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Abstract
Instead of learning with pointwise loss functions,
learning with pairwise loss functions (pairwise
learning) has received much attention recently as
it is more capable of modeling the relative relation-
ship between pairs of samples. However, most of
the existing algorithms for pairwise learning fail to
take into consideration the privacy issue in their de-
sign. To address this issue, previous work studied
pairwise learning in the Differential Privacy (DP)
model. However, their utilities (population errors)
are far from optimal. To address the sub-optimal
utility issue, in this paper, we proposed new pure
or approximate DP algorithms for pairwise learn-
ing. Specifically, under the assumption that the
loss functions are Lipschitz, our algorithms could
achieve the optimal expected population risk for
both strongly convex and general convex cases. We
also conduct extensive experiments on real-world
datasets to evaluate the proposed algorithms, exper-
imental results support our theoretical analysis and
show the priority of our algorithms.

1 Introduction
As an important family of learning problems, pairwise learn-
ing has drawn much attention recently. Since pairwise learn-
ing involves loss functions depending on pairs of samples, it
shows great advantage in modeling the relative relationship
between pairs of samples over traditional pointwise learning
(e.g., classification), in which the loss functions only take
individual samples as the input. In practice, many learning
tasks can be categorized as pairwise learning problems. For
instance, metric learning [Huai et al., 2019] aims to learn
a distance metric from a given collection of pair of sim-
ilar/dissimilar samples that preserves the distance relation
among the data, which can be formulated as a pairwise learn-
ing problem. Apart from metric learning, many other learn-
ing tasks, such as AUC maximization [Zhao et al., 2011] and
ranking [Tang and Wang, 2018], can also be categorized as
pairwise learning.

∗The first two authors contributed equally to this paper. Part of
the work was done when Zhiyu Xue and Shaoyang Yang were re-
search interns at KAUST.

Although the importance of pairwise learning has been rec-
ognized in many real-world applications, there is still a pri-
vacy issue among the current learning algorithms. Among ex-
isting privacy-preserving strategies, differential privacy (DP)
[Dwork et al., 2006], as a rigorous notion for data privacy,
can provide very rigid privacy and utility guarantee. While
DP pointwise learning has been extensively studied in the
last decade, starting from [Chaudhuri and Monteleoni, 2009;
Wang and Xu, 2019a; Wang et al., 2017; Wang et al., 2019;
Wang et al., 2020; Wang and Xu, 2019b; Wang and Xu, 2021;
Bassily et al., 2014; Bassily et al., 2019; Bassily et al., 2019;
Feldman et al., 2020]. DP pairwise learning is still not well
understood. [Shang et al., 2014] considered the DP for rank
aggregation which combines multiple ranked lists into a sin-
gle rank, their problem cannot be generalized to all pairwise
loss functions. [Li et al., 2020] proposed differential pair-
wise privacy for secure metric learning but utility (general-
ization) analysis is not given. Recently, [Huai et al., 2020]
first studied the problem under both of the online and offline
settings, and provided some preliminary theoretical results,
which is extended by [Yang et al., 2021] to the non-smooth
case. However, the problem has not been completely under-
stood, yet. As we can see from Table 1, there is still a huge
gap between their upper bounds of the population error and
their corresponding lower bounds in both of the strongly con-
vex and general convex cases, which means that their utilities
are far from optimal. Motivated by this, our question is,

For the problem of differentially private pairwise learning,
can we find private estimators whose population errors match
their corresponding lower bounds, for strongly convex and
general convex loss cases, in (ε, δ)/ε-DP model?

Here we provide the affirmative answer of the previous
question, and we summarize our theoretical results in Table 1.
In details, the contributions of this paper can be summarized
as follows:

• Firstly, we consider the pairwise learning problem with
Lipschitz, smooth and strongly convex loss functions.
We propose an algorithm, which is based on the stabil-
ity of the Projected Gradient Descent method, and show
that its output could achieve an expected population er-
ror of O( 1

n +
d log 1

δ

n2ε2 ) and O( 1
n + d2

n2ε2 ) (if we omit other
terms) for (ε, δ)-DP and ε-DP, respectively, where n is
the sample size and d is the dimensionality of the under-
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Method (ε, δ)-DP ε-DP
Upper Bound Lower Bound Upper Bound Lower Bound

Strongly
Convex

[Huai et al., 2020] O(
√
d√
nε

)
Ω( 1

n + d
n2ε2 )

–
Ω( 1

n + d2

n2ε2 )
This Paper O( 1

n + d
n2ε2 ) O( 1

n + d2

n2ε2 )

Convex
[Huai et al., 2020; Yang et al., 2021] O(

√
d√
nε

)
Ω( 1√

n
+
√
d

nε )
– Ω( 1√

n
+ d

nε )
This Paper O( 1√

n
+
√
d

nε ) O( 1√
n

+ d
nε )

Table 1: A summary of previous results and contributions of this paper, here we assume the loss functions are Lipschitz and Lipschitz smooth.
All the bounds are for population error and all omit and other factors (such as the diameter of the constraint set). The low bounds in [Bassily
et al., 2019] are for pointwise loss functions, since pointwise loss is a special case of pairwise loss, thus these lower bounds still hold for
pairwise loss case.

lying space. As we can see from Table 1, these bounds
match their corresponding lower bounds, which means
they are optimal.

• Then we study the problem with general Lipschitz and
smooth convex loss functions. Unlike the strongly con-
vex case, direct using our previous idea of proof to gen-
eral convex case can only achieve a sub-optimal pop-
ulation error. To overcome the challenge, motivated by
[Feldman et al., 2020] and our previous idea, we propose
an algorithm whose output could achieve an expected

population error of O( 1√
n

+

√
d log 1

δ

nε ) and O( 1√
n

+ d
nε )

for (ε, δ)-DP and ε-DP, respectively. And these upper
bounds are optimal.

• Finally, we conduct comprehensive experiments on met-
ric learning and AUC maximization, with or without `2-
norm regularization. Experimental results support our
theoretical results and also show the priority of our al-
gorithms compared with the previous ones.

Due to the space limit, additional definitions, related work,
all the proofs are included in the full version of the paper.

2 Preliminaries
We say that two datasets D,D′ are neighbors if they differ by
only one entry, which is denoted as D ∼ D′.
Definition 1 (Differential Privacy [Dwork et al., 2006]). A
randomized algorithmA is (ε, δ)-differentially private (DP) if
for all neighboring datasets D,D′ and for all events S in the
output space ofA, we have Pr(A(D) ∈ S) ≤ eεPr(A(D′) ∈
S) + δ. When δ = 0, A is ε-differentially private.

Different from the pointwise loss function ` : C ×D 7→ R,
a pairwise loss function is a function on pairs of data records,
i.e., ` : C ×D×D 7→ R, where D is the data universe. Given
a dataset D = {z1, z2, · · · , zn} ⊆ Dn and a loss function
`(·; ·, ·), its empirical risk can be defined as:

L(w;D) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

`(w; zi, zj). (1)

When the data samples are drawn i.i.d from an unknown un-
derlying distribution P on D, we also have the population
risk, which is

LP(w) = Ezi,zj∼P,zi 6=zj [`(w; zi, zj)]. (2)

Similar to the definition of DP pointwise learning [Bassily et
al., 2014], we can define DP pairwise learning as follows.

Definition 2. Let C ⊆ Rd be a convex, closed and bounded
constraint set, D be a data universe, and ` : C × D ×
D 7→ R be a pairwise loss function. Also, let D =
{z1 = (x1, y1), z2 = (x2, y2), · · · , zn = (xn, yn)} ⊆ Dn
be a dataset with data records {xi}ni=1 ⊂ Rd and la-
bels (responses) {yi}ni=1 ⊂ [−1, 1]n. Differentially pri-
vate (DP) pairwise learning is to find a private estimator
wpriv ∈ Rd so that the algorithm is (ε, δ) or ε differential
privacy and the error is minimized, where the error for an
estimator w can be measured by either the optimality gap
ErrD(w) = L(w;D) −minw∈C L(w;D) or the population
error ErrP(w) = LP(w)−minw∈C LP(w).

In the experiments section we will conduct experiments on
metric learning and AUC maximization, with or without `2-
norm regularization, for strongly convex or general convex
case. Next, we will give a brief review on these two problems.
Example 1: Metric Learning [Cao et al., 2016] The goal
here is to learn a Mahalanobios metric M2

W (x, x′) = (x −
x′)TW (x− x′) using loss function `(W ; z, z′) = φ(yy′(1−
M2
W (x, x′)), where y, y′ ∈ {−1,+1} and φ(x) is the logistic

function i.e., φ(x) = log(1 + e−x). The constraint set C is
C = {W : W ∈ Sd, ‖W‖F ≤ 1}, where Sd is the set of d×d
positive symmetric matrices.
Example 2: AUC Maximization [Zhao et al., 2011] The
goal here is to maximize the area under the ROC curve for a
linear classification problem with the constraint of ‖w‖2 ≤ 1.
Here `(w; z, z′) = φ((y − y′)h(w;x, x′)) and h(w;x, x′) =
wT (x− x′), where y, y′ ∈ {−1,+1}.

3 Strongly Convex Case
Assumption 1: We assume the loss function `(·; z, z′) is
G-Lipschitz, L-smooth and α-strongly convex.

The idea of our algorithm is motivated by the `2-norm sen-
sitivity of the Projected Gradient Descent (PGD) method for
the empirical risk function. For PGD method, its `2-norm
sensitivity corresponds to its stability, which has been studied
in [Hardt et al., 2016] for pointwise loss functions. Motivated
by this, we generalize to pairwise loss functions. Based on its
sensitivity and the Gaussian mechanism, we have Algorithm
1. The guarantee of DP is mainly based on the following
lemma:
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Algorithm 1 DP Gradient Descent-SC (DPGDSC)
Input: D = {zi}ni=1 ⊂ Rd, privacy parameters ε, δ,
empirical risk L(w;D), initial parameter w0, step size
η ≤ 2

L+α and number of iterations T (will be specified
later).

1: for t = 1, 2, · · · , T do
2: Let wt = ΠC(wt−1 − η∇L(w;D)), where ΠC is the

projection onto the set C.
3: end for
4: When δ > 0, return w̃T = wT + ζ, where ζ ∼
N (0, σ2Id) and σ =

8
√

2 ln(1.25/δ)G

αnε .
5: When δ = 0, return w̃T = wT + ζ, where ζ =

(ζ1, · · · , ζd) with ζi ∼ Lap(λ) and λ = 8G
√
d

αnε .

Lemma 1. For any D ∼ D′, if we denote w′t, t ∈ [T ] as the
parameters which correspond towt in Algorithm 1 performed
on D′, then under Assumption 1, with η ≤ 2

L+α , we have for
all t ∈ [T ],

‖wt − w′t‖2 ≤
8G

αn
. (3)

Theorem 1. Under Assumption 1, when the step size η ≤
2

L+α , Algorithm 1 is (ε, δ)-DP when δ > 0 and ε-DP other-
wise. Moreover, if we let T = Õ(Lα log n), then when δ > 0,
we have

EA,DErrP(w̃T ) ≤ O(
‖C‖22LG2d log 1/δ

α2n2ε2
+
G2

αn
).

When δ = 0, we have

EA,DErrP(w̃T ) ≤ O(
‖C‖22LG2d2

α2n2ε2
+
G2

αn
).

Where ‖C‖2 is the diameter of the set C and Õ omits other
logarithmic factors, EA,D means that the expectation takes
over the randomness of the algorithm A and the data distri-
bution D ∼ Pn.
Remark 1. For pointwise loss functions, [Zhang et al., 2017]
provided an output perturbation method based on the `2-
norm sensitivity of the PGD method. Although the ideas of
these two algorithms are similar, there are still several differ-
ences on the utility guarantees. Firstly, [Zhang et al., 2017]
only showed that its output could achieve the optimal rate
for optimality gap in the strongly convex case. However, as
[Bassily et al., 2019] said, optimal optimality gap of an es-
timator cannot guarantee its population error is also opti-
mal. In this paper, we propose a new approach to show that
our output achieves the optimal rate for the population error,
which has not been studied previously. And this approach
could might be used to other problems. Second, in the gen-
eral convex case, as [Zhang et al., 2017] said, their algorithm
could only achieve a sub-optimal rate, even for the optimality
gap. While in the later section we will use the idea of our ap-
proach to design an algorithm whose output could achieve the
optimal rate for population error (see Section 4 for details).

For poinwise loss case, there are mainly three approaches
on showing the population errors for a given estimator wpriv.

The first approach is to directly transfer the optimality gap
to population error via some existing lemmas, such as [Bass-
ily et al., 2014; Chan et al., 2011]. However, as [Bassily
et al., 2014] mentioned, this approach could only achieve
a sub-optimal rate, see Section F of Appendix in [Bassily
et al., 2014] for details. The second approach is based on
the online-to-batch method, which has been used in [Huai
et al., 2020] for pairwise loss. However, as we said previ-
ously, this approach could also only achieve a sub-optimal
rate of population error. The third type of approaches is
proposed by [Bassily et al., 2019] recently, which is based
on the uniform stability of the Differentially Private Batch
SGD method. However, [Bassily et al., 2019] only stud-
ied the case where the loss function is pointwise and gen-
eral convex, it is unknown whether their algorithm can be
extended to the pairwise loss functions or strongly convex
loss functions. Our new method could be seen as an exten-
sion of the above third method. Specifically, for the output,
its population error can be decomposed into the sum of its
generalization error and its optimality gap [Shen et al., 2020;
Yang et al., 2021]. Motivated by this, we bound the the opti-
mality gap of the output via the stability of the algorithm, i.e.,
the the `2-norm sensitivity of the PGD method.

4 General Convex Case
Motivated by the idea in the previous section, one question is
whether we can generalize it to the general convex case.
Assumption 2: For any pair z, z′ ∈ D, we assume the loss
function `(·; z, z′) is convex, G-Lipschitz, and L-smooth.

The most direct problem is that whether we can use the
same idea of Algorithm 1, i.e., perturbing the output of PGD
method. We show that it is possible. However, the population
error of our output is only sub-optimal in the general con-
vex case, which is quite different compared with the strongly
convex case.

In the next, we propose a simple method and show that
for (ε, δ)-DP, instead of perturbing the output of the PGD
method, perturbing the gradient by Gaussian noise in each
iteration of PGD method could directly achieve the optimal
rate of population error. It is notable that although many pre-
vious paper also studied Algorithm 2 [Bassily et al., 2014],
most of them only considered the optimality gap. However,
in this paper we focus on the optimality of population error.

Algorithm 2 DP Gradient Descent (DPGDC2)
Input: D = {zi}ni=1 ⊂ Rd, privacy parame-
ters ε, δ > 0; empirical risk L(w;D), initial param-
eter w0, step size η ≤ 2

L and number of iterations
T .

1: for t = 1, 2, · · · , T do
2: Let wt = ΠC(wt−1− η(∇L(w;D) + ζi)), where ζi ∼

N (0, σ2Id) with σ =
4G
√

1.25T log 1/δ

nε
3: end for
4: Return w̄T =

∑T
i=0

w0+···+wT
T+1
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Theorem 2. Under Assumption 2, Algorithm 2 is
(ε, δ)-DP. Moreover, we have the following by set-
ting T = min{n, n2ε2

d log 1/δ} and η = G
‖C‖2

√
T

if

L ≤ ‖C‖22G min{n, nε√
d log 1/δ

}

EA,DErrP(w̄T ) ≤ O(G‖C‖2(
1√
n

+

√
d log 1/δ

nε
)).

While Algorithm 2 is succinct, there are still many issues.
Firstly, Theorem 2 only holds for (ε, δ)-DP model, it is un-
known whether we can extend to ε-DP model. Secondly, we
can see that in Algorithm 2 the privacy budget is evenly split
across iterations. However, as we know when the iteration
number increases, our estimator will be closed to the optimal
one and the gradients start to decrease and need to be mea-
sured more accurately in order for the optimization to con-
tinue making progress. This means that an adaptive privacy
budget allocation may has preferable practical performance
to a fixed allocation, as long as the total privacy cost is the
same.

To address the above two issues, we propose a new method
which is based on [Feldman et al., 2020]. The idea is that,
for poinwise loss functions in the non-private case, compared
with the PGD method, recently some work such as [Hazan
and Kale, 2014; Feldman et al., 2020] showed that a vari-
ant of PGD, which is called the Epoch PGD method, could
achieve an improved bound of generalization error. The basic
idea of Epoch PGD is that, we first divide the whole dataset
into several disjoint subsets; in each epoch, we run the PGD
method for several iterations on one of these subsets; then we
take the current parameter as the initial parameter of the next
epoch. Motivated by this, we propose a DP version of the
Epoch PGD method (for convenience here we assume n = 2k

for some positive integer k). We have the following theoreti-
cal guarantees.

Theorem 3. Under Assumption 2, when the step size η ≤ 2
L ,

Algorithm 3 is (ε, δ)-DP when δ > 0 and ε-DP otherwise.
Moreover, when δ > 0, we have the following result by setting
η = ‖C‖2

G min{ 4√
n
, ε√

d log 1/δ
}

EA,DErrP(w̃T ) ≤ O(G‖C‖2(
1√
n

+

√
d log 1/δ

nε
)).

When δ = 0, setting η = ‖C‖2
G min{ 4√

n
, εd} we have

EA,DErrP(w̃T ) ≤ O(G‖C‖2(
1√
n

+
d

nε
)).

Remark 2. Compared with Algorithm 2, Algorithm 3 could
achieve the optimal rate for both (ε, δ)-DP and ε-DP models.
Moreover, since the stepsize in each epoch is varied and the
magnitude of the noise depends on the stepsize, the noise we
added in each epoch is different and adaptive. More specif-
ically, as we can see from Theorem 3, when the sample size
is large enough, the stepsize ηi will be very small and it will
be decayed to 4−iη in the i-th epoch, this means that it will
be closed to 0, and thus the noise we add will be closed to

Algorithm 3 DP Epoch Gradient Descent (DPEGD)
Input: D = {zi}ni=1 ⊂ Rd, privacy parameters ε, δ, em-
pirical risk L(w;D), initial parameter w0, step size η ≤
2
L .
1: Let k = log2 n, we divide the dataset D into k disjoint

subsets {D1, · · · , Dk}, where each Di has ni = 2−in
samples for i < k, and Dk contains all the left data sam-
ples.

2: for i = 1, 2, · · · , k do
3: Let ηi = 4−iη.
4: Run the PGD method for L(·;Di) on the constraint set

C and we take wi−1 as the initial parameter. Specifi-
cally, we set the fixed stepsize as ηi and the iteration
number as ni. Let w̄i be the average parameter after
ni iterations.

5: When δ > 0, let wi = w̄i+ζi, where ζi ∼ N (0, σ2Id)

and σ =
4
√

2 ln(1.25/δ)Gηi
ε

6: When δ = 0, letwi = w̄i+ζi, where ζi = (ζ1, · · · , ζd)
with each ζj ∼ Lap(λ) and λ = 4Gηi

√
d

ε
7: end for
8: Return wk

0 when the iteration number increases. This means that the
practical performance of Algorithm 3 will be better than Al-
gorithm 2, we will verify this conclusion in the experimental
part.

5 Experiments
Datasets. We use two real-world datasets that are widely
adopted in pairwise learning tasks. These datasets are the
Diabetes dataset and the Diabetic Retinopathy dataset, which
have also been used in [Huai et al., 2020].
Performance measures. To evaluate the performance of
the proposed algorithms, we use the following measures:

• Classification Accuracy: For metric learning task, we
calculate the classification accuracy that is defined as the
percentage of the correctly classified samples in the test
set. The less the classification accuracy, the worse the
performance of the proposed algorithm. In this paper,
the KNN classifier is adopted to assign labels to the test
samples. For the KNN classifier, we set K to be 3.

• AUC Score: For AUC maximization task, we report the
AUC score [Zhao et al., 2011] for each of the proposed
algorithms over every adopted dataset. A larger AUC
value means that the corresponding AUC maximization
algorithm can generate more accurate results.

Baseline methods. As we mentioned before, [Huai et al.,
2020] is the only work on DP pairwise learning, thus we use
OffPairStrC and OffPairC proposed in [Huai et al., 2020] for
strongly convex and convex case as our baselines for private
algorithms, respectively. We will also follow [Huai et al.,
2020] and use variants of OffPairStrC and OffPairC, which
do not add any noise, as non-private baseline methods. In
these experiments, we will choose different ε. And for (ε, δ)-
DP model, we will set δ = 1

n .
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Experimental settings. In this paper we studied both of the
strongly convex and general convex cases. To conduct exper-
iments for strongly convex case, we add an additional Frobe-
nius norm or `2-norm regularization term with some λ > 0 to
the original problem of metric learning and AUC maximiza-
tion respectively to make the loss be strongly convex. We set
λ = 10−3 for AUC maximization and λ = 10−2 for metric
learning.
Metric Learning. In Table 2 we perform the results for dif-
ferent training sample size, with fixed privacy budget ε = 1.
And in Table 3 we show the results for different privacy bud-
get, with fixed training sample size n = 512. Compared with
previous methods, our algorithms show better performance
under all the four different settings:

• In the strongly convex case and δ > 0, DPGDSC (Algo-
rithm 1) performs better than OffPairStrC and the differ-
ence of accuracy between them increases as the training
size increases, and it will be closed to the non-private
case. Furthermore, if we fix the training size and change
the parameter ε, we can see from Table 3 that DPGDSC
maintains its advantage over OffPairStrC.

• When the loss function is convex and δ > 0, DPGDC2
(Algorithm 2) shows an improvement in comparison
with OffPairC. Especially, it has significant improve-
ment on the Diabetes dataset. In addition, DPEGD (Al-
gorithm 3) has better performance than OffPairC and
DPGDC2 on both datasets. Moreover, from Table 3
we can see under different ε, DPEGD outperforms other
methods.

• In the strongly convex case in the ε-DP model, although
the improvement is limited, we can still see that our new
algorithm is slightly better than the best known method.
Moreover, as shown in Table 3, except for some cases,
most of the results show that DPGDSC has a better per-
formance than OffPairStrC.

• Finally, we can see that, when the loss function is convex
and in the ε-DP model, DPEGD outperforms OffPairC
under different ε or different training sample size.

(a) δ = 1
n

(b) δ = 0

Figure 1: AUC maximization: Results for different training size in
strongly convex case on Diabetes dataset, where ε = 0.8.

AUC Maximization. For AUC maximization, Table 4
shows the results on Diabetes and Diabetic Retinopathy
datasets for different ε with fixed n = 256. Figure 1, 2, 3

(a) δ = 1
n

(b) δ = 0

Figure 2: AUC maximization: Results for different training size in
general convex case on Diabetes dataset, where ε = 0.8.

(a) δ = 1
n

(b) δ = 0

Figure 3: AUC maximization: Results for different training size in
strongly convex case on Diabetic Retinopathy dataset, where ε =
0.8.

(a) δ = 1
n

(b) δ = 0

Figure 4: AUC maximization: Results for different training size in
general convex case on Diabetic Retinopathy dataset, where ε =
0.8.

and 4 shows the results for different sample size in strongly
convex or general convex case, under (ε, δ) or ε-DP model
respectively, with fixed ε = 0.8. From these results, we
can get almost the same conclusions as in the metric learn-
ing case. Moreover, from Figure 1(b) and 3(b), we can see
when the loss function is strongly convex, the performance of
DPGDSC is much better than OffPairStrC, while the differ-
ence of accuracy between these two methods is quite small in
the metric learning task.
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Loss function Algorithm Training size
Diabetes Diabetic Retinopathy

128 256 512 128 256 512
Strongly
convex
δ 6=0

Non-private 71.40% 72.39% 72.88% 62.82% 63.84% 65.01%
OffPairStrC 63.69% 64.55% 64.63% 60.72% 62.14% 63.59%
DPGDSC 64.03% 64.68% 65.85% 59.72% 62.82% 65.13%

General
convex
δ 6=0

Non-private 71.73% 72.52% 72.97% 61.57% 63.86% 65.03%
OffPairC 64.20% 64.64% 65.87% 60.94% 62.85% 63.29%
DPGDC2 71.30% 71.91% 72.46% 62.32% 63.09% 64.35%
DPEGD 71.29% 72.21% 72.84% 62.95% 65.21% 66.36%

Strongly
convex
δ=0

Non-private 71.71% 71.99% 72.56% 62.39% 63.13% 65.49%
OffPairStrC 64.37% 65.64% 66.77% 59.32% 61.00% 61.78%
DPGDSC 64.51% 65.28% 67.16% 59.48% 61.07% 62.01%

General
convex
δ=0

Non-private 71.80% 72.47% 72.80% 61.84% 63.42% 65.31%
OffPairC 64.97% 65.58% 67.28% 59.55% 60.70% 61.77%
DPEGD 70.37% 71.16% 71.24% 63.41% 64.51% 66.54%

Table 2: Metric learning: Experimental results on Diabetes and Diabetic Retinopathy dataset for different training sizes with fixed ε = 1.

Loss function Dataset Algorithm ε ε
0.2 0.5 0.8 1.0 1.5 2.0

Strongly
convex
δ 6=0

Diabetes OffPairStrC 63.49% 63.50% 63.93% 63.44% 63.53% 64.26%
DPGDSC 64.18% 64.92% 65.72% 63.91% 64.01% 64.29%

Diabetic
Retinopathy

OffPairStrC 60.30% 60.40% 60.47% 63.44% 63.53% 64.26%
DPGDSC 60.63% 61.81% 62.57% 63.91% 64.01% 64.29%

General
convex
δ 6=0

Diabetes
OffPairC 63.59% 63.63% 63.97% 63.71% 63.96% 65.07%
DPGDC2 71.72% 70.61% 72.11% 71.05% 70.83% 71.36%
DPEGD 71.46% 71.49% 71.66% 71.32% 71.50% 71.45%

Diabetic
Retinopathy

OffPairC 60.21% 60.29% 60.71% 63.71% 63.96% 65.07%
DPGDC2 61.27% 61.79% 60.87% 71.05% 70.83% 71.36%
DPEGD 62.58% 62.84% 62.89% 71.32% 71.50% 71.45%

Strongly
convex
δ=0

Diabetes OffPairStrC 64.28% 64.49% 64.53% 64.38% 64.40% 64.84%
DPGDSC 64.45% 64.84% 64.84% 64.63% 64.79% 64.81%

Diabetic
Retinopathy

OffPairStrC 59.54% 59.57% 59.60% 64.38% 64.40% 64.84%
DPGDSC 59.60% 59.70% 59.50% 64.63% 64.79% 64.81%

General
convex
δ=0

Diabetes OffPairC 64.34% 64.38% 64.49% 64.09% 64.29% 64.30%
DPEGD 70.28% 70.49% 70.51% 70.48% 70.59% 70.82%

Diabetic
Retinopathy

OffPairC 59.54% 59.59% 59.80% 64.09% 64.29% 64.30%
DPEGD 62.87% 62.84% 62.87% 70.48% 70.59% 70.82%

Table 3: Metric learning: Experimental results on Diabetes and Diabetic Retinopathy dataset for different ε with fixed n = 128.

Loss function Dataset Algorithm ε ε
0.5 0.8 1.0 2.0

Strongly convex
δ 6= 0

Diabetes OffPairStrC 53.71% 56.05% 59.52% 64.93%
DPGDSC 63.26% 63.92% 64.46% 65.51%

Diabetic
Retinopathy

OffPairStrC 56.33% 59.27% 62.92% 67.01%
DPGDSC 65.65% 66.30% 67.23% 67.04%

General convex
δ 6= 0

Diabetes
OffPairC 52.01% 52.62% 54.51% 57.44%
DPGDC2 52.94% 53.09% 54.61% 59.96%
DPEGD 64.52% 64.47% 64.41% 64.37%

Diabetic
Retinopathy

OffPairC 50.08% 52.90% 54.27% 62.92%
DPGDC2 54.37% 58.06% 60.03% 60.44%
DPEGD 66.19% 66.21% 66.29% 66.09%

Strongly convex
δ = 0

Diabetes OffPairStrC 50.65% 56.45% 59.94% 64.13%
DPGDSC 59.16% 62.98% 62.67% 64.63%

Diabetic
Retinopathy

OffPairStrC 52.24% 54.74% 57.54% 66.25%
DPGDSC 62.75% 64.56% 65.47% 66.94%

General convex
δ = 0

Diabetes OffPairC 50.25% 50.90% 52.57% 60.13%
DPEGD 59.16% 64.35% 64.50% 64.47%

Diabetic
Retinopathy

OffPairC 52.26% 50.13% 51.43% 58.06%
DPEGD 66.34% 66.50% 66.04% 66.38%

Table 4: AUC maximization: Experimental results on Diabetes and Diabetic Retinopathy dataset for different ε, where n = 256
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