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Abstract
Deep reinforcement learning (RL) has demon-
strated success in challenging decision-
making/control tasks. However, RL methods,
which solve tasks through maximizing the ex-
pected reward, may generate undesirable behaviors
due to inferior local convergence or incompetent
reward design. These undesirable behaviors of
agents may not reduce the total reward but destroy
the user experience of the application. For exam-
ple, in the autonomous driving task, the policy
actuated by speed reward behaves much more
sudden brakes while human drivers generally don’t
do that. To overcome this problem, we present
a novel method named Reward-Constrained
Behavior Cloning (RCBC) which synthesizes
imitation learning and constrained reinforcement
learning. RCBC leverages human demonstrations
to induce desirable or human-like behaviors and
employs lower-bound reward constraints for
policy optimization to maximize the expected
reward. Empirical results on popular benchmark
environments show that RCBC learns significantly
more human-desired policies with performance
guarantees which meet the lower-bound reward
constraints while performing better than or as
well as baseline methods in terms of reward
maximization.

1 Introduction
Reinforcement Learning (RL) is successful in a range of chal-
lenging domains, especially after introducing deep learning
techniques. Various deep reinforcement learning algorithms
have been proposed and solved many difficult tasks includ-
ing Atari games [Van Hasselt et al., 2016], robot locomotion
tasks [Schulman et al., 2017], and the game of Go [Silver et
al., 2016].

However, RL methods are usually designed to solve a task
through maximizing the accumulated task reward, which may
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Figure 1: Driving behaviors of human vs RL agent

not always generate desirable behaviors in the real world due
to the inferior local convergence or incompetent reward de-
sign [Bohez et al., 2019]. For example, in autonomous driv-
ing, the reward function is usually designed to inspire the
agent to run as fast and far as possible, while some undesir-
able behaviors that erode the driving experience of a human
could be generated under such reward settings, such as slam-
ming on the brake and accelerator or trembling around the
center of the road (as illustrated by Figure 1). In contrast, hu-
man drivers prefer a more stable driving process with a proper
speed instead of an intense driving process filled with sudden
brakes and sharp steerings, even though the average speed is
higher. Another similar problem is called bang-bang control
in locomotion tasks that an agent usually switches between
extreme values for the controls at a high-frequency [Bohez et
al., 2019]. Although these agents can achieve a high accumu-
lated task reward and can be acceptable in simulation, they
are usually not suitable for real-world applications. In fact,
after the cumulative reward exceeds a certain threshold (e.g.,
a proper speed in autonomous driving), humans are usually
more inclined to teach the agent to behave in a desirable way,
rather than increase the reward endlessly.

To induce human-desired behaviors, a widely used strategy
is to add penalties for undesired behaviors in the reward func-
tion [Ng et al., 1999]. As a result, the reward function is com-
posed of positive rewards for achieving the goal and negative
rewards or costs for executing undesirable actions. However,
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in many complicated tasks, manually designing appropriate
cost functions can be very challenging, especially when there
are conflicts between different costs or between the costs and
the final goal. In addition, some works propose the human-
in-the-loop reinforcement learning frameworks([Knox and
Stone, 2009]) to get human-desired behaviors that the agent
receives feedback signals from a human during the training
process. While the setting of human-in-the-loop requires
the agent can interact with a human teacher during training
which is always expensive. Another solution is to use Imita-
tion Learning (IL) algorithms, with which an agent learns to
solve problems by mimicking expert demonstrations instead
of maximizing the accumulated reward. By using this ap-
proach, human-like behaviors are expected to be learned from
human demonstrations. However, in most cases, it requires
expert demonstrations to be nearly optimal, which is difficult
or even infeasible to collect in the real world, especially in
complicated problems that require a mass of demonstrations.

To overcome these challenges we present a novel algorithm
named Reward-Constrained Behavior Cloning (RCBC),
which synthesizes imitation learning and constrained rein-
forcement learning and aims to learn to generate human-
desired behaviors while maximizing the accumulated reward.
As illustrated by the autonomous driving example, in many
real-world tasks, humans’ preference for a high cumulative
reward usually decreases after exceeding a certain threshold,
and then the preference for desirable behaviors increases. In-
spired by this observation, RCBC formulates imitation learn-
ing as a constrained optimization problem and introduces a
reward threshold as lower-bound constraints, which ensures
an agent learns desirable behaviors from human demonstra-
tions with guaranteed performance. It is worth noting that
RCBC has three important features that make it suitable for
a variety of tasks. Firstly, as the lower-bounded reward con-
straint is guaranteed, RCBC does not require optimal demon-
strations from the human. Instead, it only assumes that
demonstrations contain some desirable behavior patterns so
that an agent can learn such implicit patterns, and what we
expected is to transfer the implicit behavior patterns in non-
optimal demonstrations to RL policy with excellent perfor-
mance. Secondly, RCBC provides the reward threshold as
a hyper-parameter and allows users to adjust it accordingly
in different situations with varied desirable behaviors (e.g.,
more human-like behaviors in daily life driving and higher
speed only in car racing). More importantly, given such a
performance threshold, RCBC can automatically balance the
trade-off between reward maximization and human-desirable
behavior generation. This is also an advantage of RCBC
which enable easier reward design that just needs to focus on
the task performance. An important point to note here is that
we consider there are no longer any bad policies in the space
which meet the reward constraint. More specifically, once the
lower-bounded reward constraint is satisfied, we believe that
the performance has been guaranteed and all policies beyond
this lower-bounded reward are acceptable.

The main contributions of this paper are summarized as
follows: (i) we propose a novel constrained behavior cloning
optimization approach that learns with guaranteed perfor-
mance to generate desired behavior patterns implicitly con-

tained in demonstrations; (ii) using the Lagrangian Relax-
ation technique, the optimal trade-off between the reward
maximization and the behavior constraints is obtained au-
tomatically; (iii) finally, our approach can be generalized to
any Actor-Critic RL algorithm with non-optimal demonstra-
tions, and even can be used to correct the defect of an exist-
ing model. We empirically demonstrate the effectiveness of
our approach on a Grid-World environment, continuous con-
trol tasks from MuJoCo [Todorov et al., 2012], and a more
complex racing environment named TORCS [Wymann et al.,
2021].

2 Related Work
2.1 Learning from Demonstration
A popular way to learn from demonstration is imitation learn-
ing, in which the agent is trained to mimic the expert demon-
strations instead of maximizing the accumulated reward from
the environment. Behavioral cloning (BC) as a representative
imitation learning method seeks the best policy that can min-
imize the action prediction error in demonstrations ([Bojarski
et al., 2016]). However, BC tends to have poor generalization
due to the well-known distribution shift problem ([Ross and
Bagnell, 2010]) and always presume near-optimal demon-
strations. Inverse Reinforcement Learning (IRL, [Ziebart et
al., 2008]) is another popular paradigm that learns a reward
model to explain the demonstrations as optimal behavior.

In addition, a fairly of approaches referred to as Rein-
forcement Learning from Demonstration (RLfD) have tried
to combine RL with demonstrations to improve the explo-
ration efficiency and speed up the training process. Early
RLfD methods ([Brys et al., 2015; Kang et al., 2018]) work
comparably well when the expert is optimal. While the per-
fect demonstration is unrealistic to meet in practice, some re-
cent RLfD works allow learning from imperfect demonstra-
tion. NAC ([Gao et al., 2018]) uses a unified loss function
to process both off-line demonstration data and online expe-
rience without assumption on the optimality of the data re-
quired. [Jing et al., 2020] proposed to learn from imperfect
demonstrations by applying expert guidance in a soft way.
The essential goal of these methods is still to find the optimal
policy which maximizes the cumulative reward with the help
of demonstration and they focus on emphasizing the robust-
ness and effectiveness of their methods on imperfect demon-
strations. While our method aims to learn desirable behavior
patterns from imperfect demonstration with guaranteed per-
formance.

2.2 Constrained Reinforcement Learning
Another area related to our work is constrained reinforce-
ment learning (Constrained RL) that the agent receives ad-
ditional constraints cost signal and has to keep the ex-
pected sum of the constraint costs below a given threshold
[Achiam et al., 2017]. Constrained RL has been applied
in a variety of works, including safety reinforcement learn-
ing (Safety RL) where safety must be ensured for all vis-
ited states [Dalal et al., 2018]. For Safety RL with large
state and action spaces, [Chow et al., 2018] proposes an it-
erative algorithm based on a novel construction of Lyapunov

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3170



functions. However, their theory only holds for tabular set-
tings. Furthermore, [Prashanth and Ghavamzadeh, 2016;
Chow et al., 2017] propose constrained risk-sensitive rein-
forcement learning using Lagrangian multipliers. Neverthe-
less, according to [Tessler et al., 2018], the saddle-point
achieved by these approaches might not be the stationary
point of the original problem. Besides, [Huang et al., 2018;
Lacotte et al., 2019] study safe reinforcement learning with
demonstration data, which ensures safe behaviors of a rein-
forcement learning agent by imitating the expert. In addi-
tion, [Jing et al., 2020] also introduces demonstrations in the
learning process but it uses demonstrations to guide the ex-
ploration and the constraints from demonstrations will decay
gradually, results in optimizing according to the reward func-
tions only in the last.

3 Methodology
In this section, we start with a brief introduction to the back-
ground including Markov Decision Process (MDP) and con-
strained Markov decision process (CMDP). Then we provide
a basic objective function of behavior cloning to learn desir-
able behaviors from demonstrations. However, due to the im-
perfectness of demonstration in terms of quality and amount
and the distribution shift problem which is inherent in the be-
havior cloning method caused by error accumulation, the sim-
ple supervised policy from offline demonstration may have
poor performance and bad generalization. And thus we in-
troduce an additional reward constraint to encourage the pol-
icy to optimize toward the direction of attaining human-like
behaviors and guaranteed performance. The whole problem
is modeled as a Constrained Markov Decision Process. La-
grangian relaxation technique is used to solve the problem
automatically and the implementation details are illustrated
at last.

3.1 Background
A standard Markov decision process (MDP) is defined by a
tuple (S,A, P,R, γ), with state S, action space A, transition
probability P (s

′ |s, a), reward function R : S ×A× S → R,
and discount factor γ ∈ [0, 1]. The goal of the agent is to
maximize the expectation of the discounted accumulative re-
ward JR = E[

∑∞
t=0 γ

tr(st, at, st+1)] automatically by up-
dating the parameters θ of policy π(a|s; θ). And a con-
strained Markov decision process (CMDP) represented by the
tuple (S,A, P,R,C,D, γ) is an MDP augmented with con-
straints that restrict a set of allowable policies for that MDP,
where C = {c1, c2, ...cm} is a set of auxiliary cost functions
(with each one is a function ci : S × A × S → R), and
D = {d1, ..., dm} is the set of upper bounds to the cost func-
tions. In addition, let Cci(π) = E[

∑∞
t=0 γ

tci(st, at, st+1)]
denotes the expectation of the discounted accumulative cost
of policy π with respect to ci. The set of feasible policies is
then: ∏

C

.
= {π ∈

∏
: ∀i, Cci(π) ≤ di} (1)

Besides, the goal of CMDP is to select a policy π that max-
imizes the object function JR(π) while satisfying the con-

straints. The constrained optimization problem can be ex-
pressed as:

π∗ = argmax
π∈

∏
C

JR(π) (2)

3.2 Proposed Method
Our method includes two parts: the first learns the desirable
behaviors from human demonstration and the second imposes
constraints on the reward to ensure acceptable performance.

Learn Desirable Behaviors
As human demonstrations implicitly contain the behavior
pattern that we expected, we utilize the imitation learning
method, specifically behavior cloning, to mimic the behav-
iors from human demonstration. The objective is to minimize
the distribution discrepancy between the human demonstra-
tions and the policy, which is formulated as follows:

min
π

D[ρπ(·|s)||ρD(·|s)] (3)

where s represents the state of the environment and D(·||·)
represents the discrepancy measure like KL divergence which
is a common objective function in imitation learning, ρπ and
ρD depict the state action distribution induced by policy π
and human demonstration D, respectively.

However, since the policy is completely tied up to the
demonstration in this objective function, using it directly will
prevent the policy from improving beyond the human demon-
stration. In addition, learning from non-optimal demonstra-
tions may result in a policy with unacceptable low rewards,
and small errors compounded over time during policy execu-
tion phases in the environment result in distribution mismatch
that may lead the agent to new states which are not in demon-
strations and the policy will make mistakes. Therefore, we
attach a reward constraint to the objective function and lever-
age the Lagrange relaxation to solve it automatically.

Constraining the Policy with a Lower-bound
We introduce a reward constraint into the objective function
to attain guaranteed performance. More specifically, a lower
bound on the expected return is given and denoted as R̂.
Thus, the constraint term encourages the policy to generate
state-action pairs that satisfy Es,a∼π[Q(s, a)] ≥ R̂, where
Q(s, a) is the Q-value for the state-action pair (s, a). Now
the objective can be described as follows:

min
π

D[ρπ(·|s)||ρD(·|s)], s.t. Es,a∼π[Q(s, a)] ≥ R̂ (4)

The above equation is a constrained optimization problem
which can be solved by the Lagrange relaxation technique,
that the objective function with hard constraint will be trans-
formed into an optimization problem without explicit con-
straints and the constraint exists in the way of a penalty term.
Applying Lagrangian relaxation to the above equation will
result in the Lagrange dual problem formulated as follows:

maxπminλ≥0 Es,a∼π[Qλ(s, a)],
Qλ(s, a) = λ(Q(s, a)− R̂)− D[ρπ(·|s)||ρD(·|s)]

(5)

where λ ≥ 0 is the Lagrange multiplier (penalty coefficient).
Intuitively, the value of λ affects the degree of the penalty

and can be adjusted by updating λ with gradient descent, and
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Figure 2: The results in the Grid-World environment. The path of the original policy is represented by the red line, the path of demonstrations
is represented by the brown line, and the path of our RCBC policy is represented by the blue line.

the update of λ alternates with policy optimization until the
constraints are satisfied. Note that the constraints may be un-
satisfied for a long time, which results in a large magnitude
of λ and makes the learning process unstable. To solve this
problem, we leverage the techniques used in [Bohez et al.,
2019] and re-weight the relative importance of distribution
discrepancy and constraints which gives the following objec-
tive:

maxπminλ≥0 Es,a∼π[Qλ(s, a)],
Qλ(s, a) =

λ
λ+1

(Q(s, a)− R̂)− 1
λ+1

D[ρπ(·|s)||ρD(·|s)] (6)

The function will converge to a saddle point when
∇λE[Qλ(s, a)] = 0, and the λ at this point is the expected
trade-off between minimizing the distribution discrepancy
and satisfying the constraints. Furthermore, RCBC requires
Q-value to calculate the constraint term in objective func-
tion hence it cannot be applied to Actor-Critic methods di-
rectly and we use some techniques to make it compatible with
Actor-Critic methods. And our method can also be used to
correct some behaviors of an existing model. These contents
are described in detail in Appendix C.

4 Experiments
In this section, we aim at investigating (i) whether RCBC can
learn from demonstration and avoid undesirable behaviors,
and (ii) whether RCBC can obtain high returns while preserv-
ing the human-like style. To evaluate our method, we conduct
extensive experiments on several widely used environments:
a navigation task in Grid-World, two environments in Mu-
JoCo [Todorov et al., 2012], and finally, a more complex rac-
ing environment named TORCS [Wymann et al., 2021]. De-
tailed environment descriptions of the last two experiments
are given in Appendix D and E.

4.1 Grid-World
Experimental Setup
We use a 10*10 Grid-World environment as shown in Figure
2, the agent (yellow point) starts from the bottom left cor-
ner and is required to arrive at the goal grid (green squares)
placed at the bottom right corner (+50 reward) or the top right
corner (+100 reward). Besides, there is a wall (black squares)
in the vertical direction and the agent can only pass through it

from the two doors. In this environment, although it is equiv-
alent to pass through any of the two doors to reach the goal,
while the agent trained with PPO converges to pass through
the upper door, and the path is shown with the red line in Fig-
ure 2. Thus in order to evaluate RCBC’s ability to learn the
desirable behaviors from sub-optimal demonstration, we pro-
vide a path shown with brown line in Figure 2 that ends at
the bottom right corner which is the sub-optimal goal with 50
reward. Note that the demonstration path passes through the
bottom door represents the desirable behavior. We conduct a
set of experiments and intend to verify the following issues:
(i) Whether the agent can learn to go through the bottom door
and finally arrive at the optimal goal even the demonstration
is sub-optimal? (ii) Whether the agent is sensitive to the re-
ward threshold and can adapt to different threshold values to
provide different trade-off points between reward maximiza-
tion and human-desirable behavior generation? (iii) Whether
RCBC is effective to modify an existing deficient model?

For the first issue, we train an agent with the sub-optimal
demonstration using RCBC and hope the agent can learn to
walk through the bottom door as well as reach the top right
corner. For the second issue, we train the agent with three dif-
ferent threshold values. Here we reparameterize the reward
constraint by α which represents the ratio of threshold and
the max reward (100). We set α to be 0.8, 0.6, 0.4 in the fol-
lowing experiments corresponding to 80, 60, 40 total rewards,
respectively. For the third issue, we load a pre-trained PPO
model which can arrive at the optimal goal but pass through
the top door and continue optimizing the policy with RCBC
to encourage the agent to reach the optimal goal through the
bottom door. We also test three different α values (0.8, 0.6,
0.4) in this experiment according to Eq.(7). The results are
shown in Figure 2 and our analysis is in the next section.

R̂ = α ∗Qold(s, a) (7)

Experimental Analysis
First of all, from the results in 2(a) and 2(b), we can find that
the agent trained by RCBC (blue lines) learns the desirable
behaviors (through the bottom door) and reaches the optimal
goal, even if the demonstration is non-optimal. Furthermore,
as shown in Figure 2, policies are different under different
constraint values. In Figure 2(a), RCBC guides the agent to
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move along the path in the demonstration at first and realizes
that the last six steps in demonstration violate the reward con-
straint then it guides the agent to move towards the top right
goal. As depicted in Figure 2(b), the agent walks along with
the demonstration for two more steps and finally moves to the
top right corner too. Compared with the results in Figure 2(a),
we can see that these two steps satisfy the constraint α = 0.6
but violate the constraint α = 0.8. The result path of α = 0.4
is visualized in Figure 2(c). It is worth noting that all (s, a)
pairs in demonstration satisfy the constraint when α = 0.4
and the policy’s behaviors are consistent with the demonstra-
tion which finally reaches the sub-optimal goal. At last, we
test our method in the setting of correcting an existing model.
Given the same α, RCBC can identically achieve the perfor-
mance as shown in Figure 2, which proves that our method is
also effective to amend an existing model.

4.2 MuJoCo
Experimental Setup
This set of experiments are based on the classic continu-
ous control tasks named Inverted-Pendulum and Inverted-
Double-Pendulum in MuJoCo[Todorov et al., 2012]. As
shown in Figure 6 (provided in Appendix D), both of
the two tasks need to apply a horizontal force to the
car to keep the pendulum balanced as long as possible,
while Inverted-Double-Pendulum is more complicated than
Inverted-Pendulum hence the pendulum is doubled. A more
detailed description of state action space and reward setting
can be seen in Appendix D.

In this experiment, the policy-based RL method usually
makes the pendulum stand at the middle of the pole. We as-
sume that keeping the pendulum stay at a specific location on
the horizontal bar (+0.3 distance to center in Inverted-Double-
Pendulum and +0.5 distance to center in Inverted-Pendulum)
is the desirable behavior, shown in Figure 6(b) and Figure
6(d) (provided in Appendix D). We provide one demonstra-
tion trajectory that satisfies the constraint in each environment
by a policy trained with PPO and reward shaping that giving
a bonus when the pendulum reaches the target position. In
the following experiments, RCBC is trained with the single
trajectory and is hoped to generate desirable behaviors. To
validate the robustness of our method, we add another set of
experiments in which noise is injected into the demonstration
by selecting 50 (s, a) pairs randomly from demonstration and
changing actions to be the opposite, e.g., the action +0.1 will
be changed to -0.1. We introduce PPO with reward shap-
ing (denoted as PPO+RS), and PPO-based GAIL (denoted as
PPO+GAIL). Furthermore, to figure out the relationship be-
tween the original objective and the constraint in Eq.(4), we
also add another baseline (denoted as Constraint2) whose ob-
jective function is:

max
π

Es,a∼π[Q(s, a)], s.t. D[ρπ(·|s)||ρD(·|s)] ≤ ε (8)

where ε is a threshold for behavior cloning constraint with
1.0 × 10−10 in the following experiments. The pseudo-code
for Constrain2 is provided in Appendix B. Finally, it is worth
noting that we erase the additional location-related reward in
PPO+GAIL, Constrain2, and RCBC to ensure that desirable
behavior patterns can only be learned from the demonstration.

Experimental Analysis
The results of Inverted-Pendulum and Inverted-Double-
Pendulum are demonstrated in Figure 3-4, where RCBC,
PPO+RS, PPO+GAIL, and Constrain2 are represented by
blue, green, black, and red lines, respectively. For Inverted-
Pendulum, it’s obvious that RCBC finds a feasible solution
and exhibits superior performance. From Figure 3(a), we can
see that RCBC converges to the target location (average dis-
tance to the target position converges to near 0) in a much
faster and more stable way. While PPO+GAIL tries to ap-
proach the target location in the early stage but crashed later.
Constrain2 and PPO+RS learn the desirable behavior finally
but the learning speed is slower than RCBC and their learning
process is not quite stable. It is worth noting that RCBC even
outperforms the PPO+RS which includes the target location
in the reward function explicitly. On the other hand, as shown
in Figure 3(b), we can see that RCBC also has the best perfor-
mance in the reward evaluation which proves that our method
can learn the desirable behaviors while achieving a high re-
ward. For the experiments with noises in the demonstration,
RCBC still surpasses other methods significantly in learning
desirable behaviors and obtaining high total rewards, despite
that the fluctuations in the training process will be a bit larger.
The results are shown in Figure 3(c) and 3(d).

Moreover, Figure 4 shows the learning processes in the
Inverted-Double-Pendulum environment. As it is harder to
control the two individual pendulums simultaneously, the per-
formance of all four methods has declined. Under the orig-
inal demonstrations without noises (Figure 4(a)-(b)), RCBC
finally found a policy that can both arrive at the target loca-
tion and achieve a high total reward. The other three methods
failed in learning the implicit behavior pattern in the demon-
stration although they learn faster in the reward metric. In
the noisy situation (Figure 4(c)-(d)), RCBC converges to the
target location with fluctuation while the other three meth-
ods failed to the target location again. Moreover, the learning
speed of RCBC is also the fastest one in this situation.

4.3 TORCS
Experimental Setup
To demonstrate the effectiveness of RCBC in complex con-
trol problems, the last experiment is carried out on TORCS
([Wymann et al., 2021], The Open Racing Car Simulator),
The Open Racing Car Simulator), which is a popular simu-
lation environment in autonomous driving. The target of the
task is to safely drive along the track as fast as possible, more
details about the task are provided in Appendix E.

In this experiment, we first train a policy with PPO accord-
ing to the reward function formulated as Eq.(11) provided in
Appendix E and observe that the car controlled by the pol-
icy jitters frequently during driving, which destroys human’s
driving experience. This result is consistent with the previous
study [Bohez et al., 2019] which names the problem as bang-
bang control. To solve it we collect some demonstration data
in which the vehicle speed is still high but the driving process
is more stable. We compare the result of RCBC according to
this demonstration with Constrain2 as a baseline. PPO+GAIL
is not included because it struggles in learning a stable policy.
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Figure 3: Experiment results on Inverted-Pendulum. The distance from the starting position of the pendulum to the target is 0.5.

Figure 4: Experiment results on Inverted-Double-Pendulum. The distance from the starting position of the pendulum to the target is 0.3.

RCBC

Figure 5: Steering values of the executed policies in TORCS.

Experimental Analysis
Results are provided in Figure 5, where the horizontal axis
represents the number of steps and the vertical axis repre-
sents the steering values in action vectors. When optimized
with PPO, we can observe that the absolute value of the steer-
ing action is larger and switches rapidly between negative and
positive values. Although the speed of the car is higher, this
kind of driving style is not desirable for real-world driving
tasks. The results of Constrain2 and RCBC are much bet-
ter as they learned the smooth driving style from the demon-
stration, but there are still several high-frequency steering
switches for Constrain2. The policy learned with RCBC is
much smoother and consistent with the driving style of hu-
mans, where the two driving modes of turning and driving
straight appear alternately. Besides, we provide the average
speed and reward of each method in Table 1 provided in Ap-
pendix F. The speed of RCBC is slightly lower than PPO and

we attribute this to the additional optimization process needed
for the reward and constraint trade-off. We recorded the driv-
ing process of PPO and RCBC with a video which can be
found at https://youtu.be/JuAHFtHaWyg. Finally, it is worth
noting that our method is different from the regularization-
based smooth methods such as L1 and L2 regularization. Al-
though they can also obtain a smoother policy, it is hard for
them to learn other behavior patterns such as arriving at the
goal through a specific door in Grid-World or keeping the
pendulum at a specific location in Mujoco, for which we have
demonstrated the effectiveness of our method in the previous
two experiments.

5 Conclusion
Reinforcement learning aiming to maximize the expected re-
ward may generate undesirable behaviors in the real world
due to the inferior local convergence or incompetent reward
design. In this paper, we propose an approach to balance
maximizing the accumulated reward and generating the de-
sirable behaviors through combining imitation learning and
constrained reinforcement learning together. Imitation learn-
ing is used to learn the desirable behaviors from demonstra-
tion and the constrained reinforcement learning sets a lower
bound on the reward to ensure the guaranteed performance.
We validate our approach in several environments and show
that RCBC can learn human-like behaviors from non-optimal
demonstration while maintaining a high reward. In future
work, we seek to evaluate the performance of our method
with off-policy algorithms whose sample efficiency is better.
Besides, extending our method with transfer learning algo-
rithms is also worth researching in the future.
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