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Abstract

Domain adaptation is critical for learning transfer-
able features that effectively reduce the distribution
difference among domains. In the era of big data,
the availability of large-scale labeled datasets moti-
vates partial domain adaptation (PDA) which deals
with adaptation from large source domains to small
target domains with less number of classes. In the
PDA setting, it is crucial to transfer relevant source
samples and eliminate irrelevant ones to mitigate
negative transfer. In this paper, we propose a deep
reinforcement learning based source data selector
for PDA, which is capable of eliminating less rele-
vant source samples automatically to boost existing
adaptation methods. It determines to either keep
or discard the source instances based on their fea-
ture representations so that more effective knowl-
edge transfer across domains can be achieved via
filtering out irrelevant samples. As a general mod-
ule, the proposed DRL-based data selector can be
integrated into any existing domain adaptation or
partial domain adaptation models. Extensive exper-
iments on several benchmark datasets demonstrate
the superiority of the proposed DRL-based data se-
lector which leads to state-of-the-art performance
for various PDA tasks.

1 Introduction

Deep neural networks have achieved remarkable performance
on a variety of machine learning tasks. Generally, in learn-
ing theories, it is assumed that training and testing data are
from the same distribution. However, data annotation for ev-
ery new task can be impractical due to the prohibitive cost.
Instead, it is preferable to train a model by leveraging mas-
sively available labeled data from related yet distinct do-
mains. Therefore, domain adaptation (DA) techniques have
been introduced to bridge domains of different distributions
and enable knowledge transfer from label-rich source domain
to label-scarce target domain.

Deep domain adaptation methods attempt to improve the
learning of domain-invariant feature representations by em-
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bedding distribution matching modules into the network ar-
chitectures. So far, a variety of distribution similarity mea-
sures have been incorporated into the network architecture to
learn transferable representations [Long e al., 2017]. Mean-
while, a collection of adversarial learning based domain adap-
tation methods have been proposed, which aligns domain dis-
tributions via minimizing an approximate discrepancy in an
adversarial training setting [Ganin and Lempitsky, 2014].

Currently, most deep domain adaptation methods assume
that the source and target domains share an identical label
space. Nevertheless, in real-world applications, it is often
nontrivial to find source domains with the same label spaces
as target domains of interest. Instead, due to the availabil-
ity of large-scale labelled datasets, such as ImageNet [Rus-
sakovsky et al., 2015], a more practical yet more challenging
scenario is referred to as partial domain adaptation (PDA),
which relaxes the constraint of shared label spaces. It enables
knowledge transfer from source domains with more classes
to target domains with fewer classes without any knowledge
on the size and categories of the target classes.

The PDA problems cannot be addressed by simply aligning
the two domains because the knowledge migrated from irrele-
vant source classes can result in negative transfer. To mitigate
negative interference caused by irrelevant source samples,
several pioneering PDA methods have been proposed to up-
weight relevant source instances while down-weighting out-
lier source samples in domain adversarial networks [Cao et
al., 2018a; Cao et al., 2018b]. In recent years, deep reinforce-
ment learning (DRL) methods have also been implemented to
learn source data selection policies. The Reinforced Trans-
fer Network (RTNet) proposed in [Chen er al., 2020b] adopts
an actor-critic algorithm [Konda and Tsitsiklis, 2000] to op-
timize the source data selector, while the Domain Adversar-
ial Reinforcement Learning (DARL) framework proposed in
[Chen et al., 2020a] utilizes Deep Q-Network (DQN) [Mnih
et al., 2015] to learn source data selection policies.

In this paper, we propose a novel deep reinforcement learn-
ing based source data selector (DRL-DS) to boost knowl-
edge transfer in partial domain adaptation. The DRL-based
data selector is developed to automatically filter out irrelevant
source samples based on their transferability. Since forcefully
aligning target classes to outlier source classes can lead to
negative transfer [Cao er al., 2018al, only the selected source
samples will be used to train an adaptive classifier. During
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training, the DRL-DS model determines whether to select
the source samples based on their feature representations. In
the meantime, a (partial) domain adaptation model is trained
to reduce the domain shift between the target and selected
source samples while it is also employed to calculate the re-
ward signals for the DRL-DS module. In this way, the DRL
and DA models are jointly trained to leverage each other’s
capability for better knowledge transfer across domains.

Compared to conventional PDA algorithms, the integra-
tion of the DRL-DS module can lead to improved knowledge
transfer from one domain to another through combining RL
and DA techniques. Moreover, our DRL-based source data
selector also addresses the limitations of existing DRL-based
PDA algorithms. Since RTNet utilizes an on-policy DRL al-
gorithm, it has to re-collect new samples every time the pol-
icy is updated. Besides, it also requires additional generators
to calculate reconstruction error based rewards. In contrary,
we employs the Dueling Double Deep Q-Network [Wang et
al., 2016], which is an off-policy DRL algorithm, to learn the
source data selection policies in a more efficient way. More-
over, we also design the reward functions meticulously so that
better performance can be achieved without any additional
network block. Although DARL also employs an off-policy
DRL algorithm, it relies on domain adversarial learning to
calculate rewards. In contrast, the proposed DRL-DS module
is a general paradigm that can be integrated into any (partial)
domain adaptation method.

The main contributions of our work are as follows:

* We have proposed a novel deep reinforcement learning
based source data selector to boost knowledge transfer
in partial domain adaptation. The proposed DRL-based
source data selector is capable of mitigating negative
transfer through eliminating irrelevant samples automat-
ically. Moreover, it is a general paradigm that can be
integrated into any (partial) domain adaptation method.

A novel reward function is meticulously designed to bet-
ter guide the learning without introducing any additional
network block or relying on any network architecture.

Extensive experiments on benchmark datasets have
demonstrated the remarkable superiority of the proposed
DRL-based source data selector. By adopting it, the
PDA methods can outperform the state-of-the-art ap-
proaches by a large margin.

2 Related Work
2.1 Domain Adaptation

Domain adaptation is a branch of transfer learning which
bridges domains of different distributions. The key challenge
of DA is to reduce the distribution shift across different do-
mains. Recently, DA has been combined with deep neural
networks to minimize the statistical discrepancies between
the deep embeddings of source and target domains. To be-
gin with, a variety of distribution similarity measures have
been incorporated into the network architecture and mini-
mized along with the standard source classification loss for
end-to-end learning of transferable representations [Long et
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al., 2015; Long et al., 2016; Long ef al., 2017]. Distinc-
tively, in [Xu ef al., 2019], it is revealed that features with
larger norm are more transferable so that the Stepwise Adap-
tive Feature Norm (SAFN) method has been proposed to pro-
gressively enlarge feature norms of the two domains.

Another category of DA methods introduce domain clas-
sifiers to learn transferable features in adversarial settings.
Generally, the domain discriminator is to differentiate fea-
tures of different domains while the feature extractor is to de-
ceive the domain discriminator [Ganin and Lempitsky, 2014;
Tzeng et al., 2017].

2.2 Partial Domain Adaptation

To address PDA problems, a number of pioneering methods
have been proposed to up-weight relevant source instances
while down-weighting outlier source samples [Cao et al.,
2018a; Cao et al., 2018b; Zhang et al., 2018; Li et al., 2020b;
Li et al., 2020a; Jing et al., 2020; Kim and Hong, 2021].
For instance, Selective Adversarial Network (SAN) [Cao et
al., 2018a] introduced multiple discriminators to realize fine-
grained adaptation. It weighted the source instances accord-
ing to their class probabilities predicted by the source clas-
sifier. In [Cao et al., 2018b], Partial Adversarial Domain
Adaptation (PADA) [Cao er al., 2018b] used only one do-
main adversarial network and added the predicted target label
probabilities to the source classifier as the class-level weights.
Rather than using class-level weight, Importance Weighted
Adversarial Nets IWAN) [Zhang er al., 2018] introduced two
domain classifiers so that the outputs of a second domain clas-
sifier was adopted to weight source examples. Particularly,
Example Transfer Network (ETN) [Cao et al., 2019] calcu-
lated the weights of source samples according to their similar-
ities based on a discriminative domain discriminator, and in
the meantime down-weighted irrelevant source samples when
updating the source classifier.

Recently, reinforcement learning algorithms have also
been applied to learn source data selection policies for partial
domain adaptation tasks. In [Chen ef al., 2020al, Chen et al.
proposed the Domain Adversarial Reinforcement Learning
(DARL) method to learn data selection policies automatically
through DQN. The calculation of their reward signals relied
on the domain adversarial learning framework. In [Chen et
al., 2020b], Chen et al. introduced the Reinforced transfer
network (RTNet) to eliminate outlier source classes through a
reinforced data selector while combining both high-level and
pixel-level information. These two pioneering DRL-based
PDA approaches have validated the feasibility of applying
RL in the context of PDA. In this work, we propose a novel
DRL-based source data selector to boost knowledge trans-
fer in partial domain adaptation and adopt a Dueling Double
DQN model to verify its feasibility.

3 Method

3.1 Problem Statement

The partial domain adaptation scenario constitutes source do-
main D, = {(x§,y)},, which has n labeled examples

associated with |Cy| classes, and the target domain D; =
{xz};z | Which has n; unlabelled examples associated with
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|C:| classes. The source domain subsumes the target domain
so that C; C C,. Since the two domains are drawn from dif-
ferent probability distributions p and ¢, p # ¢ and p¢, # q,
where pc, represents the distribution of source data in the tar-
get label space. Direct alignment of these two distributions
can result in negative transfer because pc,\c, and g are not
overlapped, where pc_\¢, indicates the distribution of source
instances in the outlier categories. Therefore, it is important
to eliminate irrelevant source samples in PDA tasks while re-
ducing the distribution shift between p¢, and q.

The objective of this paper is to develop a DRL-based
source data selector (DRL-DS) to boost knowledge transfer
in PDA. As depicted in Fig. 1, the proposed DRL-DS module
is a general paradigm that can be integrated into any (partial)
domain adaptation method. In this paper, it is integrated into
a domain adaptation method (SAFN) [Xu et al., 2019] and
a partial domain adaptation method (ETN) [Cao et al., 2019]
respectively to fully prove its effectiveness and generalization
capability. The objective of the DRL-DS module is to learn
data selection policies automatically so that negative transfer
can be mitigated through eliminating outlier source samples.
In the meantime, the (partial) domain adaptation module aims
to learn domain-invariant feature representations.

3.2 DRL-DS Module

In this paper, the source data selection task is modeled as a
Markov Decision Process (MDP) defined by a tuple M =
(S, A, R, P,7), where S, A, R, P, ~ denote the state space,
action space, immediate reward, state transition function, and
discount factor, respectively. At time step ¢, an action a; €A
is executed based on the current state s; €S. The DRL agent
then receives a reward R(s, a;), and transits to a new state
st4+1- A policy 7(a|s) which specifies the mapping from a
state s to an action a is assessed by the Q-value function de-
fined as:

thR(st,at)\so =s,a0=al. (1)
t=0

Q" (s,a) =FE~

The goal is then to maximize the expectation of cumulative
reward, which can be solved by the Q-learning algorithm
shown in the following:

Q" (st,a¢) = R(s¢,ar) + ’Y{Bii{Q(st—i—lvaH—l)- ()

Thereby, the optimal policy can be derived as 7*(s) =
argmaxQ™* (s, a).

a

In this paper, we employ the Dueling Double Deep Q-
Network to figure out the optimal data selection policies and
verify the feasibility of the proposed DRL-DS based PDA
framework. Given a batch of source data {x5};", = Xg,
where n; and b denote the batch size and ID respectwely, the
feature representations of these source samples F'(X7) can be
obtained, where F' indicates the feature extractor in the (par-
tial) domain adaptation module. The DRL-DS module then
maps F(X3) to a series of actions {af};*; = Aj, which in
turn weights the source instances while updating the parame-
ters of the (partial) domain adaptation network. Meanwhile,
the rewards of the actions { R };"" | are determined according
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to the transferability of the source samples. In the following,
the state, action, reward, and training of our DRL-DS module
are introduced in detail.

State. Feed a batch of n; source samples to the feature ex-
tractor of the (partial) domain adaptation module, a number
of ny, features F3(X3) = [Fy(x1),- -+, F4(x;,)] can be gen-
erated, where Fi(x?) represents the feature vector extracted
from source instance x; at time step ¢. In the DRL-DS mod-
ule, a state is defined as one source feature vector Fy(x;) and
at each state, an action is taken to determine whether to keep
or discard the corresponding source sample. In this way, the
weights of the n;, source instances can be derived via passing
the n, source feature vectors to the DRL-DS module succes-
sively. The (partial) domain adaptation network is then opti-
mized based on the selected source samples so that a number
of ny new features Fyq(X;) can be generated by the up-
dated feature extractor. For a specific source sample 3, if it
is selected at time step ¢ while the episode is not completed,
its next state will be Fyyq(x?). Otherwise, a terminate state
will be triggered. Therefore, each batch of source samples
are trained 7' times where 1" represent the episode length and
at each training step, it can generate n; experiences.

Action. In our DRL-DS module, the action space is binary
and each action ai € {0, 1} denotes whether a source sample
is retained or discarded. Specifically, ai = 1 means to keep
source sample z7 while a; = 0 means to eliminate it. The
output of the DRL Network is a two-dimensional Q-value
vector mapped from the input state through fully connected
layers. The optimal action at state F;(x}) is then determined
as:

* = argmaxQ(Fi(x3),a). 3)

Reward. The reward function is shaped to provide feed-
back signals and thereby guide the learning of source data
selection policies. As the objective is to select source sam-
ples that are more relevant to the target domain, we evaluate
the transferability of source instances by measuring their sim-
ilarity to the target instances and design the reward function
based on this transferability. At each training step, in addition
to source data, a batch of 7y, target samples {x’ }ji L =X

are also fed into the (partial) domain adaptation module.
Similarly, ny, feature vectors of these target data F;(X!) =
[Fy(x}), -, Fi(x},)] can be obtained through the feature
extractor. The relevance of each source instance to the tar-
get domain can then be estimated by measuring the similarity
between its feature vector and those of the target batch. To
begin with, the transferability of each source sample to the
target domain is evaluated through calculating two functions,
ie.,

Fy(x7) - Fi(x t')

Di1 = min ) “4)
reeRhecy TR, TR I,
and
F — F
D2 = Z | #( + (55 ) m| 5)
Ft(xt)eFt Xty |F; m| + [ Fy(xE)ml
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Figure 1: DRL-based data selector for partial domain adaptation. The DRL-DS module eliminates irrelevant source samples based on the
estimated Q-values while the (partial) domain adaptation module learns domain-invariant feature representations using the target and selected
source data. The reward signals are determined based on the relevance of the source samples to the target domain.

The first function is based on the cosine distance. It is a mea-
sure of dissimilarity between two vectors of an inner prod-
uct space and is invariant to scaling. The second function is
based on the Canberra distance. It is a sensitive metric which
measures fraction differences between point pairs in a vector
space. The smaller the distance values, the greater the match
between the feature vectors. Hence, the relevance of each
source sample is determined considering both angle and dis-
tance between its feature vector and those of the target batch.
Based on these two measures, the reward of taking an action
a; is designed as:

R(F(x}).a3) = M(A® B — o) + Ma(4 C — \a), (6)
(a7 == 1),

=(D? > L Z D?) are three

where @ is the exclusive -or operation, A =
B = (D} >+ Z D}), C

boolean functlons and A, A2, A3, A4 denote four constants
to determine the range of the reward. For each measure, a
positive value will be obtained if a source is selected while
it exhibits higher relevance to the target domain. Similarly, a
positive value will also be obtained if a source is eliminated
while it exhibits lower relevance to the target domain. Oth-
erwise, a negative value will be triggered. In our DRL-DS
module, the reward signals are bounded between -1 and 1 to
provide explicit guidance to the agent so that it can learn to
distinguish good actions from bad ones efficiently.

Training. Our DRL-DS module maintains two deep
neworks, i.e., an online network with parameters 6 and a sep-
arate target network with parameters 6~ . During training, the
online network is updated constantly while the target network
is softly updated via polyak averaging to stabilize the train-
ing. Instead of using the e-greedy strategy for exploration, our
model implements NoisyNets [Fortunato et al., 2017] rather
than conventional fully connected layers to achieve more ef-
ficient exploration in a consistent way. A linear layer can be
expressed as y = wx + b, where x, y, w and b denote the in-
put, output, weight matrix and bias, respectively. To achieve
exploration, the uncertainty can be added by factorized Gaus-
sian noises so that the weight matrix can be re-formatted as:

Wij = Mzg + Uw ( )f(ej)a (N

and the corresponding bias can be re-written as:
bj = u? +05f(e)), ®)
where f(e) = sgn(e)y/|e], p¢ s O J, ,uj, aj are network

parameters, and ¢;, €; are random noises. In this way, the
state value V'(s;) and the advantage A(s;,a;) are estimated
through noisy fully connected layers and thereafter combined
to produce the Q-value using:

Q(Staat;9030V79A) = V(St;0079V) + A(Stvat;90701‘1)
1
- §ZA(St7a;GC,9A),
)

where ¢, 0y, 04 represent the parameters of the common
network, the state value stream and the advantage stream, re-
spectively. At each training step, n, new transitions are stored
in an experience replay buffer, and a random mini-batch of the
stored transitions is sampled from the buffer. The Q-value is
updated by minimizing the Huber loss between the estimated
Q-value Q(s¢, at; 0) and the target Q-value which is defined
as:

yr = R(st, a1) + ByQ(St41, argmaxQ(si+1, ar+1;0); 0~ ), (10)

a4l
where ~ is the discount factor and f3 is a binary value which
equals zero if the episode terminates at step t+1 or one oth-
erwise. It is worth mentioning that the proposed DRL-DS
model can be directly integrated with any DA method with-
out modifying either the DA or the DRL-DS model. This
is because the DRL-DS model regards source features as its
inputs and calculates rewards based on source and target fea-
tures, while feature extractor is general in all the DA models.

3.3 Domain Adaptation Module

In this paper, the proposed DRL-DS module is integrated with
both a domain adaptation method (SAFN) and a partial do-
main adaptation method (ETN) respectively to evaluate its
generalization capability.
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SAFN. Stepwise Adaptive Feature Norm (SAFN) learns a
feature extractor F' with parameters 0 and a classifier C' with
parameters ¢,. The parameters of C' are updated by mini-
mizing the softmax cross entropy loss on the selected source
samples. Meanwhile, in addition to the cross entropy loss,
the parameters of F' are also updated by enlarging the fea-
ture norms of both the target and the selected source samples.
Hence, SAFN is dedicated to solve the following optimiza-
tion problem:

ng

Qf, Zw (
+n Zw

S =1
+— ZLd

where y? is the one-hot label for x§, w(x$) € {0, 1} is the
binary weight of x; determined by the output action a; of the
DRL-DS module, h(a:) = (|||l 0 F)(x), b is the current pa-
rameters of F', Ar represents a positive residual scalar to con-
trol the norm enlargement, L4(-,-) denotes the Ly-distance,
and A is a hyperparameter to trade off the objectives.

ETN. Example Transfer Network (ETN) jointly learns
a domain-invariant classifier and a progressive weighting
scheme which quantifies the transferability of source sam-
ples. It learns a feature extractor F' with parameters 0y, a
classifier C' with parameters 6, and a discriminator D with
parameters 4. In addition, it also learns an auxiliary domain
discriminator D to quantify source samples’ transferability.
Combined with the DRL-DS module, the domain adaptation

network is updated through ;nlgl Ec—FEpand I%IIIE D, where
Y%

I)y3)
x5 00) + Ar, h(x3)) (1)

%:00) + Ar, h(x5)),

x7)),¥7)

Ng
(xi,yi)€Ds

+i S HCFE)),

(x],yJ)GDf
1
En=—— S s S
D= > wx)W(x;)log(D(F(x})))
(xi,y:)€Ds
DY
n

t
(x;,y;)ED:

12)

log(1 — D(F(x4))).

J

In Eq. 12, X is a trade-off parameter, w(x?) denotes the bi-
nary weight generated by the DRL-DS module and H(-) is
the entropy loss. In addition, W (x) is the weight generated
using the auxiliary discriminator of the ETN model so that:

W(x$) =1— D(F(x})). (13)

Generally, the value of D(F (x%)) will be smaller if a source
example is more probable to be in the shared label space.
Since D(F(x!)) is closer to one, the weights D(F(x!)) in
) = W(x )

each batch size are normalized as W (x; .
g W(x3)

”b
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4 Experiments

4.1 Setup

The proposed method is evaluated on three datasets.

Office-31 [Saenko et al., 2010] is a widely used domain
adaptation dataset containing 4,652 images in 31 categories
from three domains, i.e., Amazon (A), Webcam (W) and
DSLR (D). Following [Cao et al., 2018al, the same ten cate-
gories are selected as target domains to create six PDA tasks.

Office-Home [Venkateswara et al., 2017] is a more chal-
lenging dataset that contains about 15,500 images in 65 cate-
gories from four different domains, i.e., Artistic (Ar), Clipart
(Cl), Product (Pr), Real-World (Rw). Following the settings
in [Cao et al., 2018b], the first 25 categories in alphabetic or-
der are selected as target domains to create twelve PDA tasks.

VisDA2017 [Peng et al., 2017] is a large-scale dataset
which includes over 280,000 images across 12 categories and
aims to bridge the significant gap between synthetic and real
domains. Following the settings in [Cao er al., 2018b], we
select the first six categories in alphabetic order as target cat-
egories to create the Synthetic-12 — Real-6 task.

The DRL-DS module consists of one common fully con-
nected layer, two noisy fully connected layers for the state
value stream and two noisy fully connected layers for the
advantage stream. During training, the backbone network,
ResNet-50, is pre-trained on ImageNet while the other lay-
ers are trained from scratch. The DA module is trained via
SGD with a batch size of 32 and a learning rate of le-3. The
DRL-DS module is trained using Adam with a batch size of
32 and a learning rate of le-4. The episode length is set to
five. The discount factor in Eq. 10 is set to 0.9 and A1, A2, A3
and A4, in Eq. 6 are set to 0.2, 0.5, 1.8 and 0.5, respectively.
We compare the proposed method with a variety of state-of-
the-art methods. For all the baseline methods, we either refer
to the reported results in [Cao et al., 2019; Li et al., 2020b;
Chen et al., 2020b; Chen et al., 2020a; Xu et al., 2019,
Li et al., 2020a; Jing et al., 2020; Kim and Hong, 2021] or
calculate the average values of three runs using the original
code. The proposed methods are also trained three times to
calculate the average values.

4.2 Results and Discussions

The classification results on the six tasks of Office-31 are
shown in Table 1. It is observed that the two proposed meth-
ods significantly outperform most of the baseline methods
with average accuracies 97.21% and 98.41%, respectively.
Compared to SAFN and ETN, DRL-DS + SAFN and DRL-
DS + ETN achieve a 4.56% and a 4.18% improvement in
average accuracy, respectively. It is worth mentioning that
the DRL-DS + ETN method achieves state-of-the-art accu-
racy. By integrating the proposed DRL-DS module, the per-
formance of the (partial) domain adaptation methods are con-
sistently improved on all tasks by a large margin with similar
convergence speed, which convincingly demonstrates the sig-
nificance of the proposed DRL based source data selector.

In addition, it is noticed that DAN, DANN, ADDA
and RTN all lead to performance degradation compared to
ResNet. This is because direct aligning domains with differ-
ent label spaces can result in negative transfer. In contrast, the
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Method Office-31

A—W D—-W W—D A—D D—A W= A Avg
ResNet [He e al., 2016] 75.59 96.27 98.09 83.44 83.92 84.97 87.05
DAN [Long et al., 2015] 59.32 73.90 90.45 61.78 74.95 67.64 71.34
DANN [Ganin er al., 2016] 73.56 96.27 98.73 81.53 82.78 86.12 86.50
ADDA [Tzeng et al., 2017] 75.67 95.38 99.85 83.41 83.62 84.25 87.03
RTN [Long et al., 2016] 78.98 93.22 85.35 77.07 89.25 89.46 85.56
SAN [Cao er al., 2018a] 93.90 99.32 99.36 94.27 94.15 88.73 94.96
IWAN [Zhang et al., 2018] 89.15 99.32 99.36 90.45 95.62 94.26 94.69
PADA [Cao er al., 2018b] 86.54 99.32 100.00 82.17 92.69 95.41 92.69
DRCN [Li et al., 2020b] 90.80 100.00 100.00 94.30 95.20 94.80 95.90
DAPDA [Li et al., 2020al 95.06 100.00 100.00 92.15 95.13 97.40 96.62
DCDF [Jing er al., 2020] 95.93 99.66 100.00 98.09 95.09 95.51 97.38
AGAN [Kim and Hong, 2021] 97.28 100.00 100.00 94.26 95.72 95.72 97.16
RTNet [Chen er al., 2020b] 96.20 100.00 100.00 97.60 92.30 95.40 96.90
DARL [Chen et al., 2020a] 94.58 99.66 100.00 98.73 94.57 94.26 96.97
SAFN [Xu et al., 2019] 87.12 96.72 99.36 88.11 93.04 93.46 92.97
ETN [Cao et al., 2019] 88.59 99.89 99.36 89.17 94.68 95.06 94.46
DRL-DS + SAFN 96.61£1.18  100.00£0.0 100.00£0.0 9597+0.74 9537+0.06 95.30+0.11 97.21
DRL-DS + ETN 99.55+£0.20  100.00£0.0 100.00£0.0 98.52+0.37 96.24+0.18 96.17+0.16 98.41

Table 1: Classification Accuracy (%) for Partial Domain Adaptation on Office-31 Dataset (ResNet-50)

Method Office-Home
Ar — Cl Ar — Pr Ar - Rw C1 — Ar C1 = Pr C1 -+ Rw Pr — Ar Pr — CI Pr - Rw Rw — ArRw — C1Rw — Pr Avg
ResNet 46.33 6751 75.87 59.14 5994 6273 5822 41.79 7488 6740 48.18 7417 61.35
DANN 4376 6790 7747 6373 5899 67.59 56.84 37.07 7637 69.15 4430 7748 61.72
ADDA 4523 6879 7921 6456 60.01 6829 5756 38.89 7745 70.28 4523  78.32 62.82
RTN 4931 5770 80.07 63.54 6347 7338 65.11 4173 7532  63.18 43,57 80.50 63.07
SAN 4442 68.68 7460 6749 6499 77.80 59.78 4472 80.07 72.18 5021  78.66 65.30
IWAN 5394 5445 7812 6131 4795 6332 5417 52.02 8128 7646 56.75 8290 63.56
PADA 5195 67.00 7874 52.16 53.78 59.03 52.61 4322 7879 7373 56.60 77.09 62.06
DRCN 54.00 7640 83.00 62.10 6450 71.00 70.80 49.80 8050 77.50 59.10 79.90 69.00
DAPDA 5649 77.56 8029 6573 7152 7728 66.53 5596 85.65 77.02 60.82 84.82 71.64
DCDF 60.30 80.17 81.23 6749 6824 7604 6831 5505 8377 7539 5893 83.14 71.51
AGAN 56.36  77.25 85.09 7420 73.84 81.12 70.80 5152 8454 7897 56.78 8342 72.82
RTNet 63.20 80.10 80.70 66.70 69.30 7720 71.60 53.90 84.60 7740 5790 8550 72.30
DARL 5531 80.73 8636 6793 66.16 7852 68.74 5093 8774 7945 57.19 85.60 72.06
SAFN 60.82 79.37 8349 7414 7492 7937 7542 58.19 8292 7833 63.08 8229 74.36
ETN 5295 73.09 8378 70.00 6848 7749 68.66 4993 8198 76.61 54.67 81.34 69.92

6096 80.75 84.47 7551 75.82 80.05 7597 60.06 83.42 79.00 6434 83.21
DRL-DS + SAFN +0.15 +096 +£034 +1.01 =£0.78 +0.51 +046 =+1.14 +£035 £0.69 +0.54 =£0.32 75.30
55.10 75.82 864 7331 72.08 80.54 70.656 5230 8393 7897 57.55 83.60

DRL-DS + ETN +1.79 £2.12 +£040 +0.27 £055 =£1.58 4096 =+1.56 =+0.69 +£0.88 +0.59 £0.57 72:52

Table 2: Classification Accuracy (%) for Partial Domain Adaptation on Office-Home Dataset (ResNet-50)

PDA methods achieve better performance on most tasks since
their weighting schemes mitigate negative influence caused
by outlier source data. Therefore, it is crucial to eliminate
irrelevant source instances while aligning the two domains.

Different from Office-31, Office-Home and VisDa2017 are
larger and more challenging. The classification results on
these two datasets are shown in Table 2 and 3, respectively.
Similarly, DRL-DS + SAFN and DRL-DS + ETN outper-
form SAFN and ETN consistently on all tasks, respectively.
By incorporating the proposed DRL based source data se-
lector, DRL-DS + SAFN and DRL-DS + ETN gain 1.26%
and 3.72% improvement on the Office-Home tasks, respec-

tively, and gain 3.95% and 17.17% on the VisDa2017 task,
respectively. Therefore, it proves that the proposed DRL-DS
module is superior to filter out irrelevant source data auto-
matically and thereby boost knowledge transfer in PDA tasks.
Compared to existing RL-based PDA methods, our method is
capable of achieving better performance in an off-policy man-
ner without relying on any network architecture or requiring
any additional network block for reward calculation.

In addition, the fraction of shared classes in the selected
and eliminated source samples are depicted in Fig. 2(a).
Theoretically, source data in shared classes should be se-
lected while those in unshared classes should be eliminated
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(a) Fraction of shared classes
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(c) DRL-DS + SAFN on task
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(d) DRL-DS + ETN on task
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Figure 2: (a) Fraction of shared classes in the selected and eliminated source samples. (b)-(d) The t-SNE visualization on task Rw — Cl with
domain information, where the blue dots represent the source data and the red dots represent the target data.

Method Synthetic-12 — Real-6

ResNet [He et al., 2016] 45.26
DAN [Long et al., 2015] 47.60
DANN [Ganin et al., 2016] 51.01
RTN [Long et al., 2016] 50.04
SAN [Cao et al., 2018al 49.90
IWAN [Zhang et al., 2018] 48.60
PADA [Cao et al., 2018b] 53.53
DRCN [Li et al., 2020b] 58.20
AGAN [Kim and Hong, 2021] 67.71
DARL [Chen et al., 2020a] 67.77
SAFN [Xu et al., 2019] 65.27
ETN [Cao et al., 2019] 69.20

DRL-DS + SAFN 67.85+0.66

DRL-DS + ETN 81.08+0.96

Table 3: Classification Accuracy (%) for Partial Domain Adaptation
on VisDa2017 Dataset (ResNet-50)

during training. It is observed that the source samples se-
lected by the DRL-DS module mostly belong to the cate-
gories shared between the source and target domains, while
the instances eliminated by the DRL-DS module rarely be-
long to the shared classes. This demonstrates the capabil-
ity of the proposed DRL-based data selector to boost knowl-
edge transfer through filtering out irrelevant source instances.
Lastly, the t-SNE embeddings with domain information are
demonstrated in Fig. 2. The source and target representations
are in blue and red respectively. Before training, the source
and target correlated features are not well aligned and fea-
ture representations collide into a mess. After training, DRL-
DS + SAFN and DRL-DS +ETN are capable of aligning the
target samples to corresponding source domain clusters and
discriminating different classes in both domains, which mani-
fests the effectiveness of DRL-DS to boost PDA performance.

Despite the superiority of DRL-DS, the key limitation of
the proposed method is its sensitivity to hyper-parameters.
Specifically, the episode length of RL and the batch size of
DA are two important parameters. If the episode length is too
small, the RL task cannot be well formulated, and if it is too
large, the process can be redundant. For instance, DRL-DS
+ SAFN achieves an average accuracy of 96.61, 93.33 and
94.58 on the a—w task with the episode length being set to
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5, 2 and 10, respectively. Similarly, since the transferability
of source samples is only calculated based on a batch of data,
batch size can be a sensitive hyper-parameter, especially on
larger dataset. If the batch size is too small, the similarity
cannot be approximated accurately and stably, while it also
cannot be too large due to limited computational resources
and increased computational time. For instance, DRL-DS
+ SAFN achieves an average accuracy of 96.61, 95.25 and
86.67 on the a—w task with the batch size being set to 32,
8 and 4, respectively. Though these hyper-parameters can be
obtained empirically, we still aim to deal with this limitation
by redesigning the reward or the framework in the future.

5 Conclusion

In this paper, we propose a DRL-based source data selec-
tor to boost cross-domain knowledge transfer in PDA tasks.
The developed DRL-based data selector is a general paradigm
that enables automatic and efficient elimination of irrelevant
source instances to circumvent negative transfer and in turn,
boost positive transfer across domains. Experimental results
on different benchmark datasets have demonstrated the sig-
nificance of the proposed DRL-based data selector.
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