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Abstract

Nonlinear regression, although widely used in engi-
neering, financial and security applications for au-
tomated decision making, is known to be vulner-
able to training data poisoning. Targeted poison-
ing attacks may cause learning algorithms to fit de-
cision functions with poor predictive performance.
This paper presents a new analysis of local intrinsic
dimensionality (LID) of nonlinear regression under
such poisoning attacks within a Stackelberg game,
leading to a practical defense. After adapting a
gradient-based attack on linear regression that sig-
nificantly impairs prediction capabilities to nonlin-
ear settings, we consider a multi-step unsupervised
black-box defense. The first step identifies sam-
ples that have the greatest influence on the learner’s
validation error; we then use the theory of local
intrinsic dimensionality, which reveals the degree
of being an outlier of data samples, to iteratively
identify poisoned samples via a generative proba-
bilistic model, and suppress their influence on the
prediction function. Empirical validation demon-
strates superior performance compared to a range
of recent defenses.

1 Introduction

Regression analysis, being a fundamental task in supervised
machine learning, has applications in finance, cybersecu-
rity, and engineering. However, compelling evidence sug-
gests that the prediction performance of regression models
degrades in the presence of poisoned training data [Liu et
al., 2017; Jagielski et al., 2018]. By poisoning a subset of
training data, adversaries force the learner to compute a com-
promised decision function that differs from the one it would
have obtained under uncorrupted training data. As a conse-
quence, applications that rely on regression analysis for high-
stakes automated decision making may take incorrect actions
with severe consequences. Therefore, investigating defense
mechanisms against poisoning attacks is a continuing con-
cern within the adversarial machine learning community.
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In robust statistics, estimation procedures are available for
robust regression that are not strongly affected by the pres-
ence of stochastic noise and outliers [Huber, 1992]. However,
these methods fail in high dimensions and struggle to identify
carefully crafted adversarial samples [Xu ef al., 2012]. This
has led to the development of defense algorithms against poi-
soning attacks on regression models. Liu er al. [2017] and
Jagielski et al. [2018] present two such defenses that itera-
tively exclude data samples with the largest residuals from
the training process. The proposed defenses require access to
the number of benign samples in the training dataset (or an
upper bound) a priori, thereby overestimating the learner’s
knowledge and limiting their practicality. While several other
works have developed robust estimators for regression prob-
lems [Bhatia et al., 2015; Balakrishnan et al., 2017], they ei-
ther specialize on specific problems or use complex convex
optimization algorithms that scale poorly on large datasets
[Diakonikolas et al., 2019].

We propose a novel black-box defense called BIG-LID for
Balanced Information Gaussian - Local Intrinsic Dimension-
ality that reduces the influence of poisoned samples on the
cost function of the learner. At its core, BIG-LID relies upon
the theory of Local Intrinsic Dimensionality (LID) [Houle,
20171, a local metric, to identify poisoned samples. It has
previously been observed that LID can detect adversarial ex-
amples in classification settings in Deep Neural Networks
(DNNGs) and can serve as a mechanism to identify mislabeled
samples [Ma et al., 2018]. More importantly, recent work by
Amsaleg er al. [2020] established that data points with rela-
tively large LID values are vulnerable to adversarial pertur-
bations compared to data points with smaller LID values.

BIG-LID is a multi-step iterative algorithm that brings to-
gether several previously established defense components to-
gether (i.e., influence, LID and weighting). In the first step,
we filter the most influential samples (on the validation er-
ror) from the training data. In step two, we identify poten-
tially poisoned samples from the above set using an approach
based on LID. Finally, we suppress the samples that are sus-
pected to be poisoned using a sample weighted optimization
process. Due to the plug-in nature of BIG-LID, it can be used
across different learning algorithms such as Support Vector
Regression (SVR) and Neural Network Regression (NNR).
We compare BIG-LID against other state-of-the-art alterna-
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tives to show its superior performance in practice. Finally,
we create an adaptive attacker that is aware of BIG-LID and
demonstrate that such an attacker fails to achieve its objec-
tives.

2 Related Work

The problem of learning under adversarial conditions has
inspired a wide range of research from the machine learn-
ing community; see the work of Vorobeychik and Kantar-
cioglu [2018] for a survey. Although adversarial learning in
classification and anomaly detection has received a lot of at-
tention [Biggio and Roli, 2018; Carlini and Wagner, 20171,
adversarial regression remains relatively unexplored.

Much of the current literature on adversarial regression
learning is focused on linear models. Xiao et al. [2015] ex-
amined how the parameters of the linear regression model
change under adversarial perturbations by introducing a novel
threat model. Liu er al. [2017] use robust PCA to transform
the training data to a lower-dimensional subspace and follow
an iterative trimmed optimization procedure where only the n
samples with the lowest residuals are used to train the model
(n is the number of normal samples in the training data set).
Jagielski et al. [2018] use a similar approach for the algorithm
“TRIM”, where trimmed optimization is performed in the in-
put space itself. Therefore, they do not assume a low-rank
feature matrix as done by Liu et al. [2017].

Koh and Liang [2017] introduced the notion of influence
functions to construct adversarial training examples. In our
work, we use the influence of training samples on the val-
idation error in the first step of the defense. Similarly, the
algorithm introduced by Zhang et al. [2018] identifies sam-
ples that have the biggest influence on the validation error
of a trusted validation set. The method by Diakonikolas et
al. [2019] constructs outlier scores via singular value decom-
position of gradients. They offer theoretical guarantees under
certain assumptions about the dataset. However, since the in-
fluence of samples alone was not sufficient to construct a ca-
pable defense, we used a LID based second step in BIG-LID.

Tong et al. [2018] consider an attacker that perturbs data
samples during the test phase to induce incorrect predictions.
The authors use a single attacker, multiple learner framework
modeled as a multi-learner Stackelberg game. From the at-
tack point of view, the most relevant studies to this paper are
the works by Jagielski et al. [2018] and Alfeld et al. [2019].
We adapt the former attack to nonlinear settings for the ex-
periments of this paper.

In summary, to the best of our knowledge, no defense has
been proposed for nonlinear regression that reduces the ef-
fects of adversarial perturbations in training data using LID.
More importantly, existing works on LID based defenses are
not black-box. Most existing work on adversarial regression
relies on assumptions about the attacker/attack or the dataset,
making them impractical, while we propose a novel black-
box defense that makes no such assumptions.

3 Problem Definition

The primary aim of this paper is to introduce a novel un-
supervised black-box defense to counter poisoning attacks.
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The following is a brief description of the problem being ad-
dressed.

Define the set of benign training samples as Z, =
(Xu, Yu), where X, € R™ 4 is the feature matrix and
Y € R™*! the corresponding response variable vector. We
let ; denote the i'" training sample, associated with a corre-
sponding response variable y; € R from y. Note that each

€ [0,1] fori € {1,...,n}. The attacker has access to the
benign data Z;, as well as perfect knowledge of the learner’s
training algorithm and its hyper-parameters (i.e., white-box
attack). While these assumptions may lead to an overpow-
ered attacker, our aim is to create a worst-case scenario for
the learner (with the expectation that a defense that can with-
stand a strong attacker would stand against a less powerful
real-world attacker). Moreover, security through obscurity is
considered as poor practice when designing for security ap-
plications.

Armed with this knowledge, the attacker injects a subset of
poisoned data samples Z,, = (X, € RP*4 g, € RPX1) into
the training set. The attacker aims to maximize the learner’s
prediction error for unseen data samples (i.e., increase test
error). In real-world applications, such attacks can occur
through unauthorized access (using malware), or when data is
collected from multiple sources such as crowd-sourcing mar-
ketplaces where the authenticity of data contributors cannot
be guaranteed. Due to the size and complexity of modern
datasets, the sponsoring organization may not be able to ex-
tensively validate the quality of all data/labels.

The learner is presented with the poisoned training data
Zy = (X, Yir)» where Xy = X U X and g = Y U Ypr-
The learner’s objective is to recover the nonlinear prediction
model it would have obtained had the entire training data set
been benign.

The learner is free to choose any nonlinear regression al-
gorithm that supports a weighted loss function (e.g., NNR,
SVR and basis function regression). In basis function regres-
sion, the data is first transformed to a higher (¢ > d) dimen-
sional space using a nonlinear function (i.e., ¢ : RY — RY),
prior to fitting a hyperplane in the transformed space. The
type of basis functions (common choices being polynomials
and the Radial Basis Function, RBF) is chosen to appropri-
ately model the nonlinearity in the relationship between the
input features and the response variables. The resulting re-
gression model can be described by a linear function of the
form hy(z;) = wP¢(x) + b, in which h is parameterized by
the vector § = (w,b) € RI*1, where w € RY are the feature
weights and b € R is the bias of the hyperplane.

The parameter vector 6 is obtained by applying a learning
algorithm, such as ridge regression (which uses ¢5-norm reg-
ularization) as follows:

. 1 =
argemln J (X, Yur, 0) %Z he (x;)— +)‘||W||2
=1

Note that A > 0 is a regularization hyperparameter. In our
attack analysis (Section 4), we chose ridge regression as the
learner’s algorithm due to its objective function being differ-
entiable. More generally, the attack could use subdifferen-
tials.
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3.1 Game-Theoretic Model

The interaction between the adversary and the learner can be
simulated by a zero-sum continuous kernel leader-follower
game. The attacker, being the leader, first chooses the attack
strategy (i.e., adversarial perturbations Z;. using Program 2),
and then the learner chooses the best response (i.e., attack-
resistant model 6*) to the adversary’s choice. We discuss the
approaches used to obtain these in detail in the sections that
follow (Algorithms 1 and 2). The adversary’s goal is to maxi-
mize the learner’s testing error (MSE on the test set) while ad-
hering to constraints that limit the number of samples that can
be perturbed and the size of the perturbations. The learner’s
goal is to minimize the testing error by suppressing the influ-
ence of poisoned data points on the trained model.

Having defined the problem being addressed in this paper,
we now move on to discuss the formal attack model.

4 Attack Model

The section below formalizes the attack model for poisoning
nonlinear regression models, which is inspired by previous
works of Xiao et al. [2015] and Alfeld er al. [2019]. We start
by outlining the adversary’s goal, followed by its knowledge
of the learner, its limitations.

4.1 Adversary’s Goal

The adversary’s goal is to force the learning algorithm to learn
a compromised prediction function during the training phase,
such that its prediction error for unseen data samples (i.e.,
testing phase) would be maximized. This poisoning attack
can be categorized as an attack on availability, where the goal
is to affect the prediction results indiscriminately. However,
by changing the attacker’s objective function it can be con-
verted to an attack on integrity, where the attacker intends to
cause specific mispredictions [Alfeld ef al., 2019].

4.2 Adversary’s Knowledge

As previously stated, we consider a white-box attack where
the attacker knows the benign training data Z,, and the learn-
ing algorithm J (including A and ). Many researchers have
utilized similar attacks to evaluate the resistance of defense
algorithms against adversaries [Kurakin er al., 2018].

4.3 Adversary’s Limitations

While it is possible to consider an adversary with unbounded
capabilities, it is unrealistic to encounter such an attacker in
the real-world e.g., due to considerations of stealth. There-
fore, we impose the following constraint on the attacker. The
attacker is only allowed to inject a maximum of p poisoned
samples into the training set. The size p bounds the attacker’s
capability and is fixed a priori. The number of samples in the
training set thus becomes n + p, with n the number of be-
nign samples. We define the poison percentage as p/(n + p),
which is the fraction of poisoned samples in the training set.
Although previous work in adversarial linear regression has
considered poison percentages up to 20%, we observed that
in nonlinear conditions, the attacker could exert considerable
damage with far fewer poisoned points. The attacker ran-
domly selects a subset of p samples from the benign training
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set Zy as the starting points for the attack and iteratively per-
turbs their features to obtain the poisoned subset Zi;.

4.4 Poisoning Algorithm

We formalize the attacker’s objective function as the follow-
ing bi-level optimization problem:

arg_rnaX E(Xuala Yval, é(Ztr)) )
Zy

s.t. 0 € argmin J(Xy, 7, 0) (2)
0
|Zij — 2zij| <€ Vi € Zy

where E measures the squared loss = > | (hg(2;) — yi)2
on a separate validation set, and is reflective of the learner’s
test error. Although large perturbations would have a bigger
impact on the learner’s prediction accuracy, they would also
make the poisoned points detectable. Thus, it would be ben-
eficial for the adversary to place poisoned data points closer
to the benign data distribution. Which is why we limit the
attacker’s capability by constraining the perturbations to be
within some threshold e from the starting (benign) points us-
ing the second constraint in (2). However, it should be noted
that this constraint can be changed according to the applica-
tion being attacked. ~

In the gradient-based attack, the attacker updates Z;; in the
direction that maximizes £. However, as shown in (2), E
depends implicitly on Z,; through 6. Thus, using the chain
rule we obtain

V2 E=Vz 0" .VyE. 3)

If the inner optimization problem is convex (as is the case
for ridge regression) and regular, we can calculate V z 6 in
closed form. Similar to Xiao et al. [2015], we first replace
the inner optimization problem of (2) with its Karush-Kuhn-
Tucker (KKT) equilibrium conditions as:

- asT
V@J(X[n gtrv 9) - [gtf ] = O 9 (4)
b
where
oJT 2%
= = > (ho(@i) = Gi) p(E:) + " )
=1
and N
0] 22X N 3
5= > (hods) — i) - (6)
=1

In order to ensure that the KKT conditions remain valid
while updating Z., we set its derivative w.r.t. Z, to be equal
to zero as follows,

vZu— (VeJ(Xtra gtra 9)) =0. (7)

We need to obtain V erHT to solve (3). The function Vy.J

is composed of both 6 and Z. Since VgJ is continuously
differentiable and V3.J is full rank, using the implicit function
theorem results in,

Vz 01 = -V, VeJ(V3J)~L. (8)



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Algorithm 1 Poisoning nonlinear regression

Input: benign data Z, validation set Z,, poison size p
Output: poisoned data Z;
1: 10
2: Zt(,t) + select_initial_points(Z, p) {randomly select the
initial points}
70— 7,020
01 + train_model(Z") {initial model}
e® = B(0™, Z,y) {initial validation error}
repeat
Vi, E calculate_derivative(Z.”, §(®))
a < select the step size through line search
Zt(rtH) — P(Zl(rt) — aVz E) {project onto the feasi-
ble region}
10: ¢+ ¢+ 1 {increment the counter}
1. 2« z,uzZW
12: 61 + train_model(Z, (t)) {update prediction model}
13: e = (0“ Zya) {calculate the validation error}
14: untll |e(t) — e~V < required precision

A A A R

By solving the r.h.s. of (8) for the tensor V z6, we obtain,

Sw  Ow
V=% %
oy

[nzz’?’«:( )T o(ws) + M, izﬁf@(mr
2 S () 1 N

The first component of the r.h.s. of (8) is a tensor of size

px (d+1)x(g+1).Foreachi=1,...,p,
A e R9*X9 = (wTSO(l'i) + (h(zvz) - yz)) &g;xl)»
QeR=uT &p(a:i), and
3xi
I' e R? = —p(xy).
Differentiating F w.r.t. 6 gives,

_[VIE

Vol = {vi}

(10
1 (ho(5) — y;)e(x;)

2
_ { e
Z] 1 (hg(x]) yj)'

Finally, by substituting (10) and (9) in (3) we obtain V ;z F
The high level procedure used by the attacker is formalized in
Algorithm 1. The function P projects the perturbed data onto
the feasible domain (where the feature values are bounded)
and ensures that the constraint in (2) is satisfied.

5 Defense Model

Having discussed the attack model, we now turn to the de-
fense algorithm. First, we briefly introduce the theory of LID
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for assessing the dimensionality of data subspaces, which is
at the heart of our defense, and then present our novel LID-
based mechanism to reduce the influence of poisoned data
points on the learned model.

The Intrinsic Dimension (ID) of a data set can be consid-
ered as the minimum number of latent variables required to
represent that data. LID measures the intrinsic dimension-
ality of data points based on their distribution of distances to
the neighboring samples [Houle, 2017]. Recent evidence sug-
gests that LID can be used to capture the degree of being an
outlier of data samples [Houle et al., 2018]. In this paper, we
characterize the degree of being an outlier of poisoned sam-
ples based on their intrinsic dimensionality and reduce their
influence on the learning process. Although several estima-
tors of LID exist [Amsaleg et al., 2015], due to having a better
trade-off between convergence and bias, we choose the maxi-
mum likelihood estimator (MLE), defined below, in all of our
experiments.

Definition 1. (Estimation of LID)

Given a reference sample x ~ P, where P represents the data
distribution, the maximum likelihood estimator of the LID at
x is defined as follows [Amsaleg et al., 2015]:

k) 71
LID(x < Z > ) (1)

,r.
—1 max

Here, r;(x) denotes the distance between x and its i-th near-
est neighbor within a sample of k points drawn from P, and
Tmax () is the maximum of the neighbor distances.

The above estimation assumes that samples are drawn from
a tight neighborhood, in line with its development from Ex-
treme Value Theory. In practice, the sample set is drawn
uniformly from the available training data (omitting x itself),
which itself is presumed to have been randomly drawn from

P.

5.1 Sensitivity of LID to Adversarial Perturbations

Amsaleg et al. [2020] showed that data points with relatively
large LID values are vulnerable to adversarial perturbations.
In this work, we focus on how adversarial distortions affect
the LID estimator (11). Take z0 = (22,9?) as the starting
point of the sample being p01soned By adding a perturba-
tion vector § € R1*4+1 to 20, the poisoned point becomes
ze = (x¢,yc). Thus, the sens1t1v1ty of LID with respect to
adversarial perturbations would be VsLID(z.).

The sensitivity of LID to adversarial perturbations gives
more insights to the attacker than the learner, as the learner
only sees the final product after perturbations z.. The attacker
can add perturbations in directions that hardly change the LID
value (i.e., V(;IjI]\D(zC) ~ 0) or in directions that maximally
decrease Ij\D(zc) In Section 6.4 we show how an adversary
may use this information to create a more sophisticated attack
and how it impacts the overall objective of the attacker.

5.2 BIG-LID Algorithm

The learner’s goal is to train on the poisoned training data set,
yet be unaffected by the poisoned samples. It aims to obtain
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Figure 1: The LID PDFs of benign and poisoned samples when 10%
of the data is poisoned. Note the significant imbalance.

a prediction model that is similar to the model it would have
obtained in the absence of an attack. The learner achieves
this goal in a two-step iterative process: (i) obtain a subset of
the training data in which the proportion of poisoned points
is similar to the proportion of benign points, (ii) identify the
poisoned samples and reduce their influence on the learned
model. We describe the two steps in detail below.

Balancing the Benign and Poisoned Data

Since the learner’s goal is to have good prediction capabilities
on unseen data (i.e., testing phase), we first attempt to iden-
tify the training samples that have the greatest influence on
prediction accuracy. In certain machine learning algorithms,
such as SVMs, only training data points that are on or beyond
the separating margin contribute to the decision function.
However, a similar property is not present in regression mod-
els. Although prior work has used influence of data samples
for identifying adversarial samples [Koh and Liang, 2017;
Zhang et al., 2018; Diakonikolas ef al., 20191, we find that
influence of samples alone is not sufficient to distinguish ad-
versarial samples from benign samples. Therefore, it is used
in BIG-LID as a filtering step.

Take zk, = (XL, yk,) as the learner’s validation set.
Similar to the adversary, the learner uses the chain rule to

calculate the gradient of its validation error E(X %, yL . 0),

w.r.t. the training samples (Z[r). We then calculate the norm
of the gradient vector |V, E| for each z; € Z,. This norm
indicates the sensitivity of the validation error to small per-
turbations made to training samples. For example, take two
training samples z,, and z, with |V, E| > |V, E|. A small
perturbation to z,, would result in a larger change in £/ com-
pared to a small perturbation made to z,: 2, is an influential
sample. Note that having a large gradient does not neces-
sarily mean that the sample is poisoned, we merely select
these for further processing, calling such points influential
samples. Our experimental evaluations revealed that for each
training dataset, the influential samples had a substantial por-
tion of poisoned samples, thereby bringing the proportion of
poisoned samples closer to the proportion of benign samples
within that subset.

Identifying Poisoned Data

Having found a subset of training samples in which the poi-
soned samples and benign samples are similar in number, we
move to step two, where we attempt to identify the poisoned
samples.

First, we discuss the intuition behind using LID to identify
adversarial samples during training. In a gradient-based poi-
soning attack, the attacker selects a set of benign samples as
the starting points and iteratively perturbs them in the direc-
tion that maximizes its objective function. Due to the added
perturbations, the poisoned samples would not be embedded
within the benign data distribution. Thus, each poisoned sam-
ple would have an irregular distribution of the local distance
to its neighbors, which would be reflected by its LID value.
Although, as shown in Figure 1, LID is a powerful metric
that can capture the degree of being an outlier of poisoned
samples compared to benign samples, due to the proportion
of poisoned points being significantly smaller than benign
points, we could not use the LID distribution of the entire
training set directly. This is why the data balancing in step
one was necessary.

As the maximum likelihood estimator of LID (11) ensures
asymptotic normality [Amsaleg et al., 20151, as shown in Fig-
ure 2, the LID estimates (In(LID)) of the influential samples
(benign data and poisoned data) resemble a Gaussian distri-
bution. Therefore, assuming the proportion of one distribu-
tion is not going to zero, we have a mixture of Gaussians. A
Gaussian mixture model (GMM) is a probabilistic model that
assumes all the data points are generated from a mixture of
a finite number of Gaussian distributions. The parameters of
the Gaussian distributions are found using expectation max-
imization (EM). Since the distribution of LID values of the
influential samples is a mixture of two Gaussian distributions,
we use a GMM to identify the two components.

Figure 2 compares the output of the GMM with the two
PDFs of the LID values of benign and poisoned samples. It
also provides the full PDF of the LID values and the poste-
rior probability of each Gaussian component given the data
(responsibilities). It can be seen from the figure that poi-
soned samples tend to have a high responsibility for the
second Gaussian component compared to the first com-
ponent. Thus, at each iteration, the learner selects the data
samples for which the probability of the poisoned Gaussian
distribution is greater than some threshold § and adds them to
a list of suspected samples.

Reducing the Impact of Poisoned Data

So far, we have found the samples that have the biggest in-
fluence on the validation error and selected data points that
are suspected to be poisoned based on the GMM output (sus-
pected list). We now look at how their influence on the pre-
diction function can be reduced using two commonly used
approaches: (i) removing them from the training set [Jagiel-
ski et al., 2018; Liu er al., 2017], and (ii) using a weighted
cost function for the learner and reducing the weights of poi-
soned samples.

Figure 3 shows the composition of the suspected list as the
learner moves through the iterative defense. As seen from
the figure, the suspected list comprises over 50% of poisoned
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Figure 2: The GMM output on the LID distribution.
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Figure 3: The composition of the suspected list.

data by the eightieth iteration, for all three datasets. Although
ideally, we would like the suspected list to be entirely popu-
lated with poisoned samples, we also observe that a relatively
small percentage of benign samples are detected as suspected
samples. Reducing the influence of poisoned samples im-
proves the prediction performance of the learner, and unsur-
prisingly, reducing the influence of benign samples impairs it.
Of the two approaches considered, we experimentally found
that removing samples (benign and poisoned from the sus-
pected list) from the training set results in an overall increase
in the MSE. Thus, we opted to instead use a weighting mech-
anism where we assign a uniform low weight to all the sus-
pected samples at each iteration.

In weighted least squares (WLS), a weight 8; € [0,1] is
assigned for each sample in order to discriminate and vary
their influence on the optimization problem. A small 5; value
would allow for a large residual value, and the effect of the
sample would be de-emphasized. Conversely, a large (5; value
would emphasize that sample’s effect. Therefore, by care-
fully selecting a weight vector 3, the learner reduces the influ-
ence of poisoned samples on the nonlinear prediction model.
Algorithm 2 summarizes the defense procedure of the learner.

Algorithm 2 Balanced Information GMM LID (BIG-LID)
Input: poisoned data: Ty = (f(u, 7 ), validation set: ZL

val’
influential_samples size: s, LID values of Z,: all_lid_values,

GMM threshold: §, num_of _iterations

Output: regression model: 6*

t+0

best_validation_error = 1000

suspected_samples=| ]

0®) < train_model(Z,) {initial model}

e® = E(9®, ZL ) {initial validation error}

repeat

V ;. E « calculate_derivative(Z, 0(*))
V ;. Elsuspected_samples, :] < 0 {in order to avoid
re-detecting already suspected samples}
9:  influential samples < get_top_s(|V El,s) {indices
of the largest gradients}

10:  lid_values < all_lid_values(influential_samples) {get
LID values of influential_samples}

11:  gmm < train_gmm(lid_values) {train a GMM on the
LID values}

12:  suspected_poison < find_poisoned_gmm(gmm, §)

13:  suspected_samples < append(suspected_poison)

14: ¢« t+ 1 {increment the counter}

15: B get_weights_for_samples(suspected_samples)
{get the weight vector where suspected_samples have
lower weights}

16: 01 « train_model(Z,, 5(*)) {train weighted model}

17: e® = E(6®, ZL)) {calculate the validation error}

18:  if e < best_validation_error then

e I A el S

19: best_validation_error < e(*)
20: 0" «— 0t
21:  endif

22: until ¢ + 1 = num_of_iterations

6 Experimental Results and Discussion

In this section, we evaluate the performance of the proposed
novel defense against three real-world regression datasets:
House, Heart disease and Appliances. Our objective is to
investigate the impact of the gradient-based attack against
several types of defenses and to evaluate the effectiveness
of the BIG-LID defense. For each algorithm, we present
the percentage increase in MSE compared to the MSE of a
ridge model trained on benign data. Our code is available at
https://github.com/sandamal/big-lid.

6.1 TIterative Detection in BIG-LID

Turning back to Figure 3, one interesting finding is that, al-
though the number of poisoned samples discovered increases
with each iteration, the rate of discovery peaks during the ini-
tial iterations and stagnates afterward. However, the rate at
which benign samples are identified remains steady. As pre-
viously mentioned, reducing the weights, and thus the influ-
ence of benign samples results in a decrease in prediction ac-
curacy, and reducing the weights of poisoned samples results
in an increase of the same. Therefore, it appears that it would
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Figure 4: The effect of poisoning attacks when \ varies.

be beneficial for the learner to stop at an earlier iteration to
obtain the optimal defense model. However, since the BIG-
LID defense reverts to the model with the lowest validation
error after all the iterations, this phenomenon does not affect
the final outcome of the defense. Further research should be
undertaken to reduce the discovery of benign samples as sus-
pected samples in order to further improve the performance
of the defense.

6.2 Effect of Regularization

We now look at the influence of regularization on the poi-
soning attack. We compare the percentage increase in MSE
for a ridge regression model with no defense and with BIG-
LID when the regularization parameter A is varied from 10~°
to 10%. A large A value results in a linear model, whereas
a small A value results in a nonlinear model. Thus, Figure 4
shows how the effectiveness of the attack changes when mov-
ing from a nonlinear model to a linear model. The results in-
dicate that the effectiveness of the attack diminishes when the
prediction model becomes linear. This result is somewhat ex-
pected, as there is relatively high variance in nonlinear mod-
els compared to linear models, therefore the learned model
has a higher probability of being influenced by poisoned data.
This finding supports the connection between robustness
and regularization that has been established in prior work
[Chen and Paschalidis, 2018]. Furthermore, it suggests that
attacking nonlinear estimators is easier compared to attacking
linear estimators due to the high variance of the former.

6.3 Comparison of Defenses

Turning now to the performance of an undefended ridge
learner against the proposed poisoning attack (Figure 5), we
observe that the percentage increase in MSE is 7.4 on Appli-
ances, 28.8 on Heart disease and 24.4 on the House dataset
when 10% of the training data is poisoned. This suggests that
an undefended nonlinear regression model can be severely af-
fected by the proposed attack.

Finally, we compare the prediction performance of BIG-
LID defense against TRIM [Jagielski et al., 2018], RANSAC
[Fischler and Bolles, 1981], Huber [Huber, 1992], DUTI
[Zhang et al., 2018] and SEVER [Diakonikolas et al., 2019]
under adversarial conditions. On majority of the test cases,
we observed that the BIG-LID defense outperformed the
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Figure 5: The percentage increase in MSE for the defenses consid-
ered on the Appliances, House and Heart Disease datasets when the
poison percentage increases from 0% to 10%.

other defenses demonstrating its effectiveness in identifying
and reducing the influence of poisoned samples. The percent-
age increase in MSE remained less than 5% on House and
Appliances datasets even when 6% of the training data was
poisoned.

The most striking result to emerge from the experiments
is that TRIM, RANSAC and Huber performed worse than
an undefended ridge model in most test cases. This behav-
ior of Huber and RANSAC may be explained by the fact
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that these algorithms were designed to withstand stochastic
noise/outliers, not adversarially poisoned data. In a nonlinear
regression setting where the data is already complex, these
defenses may lack the power to distinguish poisoned data
from benign data, especially when the adversary is only mak-
ing small perturbations. However, TRIM, which follows an
iterative optimization process where only the samples with
the lowest residuals are used for training, was introduced as
a defense against poisoning attacks on linear regression mod-
els. We believe that the lack of performance of TRIM is due
to the removal of benign samples from the training process
which leads to an increase in MSE. DUTI was originally pro-
posed to fix errors in labels using a trusted data set. The DUTI
algorithm outputs a list of indices (of the training dataset) or-
dered according to the likelihood of having incorrect labels.
Therefore, the data point indices that are at the head of the list
are most likely to be incorrect compared to data point indices
that are at the tail end. In our experiments, we choose the top
n indices from the tail end of the list to train the prediction
model.

6.4 Adaptive Attack Against BIG-LID

To further evaluate the robustness of BIG-LID, we modify the
attacker’s objective function (2) by introducing a LID cost as
follows:

arg max E(le,ywl,é(zr)) —a Z I_TI\D(QUZ) . (12
Z -
a T €Ly

The rationale for the minimization of the LID component in
(12) is that BIG-LID identifies samples with large LID values
as suspected samples. By introducing the LID cost, the ad-
versary is forced to minimize the LID values of the samples
being poisoned to avoid being detected. The scalar a controls
the contribution of the two components to the objective func-
tion. In our experiments we found that the increase in MSE
was less than 1% on all three datasets, when 10% of the data
was poisoned with 0.1 severity (in contrast, the vanilla attack
achieved a 24% increase on the House dataset, 7% on the Ap-
pliances dataset and 29% on the Heart dataset). These results
support previous findings by Athalye et al. [2018] and Ma et
al. [2018].

Finding the k nearest neighbors of each sample, which is
an integral part of the LID calculation, is a non-differentiable
operation. However, the second term of (12) is differentiable
at any given time step of the iterative optimization process.
The problem LID imposes on the attacker is that gradient as-
cent does not succeed in optimizing the true LID cost [Atha-
lye et al., 2018]. At each time step of an iterative gradient
ascent algorithm, the gradient is calculated with respect to
the k nearest neighbors at that particular time, which is not
representative of the true direction to perturb (i.e., gradient
with respect to the optimal set of k nearest neighbors). Thus,
we find that the adaptive attacker fails to achieve its objective.

In summary, the results of this paper indicate that: (i) non-
linear regression algorithms such as ridge regression are vul-
nerable to poisoning attacks, (ii) unlike linear data, nonlin-
ear data is complex, and it is difficult to distinguish poisoned
samples from benign samples especially when the attacker
deliberately limits its perturbations, and (iii) unintentionally
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removing benign data from the training process can have se-
vere consequences (where data redundancy is low), and the
effects of removing benign samples may outweigh the ef-
fects of removing poisoned samples resulting in a net in-
crease in MSE. Taken together, these findings suggest that a
defense such as BIG-LID, which brings together several com-
ponents previously explored in adversarial learning (i.e, influ-
ence, LID and weighting), is useful against sophisticated ad-
versaries as it can withstand sophisticated attacks and makes
adaptive attacks impractical.

7 Conclusions

This paper addresses the problem of defending nonlinear
regression models against poisoning attacks. We observed
that gradient-based poisoning attacks significantly degrade
the prediction performance of nonlinear regression models.
We introduced a gradient-based approach to filter the most
influential training data points and constructed a LID based
black-box defense (BIG-LID) that reduces the influence of
poisoned samples on the learned model. Exploring the pos-
sibility of extending this defense to reinforcement learning
settings would be a fruitful area for further work.
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