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Abstract
This paper explores a succinct kernel model
for Group-Sparse Projections Learning (GSPL),
to handle multiview feature selection task com-
pletely. Compared to previous works, our model
has the following useful properties: 1) Strictness:
GSPL innovatively learns group-sparse projections
strictly on multiview data via `2,0-norm constraint,
which is different with previous works that encour-
age group-sparse projections softly. 2) Adaptivity:
In GSPL model, when the total number of selected
features is given, the numbers of selected features
of different views can be determined adaptively,
which avoids artificial settings. Besides, GSPL
can capture the differences among multiple views
adaptively, which handles the inconsistent prob-
lem among different views. 3) Succinctness: Ex-
cept for the intrinsic parameters of projection-based
feature selection task, GSPL does not bring extra
parameters, which guarantees the applicability in
practice. To solve the optimization problem in-
volved in GSPL, a novel iterative algorithm is pro-
posed with rigorously theoretical guarantees. Ex-
perimental results demonstrate the superb perfor-
mance of GSPL on synthetic and real datasets.

1 Introduction
Recently, a large amount of multiview data have emerged
in real scenarios, in which the features are characterized
from different sources, extractors and external environments.
For example, a person can be described via iris, fingerprint
and face features, a document can be narrated via multi-
ple languages, an image can be described by different fea-
ture extractors, etc [Zhang et al., 2016; Nie et al., 2018;
Wu et al., 2020]. Considering high dimensionality of mul-
tiview data and expensive cost of label acquisition, how to se-
lect discriminative features on multiview data with unsuper-
vised paradigm has attracted more attentions in recent years.
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Related works. The previous works can be simply divided
into two categories, including serial models and parallel mod-
els. 1) The serial models directly concatenate multiview fea-
ture vectors into a long vector, and explore a whole sparse
Projection Matrix (PM) via employing single view unsuper-
vised feature selection models (SOCFS [Han and Kim, 2015],
SOGFS [Nie et al., 2016], URAFS [Li et al., 2018] mod-
els are frequently used), in which the discriminative features
can be selected from sparse PM. Except for directly utilizing
single-view models, [Dong et al., 2019] proposed a ACSL
model which learns both a unified projection and a collab-
orative graph to mine more discriminative information. 2)
The parallel models explore a sparse PM for each view and
integrate the selected features of different views artificially.
The most exemplary works contain: ASVW [Hou et al.,
2017], which collectively learns sparse PM for each view via
`2,p-norm regularization and a common graph from multiple
views; MVUFS [Qian and Zhai, 2014], which performs joint
local learning regularized orthogonal nonnegative matrix fac-
torization and `2,1-norm minimization; RMFS [Liu et al.,
2016], which employs K-means to efficiently obtain labels
for guiding `2,1-norm regularized feature selection; CGMV-
UFS [Tang et al., 2018], which incorporates feature selection
with `2,1-norm constraint into non-negative matrix factoriza-
tion (NMF) based clustering model.

Confronting problems. However, previous works suffer
from several open flaws. In serial models, the inconsistency
of multiple views cannot be captured completely, especially
when concatenating multiview feature vectors. In parallel
models, the number of selected features for each view de-
pends on artificial settings, which is hard to apply in practice.
Furthermore, both series and parallel works conventionally
utilize `2,1 or `2,p-norm regularization to encourage the spar-
sity of PM, which cannot guarantee the group-sparsity of PM
and leads to mismatched problem between the group-sparsity
of PM and the number of selected features. More importantly,
previous works contain several hyper-parameters for explor-
ing the adaptive combination of different regularizations, in-
cluding `2,1 or `2,p-norm regularization, which affects the ap-
plicability of model. Through the above analysis, we can
conclude that a complete multiview feature selection model
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Figure 1: The workflow of GSPL Model.

should handle the following 4 problems:

• IC Problem : How to capture the InConsistency among
multiple views?

• SF Problem: How to allocate the number of Selected
Features for multiple views based on a total number?

• GS Problem: How to guarantee the Group-Sparsity of
learnt projection matrix (matrices)?

• SC Problem: How to guarantee the SuCcinctness of
model?

Our proposals. To this goal, we propose a succinct ker-
nel model for Group-Sparse Projections Learning (GSPL), to
handle IC, SF, GS and SC problems simultaneously. The
workflow is plotted into Fig. 1. Specifically, GSPL first learns
a fused feature matrix, mapped and fused by sparse projec-
tion matrices and adaptive weights, and then encloses it to
mutiview spectral embeddings based on Hilbert-Schmidt In-
dependence Criterion (HSIC) on Reproducing Kernel Hilbert
Spaces (RKHSs) adaptively. As aforementioned in Abstract,
the proposed GSPL contains three useful functionalities, in-
cluding Adaptivity, Strictness and Succinctness, wherein
Adaptivity solves problems IC and SF via learning p and z in
Fig. 1. Strictness solves problem GS via `2,0-norm constraint
of Ŵ in Fig. 1, Succinctness means that that our model
does not add any hyper-parameter except for the number of
selected features and the number of reduced dimensionality
brought by feature selection task, which handles the SC prob-
lem effectively. Except for the above three functionalities, the
HSIC metric on RKHSs helps the learnt fused feature matrix
to capture the high-order information from multiview spec-
tral embeddings. To solve the optimization problem involved
in GSPL, we propose a novel iterative algorithm with the-
oretical guarantees. Eventually, the effectiveness of GSPL
and the convergent speed of proposed algorithm are evalu-
ated. The experimental results demonstrate that the proposed
GSPL model achieves SOTA performance and the proposed
solver can converge rapidly. In a word, we concisely summa-
rize the main contributions of this paper as follows:

• We propose a GSPL model to solve the IC, SF, GS and
SC vital problems simultaneously and effectively.

• We propose a novel iterative algorithm to solve the opti-
mization problem involved in GSPL.

• The proposed GSPL model has no extra hyper-
parameters, but achieves SOTA performance in several
real datasets compared to previous works.

2 Preliminaries
Hilbert-Schmidt Independence Criterion (HSIC). Given
two Reproducing Kernel Hilbert Spaces (RKHSs) F and G,
and a joint measure p with (A× B,P × J ), where A, B
are separable spaces, P and J are Borel sets on A and B
separately, HSIC is defined as the squared Hilbert-Schmidt
norm with the cross-covariance. If there are n observations
Z = {(a1,b1) , ..., (an,bn)} ⊆ A×B independently drawn
from p, and the corresponding data matrices are A ∈ Rn×t1

and B ∈ Rn×t2 , an empirical HSIC [Gretton et al., 2005;
Zhang et al., 2018] can be written as

Q(Z,F ,G) = (n− 1)−2Tr(HKAHKB), (1)

where KA ∈ Rn×n and KB ∈ Rn×n are kernel matrices and
H = In×n − 1

n1n1T
n is the centralized matrix. In theory, the

larger the HSIC, the larger the dependence between A and B.

Majorize-Maximization (MM) framework. For a gen-
eral problem maxx f(x), MM algorithm [Sun et al., 2016;
Nie et al., 2020; Ham et al., 2018] aims at seeking a surro-
gate problem maxx ϕ (x) to help optimize the raw problem
iteratively. Suppose x0 is a current solution, maxx ϕ(x|x0)
should satisfy the following conditions:

∀x, f (x) > ϕ (x|x0) , f (x0) = ϕ (x0|x0) . (2)

Obviously, when x̃ = argmaxϕ (x), we have

f (x̃) > ϕ (x̃|x0) > ϕ (x0|x0) = f (x0) , (3)

which guarantees the ascent property.
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3 Methodology
3.1 Proposed GSPL Model
Given a multi-view data X = {X1, . . . ,Xs}, wherein Xv ∈
Rn×dv is the feature matrix of v-th view, n and dv are the
numbers of samples and dimensions of Xv. Besides, we
denote the v-th spectral embedding as Uv ∈ Rn×c gener-
ated via Laplacian eigenmap [Belkin and Niyogi, 2001], i.e.,
minUT

v Uv=Ic×c
Tr(UT

v LSUv), on the similarity matrix Sv ∈
Rn×n constructed from Xv, where c is the number of clus-
ters and LS ∈ Rn×n is the Laplacian matrix of S. Now we
start the derivation of proposed GSPL model as Fig. 1 shows.
At first, we map Xv ∈ Rn×dv as XvWv ∈ Rn×m, where
m is the reduced dimensionality and Wv ∈ Rdv×m is the
projection matrix. Then to integrate the information among
multiple views, we explore a center

∑s
v=1 pvXvWv of mul-

tiple XvWv ∈ Rn×m, where pv is the flip and scale operator
variable of v-th view. Afterwards, we map

∑s
v=1 pvXvWv

and multiview spectral embeddings {Ug}sg=1 into Reproduc-
ing Kernel Hilbert Spaces (RKHSs), and enclose them with
HSIC measure as follows:

max
p,z,{Wv}sv=1

s∑
g=1

zg ·Tr
(
HKX̄HKUg

)
s.t. Wv ∈Mv, X̄ =

s∑
v=1

pvXvWv,

‖p‖2 = 1, ‖z‖2 = 1, z > 0, (4)

where Mv is the sparse constraint of Wv, KX̄ and KUg

are kernel matrices, zg is the weight for the HSIC mea-
sure between X̄ =

∑s
v=1 pvXvWv and Ug, and ‖z‖2 =

1, z > 0 is the normalized constraint. In this paper, we
set the kernel as the inner product, i.e., KX̄ = X̄X̄T =
(
∑s

v=1 pvXvWv)(
∑s

v=1 pvXvWv)
T and KUg = UgU

T
g ,

then problem (4) can be written as

max
p,z,{Wv}sv=1

s∑
g=1

zg · ‖UT
g H

s∑
v=1

pvXvWv‖2F

s.t. Wv ∈Mv, ‖p‖2 = 1, ‖z‖2 = 1, z > 0. (5)

In problem (5), p considers the flip and scale transforma-
tion when integrating multiple XvWv, and z considers the
differences when approximating

∑s
v=1 pvXvWv to multiple

spectral embeddings. These two variables capture the differ-
ences among multiple views comprehensively, which handles
the IC problem effectively. Now we consider designing the
sparse constraint Wv ∈ Mv. At first, we concentrate all pro-
jection matrices into Ŵ = [W1; . . . ;Ws]

T ∈ Rd̂×m, where
d̂ =

∑s
v=1 dv, then constrain Ŵ via `2,0-norm for group-

sparsity. By this way, problem (5) can be improved as

max
p,z,{Wv}sv=1

s∑
g=1

zg · ‖UT
g H

s∑
v=1

pvXvWv‖2F

s.t. Ŵ = [W1; . . . ;Ws]
T, ŴTŴ = Im×m,

‖Ŵ‖2,0 = k, ‖p‖2 = 1, ‖z‖2 = 1, z > 0, (6)

where 1k > m is the number of selected features. In prob-
lem (6), according to ‖Ŵ‖2,0 = k, the group-sparsity of
each Wv is also guaranteed and the number of 0 rows is de-
termined adaptively from the perspective of the whole Ŵ,
which handles the SF and GS problems effectively. So far,
the final version of GSPL model is obtained as problem (6),
which handles the IC, SF and GS problems effectively. More
importantly, it is obvious to observe that except for m and
k brought by multiview feature selection task, the proposed
GSPL model does not bring any extra hyper-parameter, then
the SC problem is also handled thoroughly.

3.2 Optimization for GSPL Model
Since problem (6) contains three variables, including p, z and
W, we consider optimizing them alternatively.
Update p and fix others. When W and z are fixed, prob-
lem (6) becomes

max
‖p‖2=1

Tr

(
Û(

s∑
v=1

pvXvWv)(
s∑

v=1

pvXvWv)
T

)
, (7)

where Û =
∑s

g=1 zgH
TUgU

T
g H. Let Av = ÛXvWv,

Bv = XvWv, then problem (7) becomes

max
‖p‖2=1

Tr

(
(

s∑
v=1

pvAv)(
s∑

v=1

pvBv)
T

)
. (8)

For convenience, we denote Â = [Vec(A1), . . . ,Vec(As)],
B̂ = [Vec(B1), . . . ,Vec(Bs)] ∈ Rnm×s, where Vec(·) is
the column-based matrix vectorization operator. Then prob-
lem (8) can be rewritten as the following form:

max
‖p‖2=1

Tr
(
pTB̂TÂp

)
. (9)

The solution p of problem (9) can be formed as the eigenvec-
tors corresponding to the s largest eigenvalues of B̂TÂ.
Update z and fix others. When W and p are fixed, prob-
lem (6) becomes

max
‖z‖2=1,z>0

s∑
g=1

zg · ‖UT
g H

s∑
v=1

pvXvWv‖2F. (10)

Considering the term ‖UT
g H

∑s
v=1 pvXvWv‖2F ≥ 0, we

have the following derivations according to Cauchy-Schwarz
inequality [Steele, 2004]:

s∑
g=1

zg · ‖UT
g H

s∑
v=1

pvXvWv‖2F

(a)

≤

√√√√( s∑
g=1

‖UT
g H

s∑
v=1

pvXvWv‖4F

)(
s∑

g=1

z2g

)

=

√√√√ s∑
g=1

‖UT
g H

s∑
v=1

pvXvWv‖4F. (11)

1k and m are two intrinsic parameters brought by projection-
based feature selection task. In our model, we set m 6 k for the
correction of the `2,0-norm optimization.
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Considering ‖z‖2 = 1, the equality in (a) holds when

zg =
‖UT

g H
∑s

v=1 pvXvWv‖2F√∑s
g=1‖UT

g H
∑s

v=1 pvXvWv‖4F
, (12)

which is the closet solution of problem (10).
Update {Wv}sv=1 and fix others. When p and q are fixed,
problem (6) can be written as

max
ŴT Ŵ=Im×m,‖Ŵ‖2,0=k

s∑
g=1

zg · ‖UT
g HX̂P̃Ŵ‖2F, (13)

where X̂ = [X1, . . .Xs] ∈ Rn×d̂, P̃ = diag(p̃) ∈ Rd̂×d̂ is
a diagonal matrix and p̃ = [p11d1 ; . . . ; ps1ds ] ∈ Rd̂ is the
diagonal vector of it, diag(·) is the vector-diagonal operator.
Denote Eg = UT

g HX̂P̃, problem (13) can be written as

max
ŴTŴ=Im×m, ‖Ŵ‖2,0=k

s∑
g=1

zg ·Tr
(
ŴTET

g EgŴ
)
. (14)

Further, we denote SE =
∑s

g=1 zgE
T
g Eg + λIm×m, where

λ guarantees that SE is positive semi-definite, then prob-
lem (14) can be written as

max
ŴTŴ=Im×m, ‖Ŵ‖2,0=k

Tr
(
ŴTSEŴ

)
, (15)

which is NP-hard, then we consider to solve it into two
cases. At first, we consider the case rank(SE) 6 m. Since
‖Ŵ‖2,0 = k, suppose 2q ∈ Ind(k, d̂) is the Rk indicator
vector of non-sparse rows of Ŵ, then Ŵ can be decom-
posed into Ŵ = BD. Wherein, B = Π(q) ∈ {0,1}d̂×k,
whose 〈u, v〉-th element buv = 1 only if u = qv, and Π(·) is
the mapping function Ind(k, d̂) → {0,1}d̂×k; D ∈ Rk×m

and the u-th row of D is the qu-th row of Ŵ, and naturally
DTD = Im×m. Then problem (15) can be written as the
following problem w.r.t. B and D:

max
B=Π(q),q∈Ind(k,d̂),DTD=Im×m

Tr
(
DTBTSEBD

)
, (16)

where the optimal B = Π(q̃), where q̃ ∈ Ind(k, d̂) is
the indicate vector of the first k largest values of the diag-
onal vector of SE. Then in problem (16), the solution D
can be formed by the eigenvectors corresponding to first-m
largest eigenvalues of BTSEB. Finally, Ŵ can be calcu-
lated as BD. More details about this solution can be re-
ferred to supplementary material. Then we consider the case
rank(SE) > m. In this case, we consider utilizing the fa-
mous Majorize-Minimization (MM) framework. Suppose the
current solution is Ŵ0, via observing that ŴT

0 SEŴ0 =

ŴT
0

(
SEŴ0(Ŵ

T
0 SEŴ0)

†ŴT
0 SE

)
Ŵ0, where (·)† is the

2Ind(k, d̂) is a Rk indicator vector, which selectes k elements
from {1, . . . , d̂} as ascending order and the elements are not dupli-
cated. For example, Ind(2, 3) can be {1, 2}, {1, 3}, {2, 3}.

Algorithm 1: The Algorithm for Solving problem (6)

Input: X ∈ Rn×d̂, {Ug}sg=1, d̂, k, m
Initialization: p, q, Ŵ = [W1; . . . ;Ws]

T.
while not converge do

Update p via solving problem (9).
Update z via Eq. (12).
if rank(SE) 6 m then

Update B and D via solving problem (16).
Update Ŵ via Ŵ = BD.

else
while not converge do

Set Ŵ0 by current Ŵ.
Update Ŵ via solving problem (17).

Output: p, z, {W1, . . . ,Ŵs}.

Moore-Penrose inverse operator, and considering the condi-
tions of MM framework, we guess the following surrogate
problem of problem (15) based on MM framework:

max
Ŵ

Tr
(
ŴT

(
SEŴ0(Ŵ

T
0 SEŴ0)

†ŴT
0 SE

)
Ŵ
)

s.t. ŴTŴ = Im×m, ‖Ŵ‖2,0 = k, (17)

with the vital property as the following remark:
Remark 1. Suppose that the objective functions of prob-
lem (15) and problem (17) are JR(Ŵ) and JS(Ŵ) respec-
tively, at any point ŴTŴ = Im×m, ‖Ŵ‖2,0 = k, we have
JR(Ŵ) > JS(Ŵ) and JR(Ŵ0) = JS(Ŵ0).

Then we can conclude that problem (17) can be a surro-
gate problem for problem (15). The proof of Remark 1 is
provided into supplementary material. Afterwards, we focus
on the surrogate problem, i.e., problem (17), and propose the
following two observations: 1) Since rank(Ŵ0) 6 m, we
have rank

(
SEŴ0(Ŵ

T
0 SEŴ0)

†ŴT
0 SE

)
6 m. 2) Con-

sidering SE is positive semi-definite so that SE = GGT,
and the fact that A† = A†AA†, we have

SEŴ0(Ŵ
T
0 SEŴ0)

†ŴT
0 SE = SEŴ0(Ŵ

T
0 SEŴ0)

†

(ŴT
0 SEŴ0)(Ŵ

T
0 SEŴ0)

†ŴT
0 SE = ĜĜT. (18)

where Ĝ = SEŴ0(Ŵ
T
0 SEŴ0)

†ŴT
0 G, then we have

SEŴ0(Ŵ
T
0 SEŴ0)

†ŴT
0 SE is positive semi-definite. Then

problem (17) can be solved as the same way of problem (15)
in the case of rank(SE) 6 m. For simplicity of expression,
we do not provide the detailed optimization procedures. The
algorithm to solve problem (6) is summarized in Algorithm 1.
Convergence guarantee. Algorithm 1 optimizes p, z and
Ŵ via solving the subproblems iteratively, wherein p-
subproblem and z-problem contain closed solutions. For
Ŵ, when rank(SE) 6 m, Ŵ has closed solution; when
rank(SE) > m, the convergence of the subproblem (15) is
guaranteed by MM framework. Therefore, the objective value
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Figure 2: Illustration of the discriminative and noisy features.
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Figure 3: Visualization of the learnt projection matrices on synthetic
dataset. Dark blue means the element is 0.

of problem (6) will increase when optimizing any one of the
subproblems, which means the objective value of problem (6)
will monotonically increase per iteration until convergence.

Computational cost. Update p and z: O(n2(m + c)s +

nkms); Update Ŵ: O((n2 + nd̂ + d̂2)cs + (k3 + d̂km)t1);
The whole computational cost can be calculated by:
O(((n2c + d̂2c + n2m+ nkm)s + (d̂km + k3)t1)t2) where
t1, t2 are the iterations of the inner and outer loops separately.

4 Experiments
Evaluations on synthetic dataset. This part aims to an-
swer the following questions intuitively: Can GSPL model
select the discriminative features on the multiview data with
noise features and noise views? To this end, we carefully de-
sign a synthetic dataset which contains 4 views, each of which
has 600 samples with 3 clusters. As Table 1 shows, in view
1-3, the 1-3 features are discriminative and the other features
are noisy. View 4 is chaotic in which all the features are noisy.
Fig. 2 intuitively shows the discriminative and noisy features,

Features View-1 View-2 View-3 View-4
Discriminative 1-3 1-3 1-3 —
Noise 4-5 4-6 4-6 1-3

Table 1: The descriptions of designed synthetic datasets.

Datasets ORL Caltech101-7 Reuters COIL20
View-1 GIST(512) Gabor(48) French(2000) INTE(1024)
View-2 LBP(59) WM(40) German(2000) LBP(3304)
View-3 GIST(512) CENT(254) Spanish(2000) GIST(6750)
View-4 HOG(864) HOG(1984) Italian(2000) —
View-5 CENT(254) GIST(512) English(2000) —
View-6 — LBP(928) — —
Total Dim 1689 3766 10000 11078
Class 40 7 6 20
Sample 400 1474 1200 1440
Type Image Image Text Image

Table 2: The descriptions of real datasets.

where (b) and (d) are respectively the projections of the data
in (a) and (c). In Fig. 2-(a) and -(b), all the three features are
discriminative, and in Fig. 2-(c) and -(d), all the three features
are not discriminative. On the designed synthetic dataset, we
run GSPL algorithm to select 9 features from 20 features via
setting m as 3, and the visualization of the the learnt projec-
tions {Wv}sv=1 are plotted into Fig. 3. From the results, we
can find that the non-sparse rows of each Wv correspond to
the discriminative features of this view. Particularly in chaotic
view 4, GSPL ignores all the features, which means GSPL
can resist noisy views. Besides, we record the learnt z, i.e.,
z1 = 0.5065, z2 = 0.6165, z3 = 0.6041, z4 = 0.0013,
which satisfies the designed criterion that views 1-3 are nor-
mal and view 4 is chaotic. Thus we can conclude that the
variable z has the ability to resist noisy views.

Evaluations on real datasets. In this part, we evaluate the
clustering performance of proposed method GSPL on 4 real
multi-view datasets, including ORL3, Caltech101-7 [Li et
al., 2004], Reuters4, COIL205. The details are available
in Table 2. Moreover, We employ 8 SOTA models as com-
petitors, including 3 series models (i.e., SOCFS [Han and
Kim, 2015], SOGFS [Nie et al., 2016], URAFS [Li et al.,
2018]), and 5 parallel models (i.e., MVUFS [Qian and Zhai,
2014], RMFS [Liu et al., 2016], ASVW [Hou et al., 2017],
CGMV-UFS [Tang et al., 2018], ACSL [Dong et al., 2019]).
We evaluate the clustering performance via K-means on the
selected features of original data, and the performance is mea-
sured by ACCuracy (ACC) and Normalized Mutual Informa-
tion (NMI) [Strehl and Ghosh, 2002]. For fair comparison, all
the parameters are set according to the suggestions in original
articles, and the total reduced dimensionality m in our GSPL
is empirically selected around 2k/3 to k, and the number of
selected features is set to d̂ ∗ r, where r is the rate of the se-
lected features, traversed from 0.1 to 0.5 with 0.05 as interval.
To alleviate the random effect caused by K-means, we run it
for 30 times and report the mean in Fig. 4.

3http://www.uk.research.att.com/facedatabase.html
4https://archive.ics.uci.edu/ml/datasets.html
5http://www.cs.columbia.edu/CAVE/software/softlib/
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(b) ORL-NMI
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(c) Caltech101-7-ACC
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(d) Caltech101-7-NMI
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(e) Reuters-ACC
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(g) COIL20-ACC
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(h) COIL20-NMI

Figure 4: Comparison of clustering performance (ACC and NMI) on 4 datasets with different rates of selected features.
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Figure 5: T-SNE visualization on COIL20 dataset.

Performance evaluation. In Fig. 4: 1) GSPL achieves over
4.84%, 4.58%, 1.28% and 7.51% higher ACC than the second
highest results on the 4 datasets, and obtains around 2.39%,
3.41% and 3.40% larger NMI than the best results of com-
petitors on ORL, Reuters and COIL20 datasets; 2) GSPL
outperforms others when the rate of the selected features is
small (i.e. 10% or 15%) in all the cases, which indicates that
GSPL can achieve better performance than others with fewer
selected features and select more discriminative features.
TSNE visualization. In this part, we visualize the origi-
nal concentrated feature matrix X̂ = [X1, . . .Xs] and learnt
X̃ ∈ Rn×k via T-SNE on them to obtain the low-dimensional
representations of them. The results are plotted in Fig. 5. It is
obvious that via group-sparse projection and adaptive fusion,
the separability of data has superb improvement.
Convergence analysis. In this part, we empirically show
the convergence behavior of Algorithm 1. For all the datasets,
we set k and m to 0.5 ∗ d̂ and 2k/3, respectively. The conver-
gent curves are plotted in Fig. 6, from which we can see that
Algorithm 1 can converge rapidly (within 10 iterations).

5 Conclusion
This paper proposed a GSPL model for multi-view feature se-
lection. The three properties of our model, including Strict-
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Figure 6: The convergent curves of GSPL model. Ratio is the pro-
portion of each objective value in maximum objective value.

ness, Adaptivity and Succinctness, effectively handle the four
key problems of multiview feature selection task, including
IC, SF, GS, SC. Moreover, an efficient algorithm with rigor-
ous convergence guarantee is innovatively proposed to opti-
mize GSPL model. Sufficient experimental results verify the
promising performance of the proposed method.
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