that directly generates 6 from a Dirichlet distri-
bution. We will detail the model training process and network
architecture in the following subsections.

3.2 Model Training

Given an observation of collection Q@ = {X, I} with texts
X = {x4}%, and links IT = {ﬂij}szl, the objective of
LANTM training is to estimate the latent variables of inter-
est, including the unnormalized topic proportions of texts ¢§
and topic distributions ¢. We neglect the topic assignments
z since it can be analytically integrated out. Commonly, the
model training can be achieved by maximizing the following
log marginal likelihood of X and II:

D D
L(6,6)= logp(0a)p(xalfa, §)+ _ logp(mi;|0;, 6;)

d=1 ij=1
D D
=Y log p(da)p(xalda, )+ _ logp(mi;|6:,5;) (2)
d=1 ij=1

The above formula is intractable to maximize, since it in-
volves a difficult integral over the (unnormalized) topic pro-
portions. Accordingly, we resort to approximate training
by leveraging the amortized variational inference [Gershman

"Following [Dieng et al., 2020] we fix the Gaussian prior
N (10, 20) as the standard Gaussian N'(0, I).
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and Goodman, 2014]. To be specific, we define the varia-
tional distribution that depends on both observations {x 4, 74}
and the variational parameter -y, formulated below:

D

qud;xdﬂmﬁ) 3)
d=1

For each §4, the corresponding variational distribution is a
Gaussian whose mean p4 and covariance Y4 are the outputs
of the encoder network parameterized by ~. In other words,
the variational distribution can be interpreted as an encoder
network that ingests {z4, 74} and outputs the mean and co-
variance of §,.

We apply this family of variational distribution, thus under
the spirit of NVI we formulate the following lower bound of
Eq.(2), i.e., a variational objective of LANTM with respect to
the topic distributions ¢ and variational parameter -y:

q(6; X, 11, 7) =

D D
L(¢,7) =) Eq[log p(xalda, )] + Y By log p(mi;|6;, 65)]

d=1 4,5=1
D
— Y KL[g(0ala 7a,7) || p(3a)- S
=1

The conditional distributions within the first two terms can be
presented as follows:

p(zalda, ¢) H Z Ok Pha 4, ®)
n=1k=1
p(mif0i,8;) =A™ (1 — A)7m) 6)

where A\ = cos(6;,0;) = cos(d;, ;).

Unfortunately, the variational objective of Eq.(4) is still in-
tractable to maximize since it involves the expectations with
respect to the (unknown) target variational distribution. To
this end, we form a Monte Carlo approximation to the varia-
tional objective as follows:

D
1
N g YD logn( (24l35”, 9)
d=1 s=1
1 ¢ (s) <(s)
+§ _Jz::l;logp 7T2j|5 75j )

D
Z KL [q(b4|wa, ma,7) || p(da)]-
=1
0y ~ aaiwama) sels] (D
where S is the number of samples; and the samples are
exactly generated by leveraging the reparameterization trick
[Kingma and Welling, 2014]:
0 =g+ 32 € A0, 1) (8)
Besides, the KL-divergence regularization per-text has an an-
alytic form, which can be expanded as follows:

KL [q(dalza, 7a,7) || p(0a)] =

1
5('1‘1”(201) + ptg pa — log det(q) — K), (9)



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Algorithm 1 Training process for LANTM

Input: X € RP*V: bag-of-words matrix; IT € RP*D: text
links matrix; K: number of topics.
Output: topic proportions of texts 6, topic distributions ¢
1: Initialize network parameters W (9), W, b and topic dis-
tributions ¢ normally;

2: for epoch = 1 to maxEpoch do

3 forn=1to N —1do

4 Calculate GCN layer H,, = w(ﬁHn_lwﬁf’ )) ;
5: Calculate MLP layer Z,, = 1/1(27,,_1Wn +b,);
6 Combine two layers: Z, = EH,, + (1 = &)Zy,;

7 end for

8 Calculate mean and variance by Eq.(13);

9: Calculate topic proportions 6 by Eq.(14);
10 Calculate the gradients of {¢, v} by backpropagation;
11: Update {¢, vy} with Adam;
12: end for
13: Return 6 and ¢.

where Tr(-) and det(-) denote the trace and determinant of
a matrix, respectively. Accordingly, our LANTM can be ap-
proximately inferred by forming the gradients of Eq.(7) with
respect to {¢, v}, and updating them with any adaptive learn-
ing rate method.

3.3 Interpreting LANTM as VAE

We can interpret LANTM from the perspective of VAE, since
the NVI method is adopted for model training. Revisiting
Eq.(4), the first two terms play the roles of the reconstruc-
tion errors of observations. In other words, the variational
distribution serves as the encoder that encodes the texts and
network links to (unnormalized) topic proportions of texts
{9,6}, and LANTM reconstructs the observations by maxi-
mizing their log marginal likelihood of the generative formu-
lation given {0,6}. The overall framework of LANTM is il-
lustrated in Fig.1. We now describe the encoder architecture
in more detail.

Encoder architecture. We declare that X € R”*V and
IT € RPXP denote the bag-of-words matrix and text link
matrix, respectively. Let /N denotes the number of layers in
the encoder network. For the former N — 1 layers, each of the
n-th layer representations of the channels of GCN and MLP
are described as follows:

H, = ¢(IIH, W), Z, =4%(Z, W, +b,), (10)

where IT = D=2IID "2 is the symmetrically normalization
of IT; ¢ (-) represents the Sigmoid activation function; W,(lg ),
W,, and b,, are network weights and bias parameters of the

n-th layer. The first layers are defined as:

Hy = ¢([IXWY), Zy=(XWq+bg).  (11)
Inspired by [Bo et al., 20201, we employ the layer-wise as-
sistance, which combines each Z,, and H,, with a combining
coefficient ¢ and sets the combined latent representation Z,,
as the input of the next MLP layer:

Zn:£Hn+(1 - €)Zn7 Zn+1:¢(2nwn+1 +bn+1)- (12)
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Finally, the last layer outputs the mean and covariance of § as
follows:

Hn = 1/J(ZN_1W,L + bu), 2 = 1/J(ZN_1W2 + bg) (13)

Referring to Eq.(8), the topic proportions of texts § are com-
puted by using the Monte Carlo samples:

6 = softmax(u + Xe), €~ N(0,I). (14)

3.4 Training and Inference Summary

Model training. Following [Kipf and Welling, 2016], we
set three layers for both channels of MLP and GCN. The
sub-gradients of the encoder networks are computed by back-
propagation, the Adam [Kingma and Ba, 2015] is applied for
adaptively setting the learning rate. The overall training de-
tails of LANTM are summarized in Algorithm 1.

Inference for future texts. We directly use the fitted en-
coder network to compute the topic proportions of future
texts. In practice, the network links of future texts may be
unknown. To resolve this, following [Zhang and Lauw, 2020]
we reuse the training texts as auxiliary data. Specifically,
we apply the known text link matrix between training texts
and future ones or construct the k-nearest neighbor matrix be-
tween them instead. We feed all texts and the auxiliary link
matrix into the fitted encoder network to compute the topic
proportions, and leave the ones of future texts only.

4 Experiment

Datasets. In the experiments, we apply the dataset of Cora?
consisting of paper abstracts and citations [McCallum et al.,
20001, and Reuters® (R8) without any links. The Cora dataset
is divided into four subsets, namely Data Structure (DS),
Hardware and Architecture (HA), Machine Learning (ML)
and Programming Language (PL). We apply Cora processed
by [Zhang and Lauw, 2020]. For RS, the standard stop words
and infrequent words occurring in less than 5 documents are
filtered out, and a k-nearset neighbor graph is constructed
(k = 10). Statistics of datasets are presented in Table 1.

Comparing models. We totally select 7 existing baseline
models for comparison, including 3 standard neural topic
models, NVDM* [Miao ef al., 2016], ProdLDA? [Srivastava
and Sutton, 2017], ETM® [Dieng et al., 2020] and 4 methods
handling data with network links, RTM’ [Chang and Blei,
2009], NRTMS [Bai et al., 2018], VGAE’ [Kipf and Welling,
2016], AdjEnc-X'? [Zhang and Lauw, 2020].

For our LANTM, the combining coefficient ¢ is tuned over
{0.1,0.2,...,0.9}. For all baseline models, the default pa-
rameters are adopted. All methods are trained under same
num of epochs and the topic numbers are set as {25, 50} for
all datasets.

Zhttp://people.cs.umass.edu/mccallum/data/cora-classify.tar.gz
3https://martin-thoma.com/nlp-reuters/
“https://github.com/ysmiao/nvdm
Shttps://github.com/akashgit/autoencoding_vi_for_topic_models
®https://github.com/adjidieng/ETM
"http://cran.r-project.org/web/packages/Ida/
8https://github.com/zbchern/Neural-Relational-Topic-Models
*https://github.com/tkipf/gae

https://github.com/Preferred Al/adjacent-encoder
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Dataset #doc  #train #test #word #link AvgL #class
DS 570 456 114 3009 1336 67.8
HA 223 178 45 2023 515 77.1
ML 1980 1584 396 4265 5748 68.1
PL 1552 1241 311 3945 4851 703
R8 7558 6046 1512 4166 - 53.8

e <INoREN e WNe]

Table 1: Summary of dataset statistics. “AvgL’” denotes the average
document length.

Method K DS HA ML PL R8
25 048 0.44 0.51 0.49 0.45

LANTM 55 049 044 052 050 045
75 043 041 044 042 045
NVDM 50 043 041 045 043 044
35 042 043 044 043 043
ProdLDA 55 043 044 044 043 043
oy 5 039 039 039 039 036
50 039 039 039 039 035
75 038 039 038 040 045
RIM 50 038 037 038 039 045
35 045 044 047 045 045
NRTM 50 045 042 048 045 045
Adifnex 2 047 044 049 048 048

50 047 044 051 049 047

Table 2: Experimental results of TC. The higher score means better
performance, and the best scores are in boldface.

4.1 Evaluation of Topic Coherence

Topic Coherence (TC) is a popular metric to measure the
topic quality by calculating co-occurrences of top-k topical
words over an external corpus. In the experiment, we employ
the public TC project Palmetto'! [Roder et al., 2015], and the
setting of C'y is applied. We present the TC scores of top-10
topical words in Table 2.

We can observe that our LANTM outperforms baseline
models in most settings, directly indicating LANTM can gen-
erate more effectively coherent topical words. For example,
our LANTM is about 0.02 higher than baselines on DS when
K = 50. The previous literature [Bai er al., 2018] reports
that a shallower decoder limits topic quality performance, and
we exactly observe that the baseline models ProdLDA and
NVDM with shallower decoders perform worse than NRTM
with deeper decoder. We kindly notice that LANTM is also
with one-layer decoder, but it significantly performs better
than NRTM. Therefore the results provide strong evidence to
the effectiveness of layer-assisted encoder for generating co-
herent topics.

4.2 Evaluation of Classification

We compare LANTM against baseline models by classifica-
tion. For each comparing model, the learned topic propor-
tions of texts are used to train the SVMs classifier.'> In
both transductive and inductive settings, we conduct 5-fold
cross-validation experiments, and report the average scores
of Micro-F1 and Macro-F1 in Table 3.

https://github.com/dice-group/Palmetto/wiki/Coherences
http://scikit-learn.org/
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Overall, we find that LANTM outperforms the baseline
models, and achieves significant improvement in many cases.
For example, the performance gain is about 0.22 and 0.28
on PL and RS, respectively. The results directly indicate the
great advantage of LANTM on learning discriminative latent
topic representations. More importantly, it can be seen that
LANTM also beats baseline models in the inductive setting,
empirically suggesting that LANTM enables to effectively fit
future text data.

4.3 Evaluation of Link Prediction

Link prediction measures prediction capacity for unseen
links. For each link 7;;, we predict it by using the cor-
responding topic proportions {6;,6,} to estimate the prob-
ab1l1ty P(?Tij = 1|0“0]) X exp(—Hﬁz — 9]”2) In the
transductive setting, following [Kipf and Welling, 2016;
Zhang and Lauw, 2020] we randomly remove one link for the
texts with more than 3 links, and predict the removed ones. In
the inductive setting, we randomly select 80% texts and the
corresponding links for training, and directly predict all links
of the remaining 20% texts. We evaluate the results by Area
Under the ROC Curve (AUC) and Average Precision (AP),
computed by referring to [Kipf and Welling, 2016]. We re-
port the average scores of 5 independent runs in Table 4.

In this evaluation, our LANTM consistently outperforms
baseline models in the transductive setting, and ranks the first
in most cases of inductive setting. In terms of ML, it achieves
the highest improvements, i.e., about 0.160 and 0.147 on
AUC and AP when K = 25. Besides, we observe that the
link-based models RTM, NRTM, and AdjEnc-X almost per-
form better than the traditional models NVDM, ProdLDA,
and ETM. This demonstrates the positive effect of network
links for model fitting.

4.4 Parameter Evaluation

In this section, we evaluate the impacts of topic number K
and combining coefficient £ by TC and Macro-F1 scores in
the transductive setting and plot results in Fig.2.

For the topic number K, we vary it from the set of
{25,50, 75,100, 125}. We find that there exists a slight rising
trend for TC on most datasets and best results mostly lies in
K = 75. As for Macro-F1, our LANTM shows insensitivity
on topic number which makes it practical in real applications.

For combining coefficient £, we vary it from an increasing
set {0.1,0.2,...,0.9}. We find that LANTM has the best TC
when & = 0.1 on most datasets. The reason may goes to the
MLP module for document context matrix plays more impor-
tant roles on extracting coherent topic representations. Mean-
while Macro-F1 shows rising trends and best scores achieve
at £ = 0.6 and 0.8 for most cases. This indicates that the
GCN module may contribute to learning more discriminative
latent topic proportions.

5 Conclusion

In this paper, we propose a novel encoder-augmented topic
model LANTM for combining normal bag-of-words text data
with ubiquitous network links to jointly learn latent topic rep-
resentations. MLP and GCN are applied on these data in di-
verse structures and we employ layer-wise augmentation for
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Transductive Learning Inductive Learning

Model K Micro-F1 Macro-F1 Micro-F1 Macro-F1
DS HA ML PL R8 | DS HA ML PL R8§ | DS HA ML PL R8 | DS HA ML PL RS
LANTM 25| 739 .846 .847 .751 .965| .674 .806 .825 .688 .909| .544 .711 .765 .679 .942| .407 .579 .673 .552 .841
50| .746 .857 .851 .756 .961| .694 .813 .828 .687 .893| .527 .711 .747 .665 .940| .358 .605 .678 .558 .829
NVDM 25| .396 .701 .403 .374 .775| .314 .589 .342 263 .543| 254 444 230 .299 .572| .150 .218 .165 .107 .212
50| .480 .740 .545 .460 .827| .389 .649 471 .348 .647| .236 422 .280 .286 .661| .144 .156 .194 .108 .298
ProdLDA 25| .457 709 .596 .464 .805| .330 .502 511 .354 .441| 308 .467 .399 .383 .667| .242 .303 .276 .198 .217
50| .437 730 .601 .483 .825| .333 .570 .508 .372 .493| 369 .467 .460 .424 .539| .246 .210 .331 .232 .111
ETM 25| 514 761 574 486 .851| .420 .599 .502 .386 .584| .325 .578 .391 .421 .700| .243 .374 308 .267 .297
50| .553 .754 .622 .530 .871| .467 .676 .566 .444 .683| .306 .511 .490 .389 .527| .231 .342 .367 .245 .185
RTM 25| 585 781 .643 524 .869| .490 .630 .583 .439 .616| .140 .467 .167 .225 .506| .118 .184 .128 .094 .085
50| .588 .799 .686 .580 .895| .512 .701 .647 .507 .689| .106 .400 .174 270 .506| .053 .166 .159 .106 .086
NRTM 25| .632 .836 .672 .599 .839| .566 .822 .631 .516 .623| .438 .667 .556 .466 .858| .314 .506 .507 .308 .603
50| .641 .807 .664 .588 .826| .571 .765 .620 .505 .583| .465 .556 .520 .476 .823| .319 .336 .434 .322 .577
VGAE 25| 576 .682 371 .494 .861| .494 550 .310 .420 .759] 274 511 .117 .146 .764| .228 .207 .106 .102 .618
50| .549 .648 337 471 .841| 463 .465 .266 .389 .742| .288 471 .046 .154 .768| .234 .182 .036 .104 .622
AdjEnc-X 25| .621 .804 .722 .636 .941| .539 .680 .656 .554 .842| 360 .644 .722 560 .915| .234 .445 .621 .439 .708
50| .718 .837 .826 .734 .951| .631 .779 .792 .663 .879| .421 .533 745 .592 .933| .239 .329 .664 .474 .770

Table 3: Classification results of Micro-F1 and Macro-F1. The higher score means better performance, and the best scores are in boldface.

Transductive Learning

Inductive Learning

Model K AUC AP AUC AP
DS HA ML PL R8 | DS HA ML PL R8 | DS HA ML PL R8 | DS HA ML PL R8
LANTM 25| 903 .879 .885 .870 .948| .900 .879 .893 .890 .942| .827 .876 .821 .749 .903| .827 .837 .836 .745 .909
50| .872 .839 .854 .848 .924| .879 .852 .866 .870 .920| .899 .839 .795 .735 .880| .910 .811 .804 .711 .881
NVDM 25| .634 .694 .569 .597 .722| .622 .671 .556 .574 .689| 374 .575 .505 .474 .589| .445 .539 .490 .456 .565
50| .658 .739 .614 .637 .737| .650 .726 .597 .615 .708| .498 .646 .523 .517 .617| .499 .581 .515 .509 .600
ProdLDA 25| 724 749 .699 .690 .778| .706 .721 .672 .658 .740| .491 .531 .637 .576 .686| .562 .612 .629 .565 .674
50| .727 739 .689 .693 .788| .715 .712 .664 .670 .755| .399 .626 .613 .583 .663| .443 .639 .610 .588 .650
ETM 25| .736 .777 .670 .688 .855| .746 .765 .676 .698 .853| .838 .673 .687 .653 .781| .825 .707 .708 .654 .776
50| .712 736 .653 .677 .822| .726 .738 .667 .695 .827| .701 .683 .648 .575 .729| .644 .735 .650 .614 .743
RTM 25| .811 .823 725 .710 .623| .825 .837 .746 .736 .689| .412 .537 .569 .473 .495| 484 .652 .544 496 .511
50| .781 .795 .730 .695 .622| .808 .801 .761 .729 .702| .396 .675 .512 .434 .487| 448 .693 .512 .452 .507
NRTM 25| .786 .843 .689 .762 .792| .793 824 .710 .769 .781| .859 .861 .733 .697 .721| .879 .831 .726 .686 .708
50| .756 .774 .679 .737 .726| .779 769 .696 .749 .717| .885 .873 .715 .675 .820| .905 .860 .701 .678 .782
VGAE 25| .688 .630 .507 .612 .722| 758 .669 .573 .676 .794| .593 .605 .611 .622 .599| .634 .613 .630 .632 .648
50| .620 .619 .514 .601 .711| .703 .646 .569 .655 .787| .623 .617 .618 .627 .604| .651 .622 .625 .650 .649
AdjEnc-X 25| .738 .852 .624 .653 .982| .733 .850 .657 .689 .980| .695 .559 .751 .743 .904| .671 .640 .751 .717 .899
50| .845 .901 .750 .798 .993| .850 .885 .789 .834 .993| .738 .772 .727 .695 .922| .716 .809 .730 .684 .927

Table 4: Link prediction results of AUC and AP. The higher score means better performance, and the best scores are in boldface.
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Figure 2: Parameter evaluation results on TC and Macro-F1 by varying K (left section) and & (right section).

combining each layer. Text data and network links are recon-
structed separately according to different structures. Empiri-
cal studies on three commonly acknowledged metrics demon-
strate our significant improvement against existing represen-
tative methods.
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