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Abstract
k-Nearest Neighbors is one of the most fundamen-
tal but effective classification models. In this paper,
we propose two families of models built on a se-
quence to sequence model and a memory network
model to mimic the k-Nearest Neighbors model,
which generate a sequence of labels, a sequence
of out-of-sample feature vectors and a final label
for classification, and thus they could also function
as oversamplers. We also propose ‘out-of-core’
versions of our models which assume that only a
small portion of data can be loaded into memory.
Computational experiments show that our models
on structured datasets outperform k-Nearest Neigh-
bors, a feed-forward neural network, XGBoost,
lightGBM, random forest and a memory network,
due to the fact that our models must produce addi-
tional output and not just the label. On image and
text datasets, the performance of our model is close
to many state-of-the-art deep models. As an over-
sampler on imbalanced datasets, the sequence to
sequence kNN model often outperforms Synthetic
Minority Over-sampling Technique and Adaptive
Synthetic Sampling.

1 Introduction
Recently, neural networks have been attracting a lot of at-
tention among researchers in both academia and industry,
due to their astounding performance in fields such as natu-
ral language processing and image recognition. Interpretabil-
ity of these models, however, has always been an issue since
it is difficult to understand the performance of neural net-
works. The well-known manifold hypothesis states that real-
world high dimensional data (such as images) form lower-
dimensional manifolds embedded in the high-dimensional
space [Carlsson et al., 2008], but these manifolds are tangled
together and are difficult to separate. The classification pro-
cess is then equivalent to stretching, squishing and separating
the tangled manifolds apart. However, these operations pose
a challenge: it is quite implausible that only affine transfor-
mations followed by pointwise nonlinear activations are suf-
ficient to project or embed data into representative manifolds
that are easily separable by class.

Therefore, instead of asking neural networks to separate
the manifolds by a hyperplane or a surface, it is more rea-
sonable to require points of the same manifold to be closer
than points of other manifolds [Olah, 2014]. Namely, the dis-
tance between manifolds of different classes should be large
and the distance between manifolds of the same class should
be small. This distance property is behind the concept of
k-Nearest Neighbor (kNN) [Cover and Hart, 1967]. Conse-
quently, letting neural networks mimic kNN would combine
the notion of manifolds with the desired distance property.

We explore kNN through two deep neural network mod-
els: sequence to sequence deep neural networks [Sutskever
et al., 2014] and memory networks [Weston et al.,
2015][Sukhbaatar et al., 2015]. A family of our models are
based on a sequence to sequence network. The new sequence
to sequence model has the input sequence of length 1 corre-
sponding to a sample, and then it decodes it to predict two
sequences of output, which are the classes of closest samples
and neighboring samples not necessarily in the training data,
where we call the latter as out-of-sample feature vectors. We
also propose a family of models built on a memory network,
which has a memory that can be read and written to and is
composed of a subset of training samples, with the goal of us-
ing it for predicting both classes of close samples and out-of-
sample feature vectors. With the help of attention over mem-
ory vectors, our new memory network model generates the
predicted label sequence and out-of-sample feature vectors.
Both families of models use loss functions that mimic kNN.
Computational experiments show that the new sequence to
sequence kNN model consistently outperforms benchmarks
(kNN[Cover and Hart, 1967], random forest[Breiman, 2001],
XGBoost[Chen and Guestrin, 2016], lightGBM[Ke et al.,
2017], a feed-forward neural network and a vanilla mem-
ory network) on structured datasets. The performance on
some commonly used image and text datasets is comparable
to many state-of-the-art deep models. We postulate that this is
due to the fact that we are forcing the model to ‘work harder’
than necessary (producing out-of-sample feature vectors).1

Different from general classification models, our models
predict not only labels, but also out-of-sample feature vec-
tors. Usually a classification model only predicts labels, but

1Please refer to http://dynresmanagement.com/uploads/3/5/2/7/
35274584/knn ijcai appendix.pdf for the appendix of our paper.
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as in the case of kNN, it is desirable to learn or predict the
feature vectors of neighbors as well. Intuitively, if a deep
neural network predicts both labels and feature vectors, it is
forced to learn and capture representative information of in-
put, and thus it should perform better in classification. More-
over, our models also function as synthetic oversamplers: we
add the out-of-sample feature vectors and their labels (syn-
thetic samples) to the training set. Experiments show that
our sequence to sequence kNN model outperforms Synthetic
Minority Over-sampling Technique (SMOTE) [Chawla et al.,
2002] and Adaptive Synthetic sampling (ADASYN) [He et
al., 2008] most of the times on imbalanced datasets.

Usually we allow models to perform kNN searching on the
entire dataset, which we call the full versions of models, but
kNN is computationally expensive on large datasets. We de-
sign an algorithm to resolve this and we test our models un-
der such an ‘out-of-core’ setting: only a batch of data can be
loaded into memory, i.e. kNN searching in the entire dataset
is not allowed. For each such random batch, we compute
the K closest samples with respect to the given training sam-
ple. We repeat this R times and find the closest K samples
among these KR samples. These closest K samples provide
the approximate label sequence and feature vector sequence
to the training sample based on the kNN algorithm. Com-
putational experiments show that sequence to sequence kNN
models and memory network kNN models significantly out-
perform the kNN benchmark under the out-of-core setting.

Our main contributions are as follows. First, we develop
two types of deep neural network models which mimic the
kNN structure. Second, our models are able to predict both
labels of closest samples and out-of-sample feature vectors at
the same time: they are both classification models and over-
samplers. Third, we establish the out-of-core version of mod-
els in the situation where not all data can be read into com-
puter memory or kNN cannot be run on the entire dataset. The
full version of the sequence to sequence kNN models and the
out-of-core version of both sequence to sequence kNN mod-
els and memory network kNN models outperform the bench-
marks, which we postulate is because learning neighboring
samples enables the model to capture representative features.

2 Background and Literature Review
There are several works trying to mimic kNN or applying
kNN within different models. Based on the boundary forest
model, in [Zoran et al., 2017], a boundary deep learning tree
model with differentiable loss function was presented to learn
an efficient representation for kNN. The main differences be-
tween this work and our work are in the base models used
(boundary tree vs standard kNN), in the main objectives (rep-
resentation learning vs classification and oversampling) and
in the loss functions (KL divergence vs KL divergence com-
ponents reflecting the kNN strategy and L2 norm). [Wang
et al., 2017] introduced a text classification model which uti-
lized nearest neighbors of input text as the external memory
to predict the class of input text. Our memory network kNN
models differ from this model in 1) the external memory: our
memory network kNN models simply feed a random batch
of samples into the external memory without the requirement

of nearest neighbors and thus they save computational time
and 2) they considered only a classification setting, while our
models generate not only labels but also out-of-sample fea-
ture vectors. Most importantly, the loss functions are differ-
ent: in [Wang et al., 2017] the authors used KL divergence
as the loss function while we use a specially designed KL
divergence and L2 norm to force our models to mimic kNN.

The sequence to sequence model, one of our base models,
has recently become the leading framework in natural lan-
guage processing [Sutskever et al., 2014][Cho et al., 2014].
In [Cho et al., 2014] an RNN encoder-decoder architecture
was used to deal with statistical machine translation prob-
lems. In [Sutskever et al., 2014] the authors proposed a gen-
eral end-to-end sequence to sequence framework. The major
difference between our work and these studies is that the loss
function in our work forces the model to learn from neigh-
boring samples, and our models are more than just classifiers
- they also create out-of-sample feature vectors that improve
accuracy or can be used as oversamplers.

There are also a plethora of studies utilizing external mem-
ory in neural networks. [Weston et al., 2015] proposed the
memory network model to predict the correct answer of a
query by means of ranking the importance of sentences in
the external memory. [Sukhbaatar et al., 2015] introduced
a continuous version of a memory network with a recurrent
attention mechanism over an external memory, which outper-
formed the previous discrete memory network architecture in
question answering.

In summary, the main differences between our work and
previous studies are as follows. First, our models predict both
labels of nearest samples and out-of-sample feature vectors
rather than simply labels. Thus, they are more than classifiers:
the predicted label sequences and feature vector sequences
can be treated as synthetic oversamples to handle imbalanced
class problems. Second, our work emphasizes on the out-of-
core setting. All of the prior works related to kNN and deep
learning assume that kNN can be run on the entire dataset
and thus cannot be used on large datasets. Third, our loss
functions are designed to mimic kNN, so that our models are
forced to learn neighboring samples to capture the represen-
tative information.

3 kNN Models
Our sequence to sequence kNN models are built on a Seq2seq
model, and our memory network kNN models are built on a
MemN2N model. The details of Seq2seq model and memory
network model can be found in the appendix. Let K denote
the number of neighbors of interest.

3.1 Vector to Label Sequence (V2LS) Model
Given an input feature vector x, a ground truth label Y GT

(a single class corresponding to x) and a sequence of la-
bels Y T

1 , Y
T
2 , ..., Y

T
K corresponding to the labels of the

1st, 2nd, ...,Kth nearest sample to x in the entire training
set, V2LS predicts a label Y P and Y P

1 , Y P
2 , ..., Y P

K , the pre-
dicted labels of the 1st, 2nd, ...,Kth nearest samples. Since
Y T

1 , Y
T
2 , ..., Y

T
K are obtained by using kNN upfront, the real
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input is only x and Y GT . When kNN does not misclassify,
Y GT corresponds to majority voting of Y T

1 , Y
T
2 , ..., Y

T
K .

The key concept of our model is to have x as the input se-
quence (of length 1) and the output sequence Y P

1 , Y P
2 , ..., Y P

K

to correspond to Y T
1 , Y

T
2 , ..., Y

T
K . The loss function also cap-

tures Y GT and Y T
1 , Y

T
2 , ..., Y

T
K .

In the V2LS model, by a softmax operation with tempera-
ture after a linear mapping (Wy, by), the label of the tth near-
est sample to x is predicted by Y P

t = softmax((Wyyt +
by)/τ), where yt is as in (1) in the appendix for t =
1, 2, ...,K and τ is the temperature of softmax.

By taking the average of predicted label distributions, the
label of x is predicted by Y P =

∑K
t=1Y

P
t /K. Note that

if Y P
t corresponds to a Dirac distribution for each t, then

Y P matches majority voting. Temperature τ controls the
“peakedness” of Y P

t . Values of τ below 1 push Y P
t towards

a Dirac distribution, which is desired in order to mimic kNN
[Karpathy, 2015][Hinton et al., 2015].

We design the loss function as L1 =

E{
∑K

t=1
DKL(Y T

t ||Y P
t )/K + αDKL(Y GT ||Y P )},

where the first term captures the label at the neighbor level,
the second term for the actual ground truth and α is a
hyperparameter to balance the two terms. The expectation
is taken over all training samples, and DKL denotes the
Kullback-Leibler divergence. Due to the fact that the
first term is the sum of KL divergence between predicted
labels of nearest neighbors and target labels of nearest
neighbors, it forces the model to learn information about
the neighborhood. The second term considers the actual
ground truth label: a classification model should minimize
the KL divergence between the predicted label (average of K
distributions) and the ground truth label. By combining the
two terms, the model is forced to not only learn the classes
of the final label but also the labels of nearest neighbors. We
let the tth decoder cell predict the tth nearest sample because
the preceding decoder cells preserve closeness to the original
input. In the subsequent cells, the information gets passed
through more decoder cells and thus it is expected to deviate
more from the input, which is why we let the tth cell predict
the tth nearest neighbor.

In inference, given an input x, V2LS predicts Y P and
Y P

1 , Y P
2 , ..., Y P

K , but only Y P is the actual output; it
is used to measure the classification performance. Note
that it is possible that argmaxY P is different from the
majority voted class among argmaxY P

1 , argmaxY P
2 , ...,

argmaxY P
K when kNN misclassifies.

3.2 Vector to Vector Sequence (V2VS) Model
We use the same structure as the V2LS model except that
in this model, the inputs are a feature vector x and a se-
quence of feature vectors XT

1 , X
T
2 , ..., X

T
K corresponding to

the 1st, 2nd, ...,Kth nearest sample to x among the entire
training set (calculated upfront using kNN). V2VS predicts
XP

1 , X
P
2 , ..., X

P
K which denote the predicted out-of-sample

feature vectors of the 1st, 2nd, ...,Kth nearest sample. Since
XT

1 , X
T
2 , ..., X

T
K are obtained using kNN, this is an unsuper-

vised model.

The output of the tth decoder cell yt is processed by a lin-
ear layer (Wx1, bx1), a ReLU operation and another linear
layer (Wx2, bx2) to predict the out-of-sample feature vector
XP

t = Wx2max{Wx1yt + bx1, 0}+ bx2, t = 1, 2, ...,K. Nu-
merical experiments show that ReLU works best compared
with tanh and other activation functions.

The loss function is defined to be the sum of L2 norms:
L2 = E{

∑K

t=1
||XP

t −XT
t ||2}. Since the predicted out-of-

sample feature vectors should be close to the input vector,
learning nearest vectors forces the model to learn a sequence
of approximations to something very close to the identity
function. However, this is not trivial. First it does not learn
an exact identity function, since the output is a sequence of
nearest neighbors to input, i.e. it does not simply copy the
input K times. Second, by limiting the number of hidden
units of the neural network, the model is forced to capture the
most representative and condensed information of input. A
large amount of studies have shown this to be beneficial to
classification problems [Erhan et al., 2010][He et al., 2016].

In inference, we predict the label of x by finding the labels
of out-of-sample feature vectors XP

t and then perform ma-
jority voting among these K labels. The most voted label is
regarded as the prediction of the current sample.

3.3 Vector to Vector Sequence and Label Sequence
(V2VSLS) Model

In previous models, V2LS learns to predict labels of near-
est neighbors and V2VS learns to predict feature vectors of
nearest neighbors. Combining V2LS and V2VS together,
this model predicts both XP

t and Y P
t . Given an input fea-

ture vector x, a ground truth label Y GT , a sequence of near-
est labels Y T

1 , Y
T
2 , ..., Y

T
K and a sequence of nearest feature

vectors XT
1 , X

T
2 , ..., X

T
K , V2VSLS predicts a label Y P , a la-

bel sequence Y P
1 , Y P

2 , ..., Y P
K and an out-of-sample feature

vector sequence XP
1 , X

P
2 , ..., X

P
K . Since the two target se-

quences are obtained by kNN, the model still only needs x
and Y GT as input.

The loss function is a weighted sum of the two loss func-
tions in V2LS and V2VS: L = L1 + λL2, where λ is a hy-
perparameter to account for the scale of the L2 norm and the
KL divergence.

The L2 norm part enables the model to learn neighboring
vectors. As discussed in the V2VS model, this is beneficial to
classification since it drives the model to capture representa-
tive information of input and nearest neighbors. The KL part
of the loss function focuses on predicting labels of nearest
neighbors. As discussed in the V2LS model, the two terms
in the KL loss force the model to learn both neighboring la-
bels and the ground truth label. Combining the two parts, the
V2VSLS model is able to predict nearest labels and out-of-
sample feature vectors, as well as one final label for classifi-
cation. The model is structured in this way because the Kth

decoder cell output corresponds to the Kth nearest neighbor,
so that the model is forced to better mimic kNN.

3.4 Memory Network - kNN (MNkNN) Model
The MNkNN model is built on the MemN2N model, which
has K layers stacked together. After these layers, the
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MemN2N model generates a prediction. In order to mimic
kNN, our MNkNN model has K layers as well but it gen-
erates one label after each layer, i.e. after the tth layer, it
predicts the label of the tth nearest sample. Similar to the
Seq2seq kNN models, the tth layer predicts the tth nearest
sample because the preceding layers preserve closeness to the
input. Therefore, we let the preceding layers predict the clos-
est nearest neighbors to mimic kNN.

This model takes a feature vector x, its ground truth label
Y GT , a random subset x1, x2, ..., xn from the training set (to
be stored in the external memory) and Y T

1 , Y
T
2 , ..., Y

T
K de-

noting the labels of the 1st, 2nd, ...,Kth nearest samples to x
among the entire training set (calculated upfront using kNN).
It predicts a label Y P and a sequence of K labels of closest
samples Y P

1 , Y P
2 , ..., Y P

K .
After the tth layer, by a softmax operation with tempera-

ture after a linear mapping (Wy, by), the model predicts the
label of tth nearest sample by Y P

t = softmax((Wy(Hut +
ot) + by)/τ) where t = 1, 2, ...,K . The final label of x is
calculated by Y P =

∑K
t=1Y

P
t /K.

The loss function of MNkNN is: L1 =

E{
∑K

t=1
KL(Y T

t ||Y P
t )/K + αKL(Y GT ||Y P )} which is

the same as in V2LS. The first term accounts for learning
neighboring information, and the second term forces the
model to provide the best single candidate class.

In inference, the model takes a query x and random sam-
ples x1, x2, ..., xn from the training set, and generates the
predicted label Y P as well as a sequence of nearest labels
Y P

1 , Y P
2 , ..., Y P

K .

3.5 Memory Network - kNN with Vector Sequence
(MNkNN VEC) Model

This model is built on MNkNN, but it predicts out-of-
sample feature vectors XP

t as well. MNkNN VEC takes a
query feature vector x, its corresponding ground truth label
Y GT , a random subset x1, x2, ..., xn from the training dataset
(to be stored in the external memory), Y T

1 , Y
T
2 , ..., Y

T
K

and XT
1 , X

T
2 , ..., X

T
K denoting labels and feature vectors

of the 1st, 2nd, ...,Kth nearest samples to x among the
entire training set (calculated both upfront using kNN).
MNkNN VEC predicts a label Y P , a sequence of labels
Y P

1 , Y P
2 , ..., Y P

K and a sequence of out-of-sample feature vec-
tors XP

1 , X
P
2 , ..., X

P
K .

By a linear mapping T , a ReLU operation and another lin-
ear mapping (Wx, bx), the feature vectors are then calculated
by XP

t = Wxmax{T (Hut + ot), 0}+ bx.
Same as the V2VSLS model, combining the L2 norm and

the KL divergence together, the loss function is defined as

L = L1 + λE{
∑K

t=1
||XP

t −XT
t ||2}.

3.6 Out-of-Core Models
In the models exhibited so far, we assume that kNN can be
run on the entire dataset exactly to compute the K nearest
feature vectors and corresponding labels to an input sample.
However, there are two problems with this assumption. First,
this can be very computationally expensive if the dataset size

is large. Second, the training dataset might be too big to fit
in memory. When either of these two challenges is present,
an out-of-core model assuming it is infeasible to run a ‘full’
kNN on the entire dataset has to be invoked. The out-of-core
models avoid running kNN on the entire dataset, and thus
save computational time and resources.

Let B be the maximum number of samples that can be
stored in memory, where B > K. For a training sam-
ple x, we sample a subset S from the training set (includ-
ing x) where |S| = B, then we run kNN on S to obtain
the K nearest feature vectors and corresponding labels to
x, which are denoted as Y T (S) = {Y T

1 , Y
T
2 , ..., Y

T
K } and

XT (S) = {XT
1 , X

T
2 , ..., X

T
K} for x in the training process.

The previously introduced loss functions L and L depend on
x, Y GT , XT (S), Y T (S) and the model parameters Θ, and
thus our out-of-core models are to solve

min
Θ

ExES{L̃(x, Y GT , XT (S), Y T (S),Θ)}

where L̃ is either L or L.
Sampling a set of size B and then finding the nearest K

samples only once are insufficient on imbalanced datasets,
due to the low selection probability for minor classes. To re-
solve this, we iteratively take R random batches: each time a
random batch is taken, we update the closest samples XT (S)
by the K closest samples among the current batch and the
K previous closest samples. These resulting nearest feature
vectors and corresponding labels are used in the loss func-
tion. Note that we allow the previously selected samples to
be selected in later sampling iterations. The entire algorithm
is exhibited in Algorithm 1 in the appendix.

4 Computational Experiments
In this section, we evaluate our models on 9 classification
datasets: Network Intrusion (NI) [Hettich and Bay, 1999],
Forest Covertype (COV) [Blackard and Dean, 1998], Sen-
sIT [Duarte and Hu, 2004], Credit Card Default (CCD)
[Yeh and hui Lien, 2009], MNIST[LeCun and Cortes, 1999],
CIFAR-10[Krizhevsky et al., 2009], News20[Lang, 1995],
IMDb[Maas et al., 2011] and Reuters [Chollet, 2015], which
are all publicly available. Among the 9 datasets, the first 4 are
structured and the remaining are unstructured.

For each dataset we experiment with 5 different seeds and
all reported numbers are averages taken over 5 random seeds.
We discuss the performance of the models in two aspects:
classification and oversampling.

4.1 Classification
Experimental Setup
As comparisons against memory network kNN models and
sequence to sequence kNN models, we use kNN with Eu-
clidean metric and several currently best classification mod-
els random forest (RF), extreme gradient boosting (XGB),
lightGBM (LGBM), a 4-layer feed-forward neural network
(FFN) trained using the Adam optimization algorithm (which
has been calibrated) with dropout and batch normalization
and MemN2N (since MNkNN and MNkNN VEC are built
on MemN2N) as benchmarks. Value K = 5 is used in all
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models because it yields the best performance with low stan-
dard deviation among K = 1, 2, ..., 20. Increasing K beyond
K = 5 is somewhat detrimental to the F-1 scores while sig-
nificantly increasing the training time.

In the sequence to sequence kNN models, LSTM cells are
used. In the memory network kNN models, the size of the ex-
ternal memory is 64 since we observe that models with mem-
ory vectors of size 64 generally provide the best F-1 scores
with acceptable running time. Both sequence to sequence
kNN models and memory network kNN models are trained
using the Adam optimization algorithm with initial learning
rate set to be 0.01. We also find that τ = 0.85, λ = 0.12 and
α = 9.5 provide overall the best F-1 scores.

We first experiment on structured datasets not requiring
special embeddings, i.e. NI, COV, SensIT and CCD. We only
consider 3 classes in NI and COV datasets due to significant
class imbalance.

Overall Results of Full Model on Structured Data
We first discuss the full models that can handle all of the train-
ing data, i.e. kNN can be run on the entire dataset. Table 1
shows that in the full model case, V2VSLS consistently out-
performs the best classification models on all four datasets.
t-tests show that it significantly outperforms benchmarks at
the 5% level on all four datasets. For our kNN models, V2LS
significantly outperforms V2VS, because V2VS tries to re-
construct the feature level information as explained in Section
3.2, which does not utilize the label information. Moreover,
it can also be seen that predicting not only labels but feature
vectors as well is reasonable, since V2VSLS consistently out-
performs V2LS and MNkNN VEC consistently outperforms
MNkNN. Models predicting feature vectors outperform mod-
els not predicting feature vectors on all datasets. These mem-
ory based models exhibit subpar performance, which is ex-
pected since they only consider 64 training samples at once
(despite using exact labels).

Overall Results of Full Model on Unstructured Data
To provide insights of how our model performs on unstruc-
tured data, we further evaluate on the image and text datasets:
MNIST, CIFAR-10, News20, IMDb and Reuters. The em-
beddings are fed into classifiers.

We compare V2VSLS with some of the most popular clas-
sification models in Table 1. On News20, 7-layer FFN per-
forms slightly better than V2VSLS, but V2VSLS consistently
outperforms other classification models on all other datasets.
There is a slight gap attributed to the single stage employed
by pure deep learning models v.s. our experiment that has
two stages (embedding construction, kNN). Nevertheless, the
performance of V2VSLS on these unstructured datasets still
outperforms many currently popular models.

Comparison with a Set-Based Model and Swapped
Order V2VSLS
We evaluate the necessity of modeling nearest neighbors as
a sequence, instead of as a set. First, we compare the set-
based model with the V2VSLS model. Note that compared to
V2VSLS, the set-based neural network model also predictsK
labels,K nearest neighbors and a final label for classification,
but it does not model the K labels and nearest neighbors as a

sequence. The only difference is that the set-based model’s
outputs are orderless. As shown in Table 1, the set-based
model which removes the order of nearest neighbors suffers
from a consistent performance drop across datasets. The set-
based model still outperforms most of the existing popular
classification methods, however, which again validates that
predicting nearest neighbors is beneficial for classification.

Following the orderless nearest neighbors experiment, we
arbitrarily swap the first and the third nearest neighbor of the
order in the training data. Intuitively, if the performance drops
after swapping the nearest neighbors in the training data, uti-
lizing the order information of nearest neighbors is crucial.
The results are shown in Table 1. V2VSLS with swapped
order performs worse than V2VSLS with original order, but
it still outperforms the set-based model consistently, which
validates that keeping the order of the nearest neighbors is
necessary.

Please note that we have also compared our model with
other related benchmark models, and the details can be found
in the appendix.

Overall Results of Out-of-Core Model
Next, we validate our models in the out-of-core scenario
which avoids running kNN on the entire dataset for saving
computational resources. In the out-of-core versions of our
models, R is set to be 50, since we observe that increasing
50 only has a slight impact on F-1 scores. However, this sub-
stantially increases the running time.

NI COV SensIT CCD
kNN 73.87 63.87 61.40 59.41

V2LS 90.63 90.29 82.47 67.51
V2VS 81.92 71.29 69.12 61.36

V2VSLS 91.27 92.89 83.38 69.21
MNkNN 81.89 78.58 78.80 66.16

MNkNN VEC 83.19 81.72 82.32 68.15

Table 2: F-1 score of out-of-core model with R=50.

Table 2 shows the results of our models under the out-of-
core assumption when R = 50 and B = 64. Both V2VLSL
and MNkNN VEC significantly outperform the kNN bench-
mark based on t-tests at the 5% significance level. The kNN
benchmark provides a low score since we restrict the batch
size (or memory size) to be 64, and it turns out that kNN
is substantially affected by the randomness of batches. Our
models are robust under the out-of-core setting, because the
weight of the ground truth label in the loss function is rel-
atively high so that even if the input nearest sequences are
noisy, they still can focus on learning the ground truth label
and making reasonable predictions.

Full Model and Out-of-Core Model Comparison
Table 3 shows a comparison between the full and out-of-core
models with R = 50, B = 64 on the SensIT dataset. The
running time of our models are broken down to two parts: the
first part is the time to obtain sequences of K nearest feature
vectors and labels and the second part is the model training
time. Under the out-of-core setting, overall the kNN sequence
preprocessing time is saved by approximately 40% while the
models perform only slightly worse.
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NI COV SensIT CCD MNIST CIFAR-10 News20 IMDb Reuters
kNN 90.54 91.15 82.56 63.81 98.91 93.12 62.14 86.25 72.34

RF 90.44 93.76 82.70 66.94 98.87 92.69 58.55 87.41 73.70
XGB 87.53 91.98 82.56 66.95 99.12 91.55 69.81 88.51 74.24

LGBM 90.23 89.85 83.29 65.68 99.57 92.18 70.59 88.60 74.98
SVM 89.28 90.59 83.15 66.01 98.86 92.95 71.84 87.75 73.97
FFN 88.53 91.83 83.67 65.37 99.51 94.41 72.93 88.33 74.83

MemN2N 79.36 77.98 75.17 61.83 96.20 90.13 54.20 81.01 69.87
LambdaRank 45.58 59.81 41.03 38.91 70.18 62.59 49.71 65.97 41.69

kNN-AN 64.18 69.64 54.29 52.18 89.59 81.72 55.01 67.80 59.81
V2LS 91.28 93.94 84.93 68.38 99.51 94.18 72.39 87.71 75.77
V2VS 86.18 90.39 74.84 64.23 98.17 92.98 70.11 86.27 72.10

V2VSLS 92.07 94.97 86.24 69.87 99.70 94.86 72.68 89.83 76.11
MNkNN 83.83 80.12 79.58 67.26 94.38 89.10 62.33 84.18 69.28

MNkNN VEC 84.59 83.94 83.41 68.82 97.29 93.02 71.54 87.85 74.17
Set-based model 91.25 94.10 85.51 68.77 99.51 93.39 70.88 88.19 74.91

Swapped V2VSLS 91.79 94.56 85.99 69.42 99.43 94.01 72.17 89.51 75.70

Table 1: F-1 score comparison of full models.

kNN V2LS V2VS V2VSLS MNkNN MNkNN VEC
Full F-1 82.56 84.93 74.84 86.24 79.58 83.41

OOC F-1 61.40 82.47 69.12 83.38 78.80 82.32
Full time (a) 312 443 857 1391 443 1391

OOC time (a) 193 287 488 741 287 741
Full time (b) NA 635 1358 1802 692 1081

OOC time (b) NA 619 1316 1846 703 1055

Table 3: Full model and out-of-core (OOC) model comparison on
SensIT. Time metrics are in seconds. (a) denotes the time to obtain
sequences of nearest neighbors and (b) denotes the model training
time.

4.2 Oversampling
Experimental Setup
When class distributions are highly imbalanced, many clas-
sification models have low accuracy or F-1 score on the mi-
nority class. A simple but effective way to handle this prob-
lem is to oversample the minority class. Since V2VSLS and
MNkNN VEC are able to predict out-of-sample feature vec-
tors, we also regard our models as oversamplers and we com-
pare them with two widely used oversampling techniques:
SMOTE and ADASYN. We only test V2VSLS since it scales
better than MNkNN VEC and the prediction performance is
comparable. In our experiments, we evaluate our model on
four imbalanced datasets. We first fully train the model, and
then for each sample from the training set, V2VSLS predicts
K = 5 out-of-sample feature vectors which are regarded as
synthetic samples. We add them to the training set if they are
in a minority class until the classes are balanced or there are
no minority training data left for creating synthetic samples.
In our oversampling experiments, we use λ = 1.3 and α = 3.

Overall Results on Oversampling
Table 4 shows the F-1 scores of FFN, extreme gradient
boosting and random forest classification models, with dif-
ferent oversampling techniques, namely, original training set
without oversampling, SMOTE, ADASYN and V2VSLS.
V2VSLS performs the best among all combinations of clas-
sification models and oversampling techniques, as shown in
Table 5. Although most of the time models on datasets
with three oversampling techniques outperform models on

NI COV SensIT CCD
FFN-original 89.64 91.83 83.67 65.37
FFN-SMOTE 89.99 91.18 83.43 66.32

FFN-ADASYN 90.38 90.67 83.72 66.51
FFN-V2VSLS 90.89 92.05 83.94 66.82
XGB-original 87.53 91.98 82.56 66.95
XGB-SMOTE 87.79 91.86 82.87 66.56

XGB-ADASYN 88.39 92.56 83.42 66.20
XGB-V2VSLS 87.62 92.43 82.46 66.96

RF-original 90.44 93.76 82.70 66.94
RF-SMOTE 89.97 93.88 83.01 66.13

RF-ADASYN 89.39 93.83 83.34 67.14
RF-V2VSLS 90.79 94.36 82.75 68.08

Table 4: Oversampling: F-1 score comparison.

datasets without oversampling, the classification performance
still largely depends on the classification model used and
which dataset is considered. The visualization of the syn-
thetic samples can be found in the appendix.

NI COV SensIT CCD
Best model FFN+V2VSLS RF+V2VSLS FFN+V2VSLS RF+V2VSLS

Best F-1 90.89 94.36 83.92 68.08
Imp on SMOTE* 0.51% 0.61% 2.28% 1%

Imp on ADASYN* 0.6% 0.56% 0.26% 1.4%

Table 5: Oversampling techniques comparison. ‘Imp on X*’ denotes
how much better than best performance of X.

5 Conclusion

In summary, we find that it is beneficial to have models learn
not only labels but also feature vectors. In our work, we de-
velop two types of deep neural network models mimicking
kNN which are able to predict both the labels of closest sam-
ples and out-of-sample feature vectors at the same time. In
experiments, our proposed models outperform the benchmark
methods in both classification and oversampling tasks.
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