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Abstract
Partial label (PL) learning tackles the problem
where each training instance is associated with a set
of candidate labels that include both the true label
and some irrelevant noise labels. In this paper, we
propose a novel multi-level generative model for
partial label learning (MGPLL), which tackles the
PL problem by learning both a label level adversar-
ial generator and a feature level adversarial gener-
ator under a bi-directional mapping framework be-
tween the label vectors and the data samples. MG-
PLL uses a conditional noise label generation net-
work to model the non-random noise labels and
perform label denoising, and uses a multi-class pre-
dictor to map the training instances to the denoised
label vectors, while a conditional data feature gen-
erator is used to form an inverse mapping from the
denoised label vectors to data samples. Both the
noise label generator and the data feature generator
are learned in an adversarial manner to match the
observed candidate labels and data features respec-
tively. We conduct extensive experiments on both
synthesized and real-world partial label datasets.
The proposed approach demonstrates the state-of-
the-art performance for partial label learning.

1 Introduction
Partial label (PL) learning is a weakly supervised learning
problem with ambiguous labels, where each training instance
is assigned a set of candidate labels, among which only one is
the true label. Since it is typically difficult and costly to anno-
tate instances precisely, the task of partial label learning nat-
urally arises in many real-world learning scenarios, includ-
ing automatic face naming [Hüllermeier and Beringer, 2006;
Zeng et al., 2013], and web mining [Luo and Orabona, 2010].

As the true label information is hidden in the candidate
label set, the main challenge of PL lies in identifying the
ground truth labels from the candidate noise labels, aiming
to learn a good prediction model. Some previous works
have made effort on adjusting the existing effective learn-
ing techniques to directly handle the candidate label sets and
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perform label disambiguation implicitly [Gong et al., 2018;
Nguyen and Caruana, 2008; Wu and Zhang, 2018]. These
methods are good at exploiting the strengths of the standard
classification techniques and have produced promising results
on PL learning. Another set of works pursue explicit label
disambiguation by trying to identify the true labels from the
noise labels in the candidate label sets. For example, the work
in [Feng and An, 2018] tries to estimate the latent label distri-
bution with iterative label propagations and then induce a pre-
diction model by fitting the learned latent label distribution.
Another work in [Lei and An, 2019] exploits a self-training
strategy to induce label confidence values and learn classifiers
in an alternative manner by minimizing the squared loss be-
tween the model predictions and the learned label confidence
matrix. However, all these methods have a common draw-
back: they automatically assumed random noise in the label
space – that is, noise labels are randomly distributed in the la-
bel space for each instance. However, in real world problems
the appearance of noise labels is usually dependent on the tar-
get true label. For example, when the object contained in an
image is a “computer”, a noise label “TV” could possibly be
added due to a recognition mistake or image ambiguity, but
it is less likely to annotate the object as “lamp” or “curtain”,
while the probability of getting noise labels such as “tree” or
“bike” is even smaller.

In this paper, we propose a novel multi-level adversarial
generative model, MGPLL, for partial label learning. The
MGPLL model comprises of conditional data generators at
both the label level and feature level. The noise label gener-
ator directly models non-random appearances of noise labels
conditioning on the true label by adversarially matching the
candidate label observations, while the data feature generator
models the data samples conditioning on the corresponding
true labels by adversarially matching the observed data sam-
ple distribution. Moreover, a prediction network is incorpo-
rated to predict the denoised true label of each instance from
its input features, which forms inverse mappings between la-
bels and features, together with the data feature generator.
The learning of the overall model corresponds to a minimax
adversarial game, which simultaneously identifies true labels
of the training instances from both the observed data features
and the observed candidate labels, while inducing accurate
prediction networks that map input feature vectors to (de-
noised) true label vectors. To the best of our knowledge, this
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is the first work that exploits multi-level generative models
to model non-random noise labels for partial label learning.
We conduct extensive experiments on real-world and synthe-
sized PL datasets. The empirical results show the proposed
MGPLL achieves the state-of-the-art PL performance.

2 Related Work
Partial label (PL) learning is a weakly supervised learning
problem, where the true label of each training instance is hid-
den within a given candidate label set. The challenge of PL
learning lies in disambiguating the true labels from the can-
didate label sets to induce good prediction models.

One strategy towards PL learning is to adjust the standard
learning techniques and implicitly disambiguate the noise
candidate labels through the statistical prediction pattern of
the data. For example, with the maximum likelihood tech-
niques, the likelihood of each PL training sample can be de-
fined over its candidate label set [Liu and Dietterich, 2012].
For the k-nearest neighbor technique, the candidate labels
from neighbor instances can be aggregated to induce the final
prediction on a test instance [Hüllermeier and Beringer, 2006;
Gong et al., 2018]. For the maximum margin technique, the
classification margin can be defined over the predictive dif-
ference between the candidate labels and the non-candidate
labels of each training sample [Nguyen and Caruana, 2008;
Yu and Zhang, 2016]. For the boosting technique, the weight
of each PL training instance and the confidence value of each
candidate label being ground-truth label can be refined via
each boosting round [Tang and Zhang, 2017]. For the error-
correcting output codes technique, multiple binary classifiers
are built based on the transformed binary training sets [Zhang
et al., 2017]. For the binary decomposition techniques, a one-
vs-one decomposition strategy has been adopted to address
PL learning by considering the relevance of each label pair
[Wu and Zhang, 2018].

Recently, there have been increasing attentions in design-
ing explicit feature-aware disambiguation strategies [Feng
and An, 2018; Xu et al., 2019a; Feng and An, 2019; Wang
et al., 2019a]. The authors of [Feng and An, 2018] attempt to
refine the latent label distribution using iterative label prop-
agations and then induce a predictive model based on the
learned latent label distribution. Another work in [Lei and
An, 2019] tries to refine the label confidence values with a
self-training strategy and induce the prediction model over
the refined label confidence scores via alternative optimiza-
tion. A recent work in [Yao et al., 2020] proposes to address
the PL learning problem by enhancing the representation abil-
ity via deep features and improving the discrimination abil-
ity through margin maximization between the candidate la-
bels and the non-candidate labels. Another recent work in
[Yan and Guo, 2020] proposes to dynamically correct label
confidence values with a batch-wise label correction strategy
and induce a robust predictive model based on the MixUp en-
hanced data. Although these works demonstrate good empir-
ical performance, they are subject to one common drawback
of assuming random distributions of noise labels by default,
which may not hold in many real-world learning scenarios.
This paper presents the first work that explicitly model non-

random noise labels for partial label learning.
PL learning is related to other types of weakly supervised

learning problems, including noise label learning (NLL) [Xu
et al., 2019b; Thekumparampil et al., 2018] and partial multi-
label learning (PML) [Wang et al., 2019b; Xie and Huang,
2018; Yan and Guo, 2021], but addresses different problems
from them. The main difference between the PL learning and
the other two well-established learning problems lies in the
assumption on the label information provided by the training
samples. Both PL learning and NLL aim to induce a multi-
class prediction model from the training instances with noise-
corrupted labels. However NLL assumes the true labels on
some training instances are replaced by the noise labels, while
PL assumes the true-label coexists with the noise labels in
the candidate label set of each training instance. Hence the
off-the-shelf NLL learning methods cannot be directly ap-
plied to solve the PL learning problem. Both PL learning
and PML learn from training samples with ambiguous can-
didate label sets, which contain the true labels and additional
noise labels. But PL learning addresses a multi-class learn-
ing problem where each candidate label set contains only one
true label, while PML learning addresses a multi-label learn-
ing problem where each candidate label set contains all the
true labels whose number is unknown.

The Wasserstein Generative Adversarial Network
(WGAN) [Arjovsky et al., 2017] is a popular alternative
to the standard GAN [Goodfellow et al., 2014] due to its
effectiveness and stableness in training. During the past few
years, WGANs have been proposed as a successful tool for
various applications, including adversarial sample generation
[Zhao et al., 2017], domain adaption [Dou et al., 2018],
and learning with noisy labels [Chen et al., 2018]. This
paper presents the first work that exploits WGAN to model
non-random noise labels for partial label learning.

3 Proposed Approach
Given a partial label training set S = {(xi,yi)}Ni=1, where
xi ∈ Rd is a d-dimensional feature vector for the i-th in-
stance, and yi ∈ {0, 1}L denotes the candidate label indi-
cator vector associated with xi, which has multiple 1 val-
ues corresponding to the ground-truth label and the additional
noise labels, the task of PL learning is to learn a good multi-
class prediction model from S. In real world scenarios, the
irrelevant noise labels are typically not presented in a ran-
dom manner, but rather correlated with the ground-truth la-
bel. In this section, we present a novel multi-level generative
model for partial label learning, MGPLL, which models non-
random noise labels using an adversarial conditional noise
label generator, and builds connections between the denoised
label vectors and instance features using a label-conditioned
feature generator and a label prediction network. The over-
all model learning problem corresponds to a minimax adver-
sarial game, which conducts multi-level generator learning
by matching the observed data in both the feature and label
spaces, while boosting the correspondence relationships be-
tween features and labels to induce an accurate multi-class
prediction model.

Figure 1 illustrates the proposed multi-level generative
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Figure 1: The proposed MGPLL model. It consists of an adversar-
ial generative model at the label level with a conditional noise label
generator Gn and a discriminator Dn, and an adversarial generative
model at the feature level with a conditional sample generator Gx

and a discriminator Dx. The prediction network F builds connec-
tions between these two level generative models while providing an
inverse mapping for Gx.

model, MGPLL, which attempts to address the partial la-
bel learning problem from both the label level and feature
level under a bi-directional mapping framework. The MG-
PLL model comprises five component networks, which are
simple multilayer perceptrons: the conditional noise label
generator, Gn, which models the noise labels conditioning
on the ground-truth label at the label level; the conditional
data generator, Gx, which generates data samples at the fea-
ture level conditioning on the denoised label vectors; the dis-
criminator,Dn, which separates the generated candidate label
vectors from the observed candidate label vectors in the real
training data; the discriminator, Dx, which separates the gen-
erated samples from the real data in the feature space; and the
prediction network, F , which predicts the denoised label for
each sample from its input features. The conditional noise
label generator Gn induces the denoised prediction target for
the prediction network F , while the conditional data gener-
ator Gx learns an inverse mapping at the feature level that
maps the denoised label vectors in the label space to the data
samples in the feature space. Below we present the details of
the two level generations and the overall learning algorithm.

3.1 Conditional Noise Label Generation

The key challenge of partial label learning lies in the fact that
the ground-truth label is hidden among the noise labels in the
given candidate label set. As aforementioned, in real world
partial label learning problems, the presence of noise labels
typically does not happen at random, but rather correlates
with the ground-truth labels. Hence we propose a conditional
noise label generation model to model the appearances of the
target-label dependent noise labels by adversarially matching
the observed candidate label distribution in the training data,
aiming to help identify the true labels later.

Specifically, given a noise value sampled from a uniform
distribution ε ∼ Pε and a one-hot label indicator vector z
sampled from a multinomial distribution Pz, we use a noise
label generator Gn(z, ε) to generate a noise label vector con-
ditioning on the true label z, which can be combined with z
in a rectified sum, “⊕”, to form a generated candidate label

vector ỹ, such that
ỹ = Gn(z, ε)⊕ z = min(Gn(z, ε) + z, 1). (1)

Here we assume the generatorGn generates non-negative val-
ues. We then adopt the adversarial learning principle to learn
such a noise label generation model by introducing a discrim-
inatorDn(y), which is a two-class classifier and predicts how
likely a given label vector y comes from the real data instead
of the generated data. By adopting the adversarial loss of the
Wasserstein Generative Adversarial Network (WGAN), our
adversarial learning problem can be formulated as the follow-
ing minimax optimization problem:

min
Gn

max
Dn

Lnadv(Gn, Dn) = (2)

E(xi,yi)∼SDn(yi)− E z∼Pz
ε∼Pε

Dn(Gn(z, ε)⊕ z)

Here the discriminator Dn attempts to maximally distinguish
the generated candidate label vectors from the observed can-
didate label indicator vectors in the real training data, while
the generator Gn tries to generate noise label vectors and
hence candidate label vectors that are similar to the real data
in order to maximally confuse the discriminatorDn. By play-
ing a minimax game between the generator Gn and the dis-
criminator Dn, the adversarial learning is expected to induce
a generator G∗

n such that the generated candidate label distri-
bution can match the observed candidate label distribution in
the training data. We adopt the training loss of the WGAN
here, as WGANs can overcome the mode collapse problem
and have improved learning stability comparing to the stan-
dard GAN models [Arjovsky et al., 2017].

Note although the proposed generator Gn is designed to
model true-label dependent noise labels, it can be easily mod-
ified to model random noise label distributions by simply
dropping the label vector input, which yields Gn(ε).

3.2 Prediction Network
The ultimate goal of partial label learning is to learn an accu-
rate prediction network F . To train a good predictor, we need
to obtain denoised labels on the training data. For a candidate
label indicator vector y, if the noise label indicator vector yn
is given, one can simply perform label denoising as follows
to obtain the corresponding true label vector z:

z = y 	 yn = max(y − yn, 0) (3)
Here the rectified minus operator “	” is introduced to gener-
alize the standard minus “−” operator into the non-ideal case,
where the noise label indicator vector yn is not properly con-
tained in the candidate label indicator vector.

The generator Gn presented in the previous section pro-
vides a mechanism to generate noise labels and denoise can-
didate label sets, but requires the true target label vector as
its input. We propose to use the outputs of the prediction
network F to approximate the target true label vectors of the
training data for the purpose of denoising the candidate labels
withGn, while using the denoised labels as the prediction tar-
get for F . Specifically, with the noise label generator Gn and
the predictor F , we perform partial label learning by mini-
mizing the following classification loss on the training data:
min
F,Gn

Lc(F,Gn) = E ε∼Pε
(xi,yi)∼S

`c
(
F (xi), yi 	Gn(F (xi), ε)

)
(4)
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Although in the ideal case, the output vectors of Gn and F
would be indicator label vectors, it is error-prone and difficult
for neural networks to output discrete values. To pursue more
reliable predictions and avoid overconfident outputs, we use
Gn and F to predict the probability of each class label being a
noise label and the ground-truth label respectively. Hence the
loss function `c(·, ·) in Eq.(4) above denotes a mean square
error loss between the predicted probability of each label be-
ing the true label (through F ) and its denoised confidence of
being a ground-truth label (through Gn).

3.3 Conditional Feature Level Data Generation
With the noise label generation model and the prediction net-
work above, the observed training data in both the label and
feature spaces are exploited to recognize the true labels and
induce good prediction models. Next, we incorporate a con-
ditional data generator Gx(z, ε) at the feature level to map
(denoised) label vectors in the label space into instances in
the feature space, aiming to further strengthen the mapping
relations between data samples and the corresponding labels,
enhance label denoising and hence improve the partial label
learning performance. Specifically, given a noise value ε sam-
pled from a uniform distribution Pε and a one-hot label vector
z sampled from a multinomial distribution Pz, Gx(z, ε) gen-
erates an instance in the feature space that is corresponding
to label z. Given the training label vectors in S denoised with
Gn, the data generator Gx is also expected to regenerate the
corresponding training instances in the feature space. This
assumption can be captured using a generation loss:

Lg(F,Gn, Gx) = E (xi,yi)∼S
ε1,ε2∼Pε

`g
(
Gx(zi, ε2),xi

)
(5)

with zi = yi 	Gn(F (xi), ε1)
where zi denotes the denoised label vector for the i-th train-
ing instance, and `g(·, ·) is a mean square error loss function.

Moreover, by introducing a discriminator Dx(x), which
predicts how likely a given instance x is real, we can de-
ploy an adversarial learning scheme to learn the generatorGx
through the following minimax optimization problem with
the WGAN loss:

min
Gx

max
Dx

Lxadv(Gx, Dx) = (6)

E(xi,yi)∼SDx(xi)− E z∼Pz
ε∼Pε

Dx(Gx(z, ε))

By playing a minimax game between Gx and Dx, this ad-
versarial learning is expected to induce a generator G∗

x that
can generate samples with the same distribution as the ob-
served training instances. Together with the generation loss
in Eq.(5), we expect the mapping relation from label vectors
to samples induced byG∗

x can be consistent with the observed
data. Moreover, the consistency of the mapping relation in-
duced by Gx and the inverse mapping from samples to la-
bel vectors through the prediction network F can be further
strengthened by enforcing an auxiliary classification loss on
the generated data:

Lc′(F,Gx) = E z∼Pz
ε∼Pε

`c′
(
F (Gx(z, ε)), z

)
(7)

where `c′(·, ·) can be a cross-entropy loss between the label
prediction probability vector and the sampled true label indi-
cator vector.

3.4 Learning the MGPLL Model
By integrating the classification loss in Eq.(4), the adversar-
ial losses in Eq.(2) and Eq.(6), the generation loss in Eq.(5)
and the auxiliary classification loss in Eq.(7) together, MG-
PLL learning can be formulated as the following min-max
optimization problem:

min
Gn,Gx,F

max
Dn,Dx

Lc(F,Gn)+Lnadv(Gn, Dn)+

αLxadv(Gx, Dx)+βLg(F,Gn, Gx)+γLc′(F,Gx) (8)

where α, β and γ are trade-off hyperparameters. The learn-
ing of the overall model corresponds to a minimax adversar-
ial game. We develop a batch-based stochastic gradient de-
scent algorithm to solve it by conducting minimization over
{Gn, Gx, F} and maximization over {Dn, Dx} alternatively.

4 Experiment
We conducted extensive experiments on both controlled syn-
thetic PL datasets and real-world PL datasets to investigate
the empirical performance of the proposed model. In this sec-
tion, we present our experimental settings, comparison results
and discussions.

4.1 Experiment Setting
Datasets
The synthetic datasets are generated from six UCI datasets,
ecoli, deter, vehicle, segment, satimage and letter. From
each UCI dataset, we generated synthetic PL datasets using
three controlling parameters p, r and ε, following the con-
trolling protocol in previous studies [Wu and Zhang, 2018;
Lei and An, 2019]. Among the three parameters, p con-
trols the proportion of instances that have noise candidate
labels, r controls the number of false positive labels, and
ε controls the probability of a specific false positive label
co-occurring with the true label. Under different parameter
configurations, multiple PL variants can be generated from
each UCI dataset. Given that both random noise labels and
target label-dependent noise labels may exist in real-world
applications, we considered two types of settings. In the
first type of setting, we consider random noise labels with
the following three groups of configurations: (I) r = 1,
p ∈ {0.1, 0.2, · · ·, 0.7}; (II) r = 2, p ∈ {0.1, 0.2, · · ·, 0.7};
and (III) r = 3, p ∈ {0.1, 0.2, · · ·, 0.7}. In the second type
of setting, we consider the target label-dependent noise la-
bels with the following configuration: (IV) p = 1, r = 1,
ε ∈ {0.1, 0.2, · · ·, 0.7}. In total, the four groups of configu-
rations provide us 168 (28 configurations × 6 UCI datasets)
synthetic PL datasets.

We used five real-world PL datasets that are collected from
several application domains, including FG-NET [Panis and
Lanitis, 2014] for facial age estimation, Lost [Cour et al.,
2011], Yahoo! News [Guillaumin et al., 2010] for automatic
face naming in images or videos, MSRCv2 [Dietterich and
Bakiri, 1994] for object classification, and BirdSong [Briggs
et al., 2012] for bird song classification.

Comparison Methods
We compared the proposed MGPLL with the following PL
methods, each configured with parameters according to the
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MGPLL vs –
SURE PALOC CLPL PL-SVM PL-KNN

varying p [r = 1] 25/14/3 32/10/0 36/6/0 37/5/0 37/5/0
varying p [r = 2] 27/13/2 33/9/0 33/9/0 38/4/0 35/7/0
varying p [r = 3] 26/14/2 32/10/0 32/10/0 36/6/0 34/8/0
varying ε [p, r = 1] 25/17/0 30/12/0 32/10/0 35/7/0 33/9/0
Total 103/58/7 127/41/0 133/35/0 146/22/0 139/29/0

Table 1: Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between MGPLL and each comparison method.

(a) vehicle (b) segment (c) satimage (d) letter

Figure 2: Test accuracy of each comparison method as ε increases from 0.1 to 0.7 (with 100% partially labeled examples [p = 1] and one
false positive candidate label [r = 1]).

respective literature: PL-KNN [Hüllermeier and Beringer,
2006], PL-SVM [Nguyen and Caruana, 2008], CLPL [Cour
et al., 2011], PALOC [Wu and Zhang, 2018], and SURE [Lei
and An, 2019].

4.2 Results on Synthetic PL Datasets
We conducted experiments on two types of synthetic PL
datasets generated from the UCI datasets, with random noise
labels and target label-dependent noise labels, respectively.
For each PL dataset, ten-fold cross-validation is performed
and the average test accuracy results are recorded. Figure 2
presents the comparison results for the configuration setting
(IV) on four datasets. We can see that the proposed MGPLL
consistently outperforms all the other methods.

To statistically study the significance of the performance
gains achieved by MGPLL over the other comparison meth-
ods, we conducted pairwise t-test at 0.05 significance level
based on the comparison results of ten-fold cross-validation
over all the 168 synthetic PL datasets obtained from all the
different configuration settings. The detailed win/tie/loss
counts between MGPLL and each comparison method are re-
ported in Table 1. From the results, we have the following
observations: (1) MGPLL achieves superior or at least com-
parable performance against PALOC, CLPL, PL-SVM and
PL-KNN in all cases, which is not easy given the compari-
son methods have different strengths across different datasets.
(2) MGPLL significantly outperforms PALOC, CLPL, PL-
SVM and PL-KNN in 75.6%, 79.1%, 86.9% and 82.7% of
the cases respectively, and produces ties in the remaining
cases. (3) MGPLL significantly outperforms SURE in 61.3%
of the cases, achieves comparable performance with SURE
in 34.5% of the cases, while being outperformed by SURE
in only 4.2% of the cases. (4) On the PL datasets with target

label-dependent noise labels, we can see that MGPLL sig-
nificantly outperforms SURE, PALOC, CLPL, PL-SVM, PL-
KNN in 59.5%, 71.4%, 76.2%, 83.3%, 78.6% of the cases re-
spectively. (5) It is worth noting that MGPLL is never signif-
icantly outperformed by any comparison method on datasets
with label-dependent noise labels. In summary, these results
on the controlled PL datasets clearly demonstrate the effec-
tiveness of MGPLL for PL learning under different settings.

4.3 Results on Real-World PL Datasets
We compared the proposed MGPLL method with the com-
parison methods on five real-world PL datasets. For each
dataset, ten-fold cross-validation is conducted. The mean test
accuracy and the standard deviation results are reported in Ta-
ble 2. Moreover, statistical pairwise t-test at 0.05 significance
level is conducted to compare MGPLL with each comparison
method based on the results of ten-fold cross-validation. The
significance results are indicated in Table 2 as well. Note that
the average number of candidate labels (avg.#CLs) of FG-
NET dataset is quite large, which causes poor performance
for all the comparison methods. For better evaluation of this
facial age estimation task, we employ the conventional mean
absolute error (MAE) [Zhang et al., 2016] to conduct two ex-
tra experiments. Two extra test accuracies are reported on the
FG-NET dataset where a test sample is considered to be cor-
rectly predicted if the difference between the predicted age
and the ground-truth age is less than 3 years (MAE3) or 5
years (MAE5). From Table 2 we have the following observa-
tions: (1) Comparing with all the other five PL methods, MG-
PLL consistently produces the best results on all the datasets,
with remarkable performance gains in many cases. For ex-
ample, MGPLL outperforms the best alternative comparison
methods by 5.2%, 3.4% and 2.0% on MSRCv2, Yahoo! News
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MGPLL SURE PALOC CLPL PL-SVM PL-KNN
FG-NET 0.079±0.024 0.068±0.032 0.064±0.019 0.063±0.027 0.063±0.029 0.038±0.025•
FG-NET(MAE3) 0.468±0.027 0.458±0.024 0.435±0.018• 0.458±0.022 0.356±0.022• 0.269±0.045•
FG-NET(MAE5) 0.626±0.022 0.615±0.019 0.609±0.043• 0.596±0.017• 0.479±0.016• 0.438±0.053•
Lost 0.798±0.033 0.780±0.036 0.629±0.056• 0.742±0.038• 0.729±0.042• 0.424±0.036•
MSRCv2 0.533±0.021 0.481±0.036• 0.479±0.042• 0.413±0.041• 0.461±0.046• 0.448±0.037•
BirdSong 0.748±0.020 0.728±0.024• 0.711±0.016• 0.632±0.019• 0.660±0.037• 0.614±0.021•
Yahoo! News 0.678±0.008 0.644±0.015• 0.625±0.005• 0.462±0.009• 0.629±0.010• 0.457±0.004•

Table 2: Test accuracy (mean±std) of each comparison method on the real-world PL datasets. •/◦ indicates whether MGPLL is statistically
superior/inferior to the comparison method on each dataset (pairwise t-test at 0.05 significance level).

MGPLL CLS-w/o-advn CLS-w/o-advx CLS-w/o-g CLS-w/o-aux CLS
FG-NET 0.079±0.024 0.061±0.024 0.072±0.020 0.068±0.029 0.076±0.022 0.057±0.016

FG-NET(MAE3) 0.468±0.027 0.430±0.029 0.451±0.032 0.436±0.038 0.456±0.033 0.420±0.420

FG-NET(MAE5) 0.626±0.022 0.583±0.055 0.605±0.031 0.590±0.045 0.612±0.044 0.570±0.034

Lost 0.798±0.033 0.623±0.037 0.754±0.032 0.687±0.026 0.782±0.043 0.609±0.040

MSRCv2 0.533±0.021 0.472±0.030 0.480±0.038 0.497±0.031 0.526±0.036 0.450±0.037

BirdSong 0.748±0.020 0.728±0.010 0.732±0.011 0.716±0.011 0.742±0.024 0.674±0.016

Yahoo! News 0.678±0.008 0.645±0.008 0.675±0.009 0.648±0.014 0.671±0.012 0.610±0.015

Table 3: Comparison results of MGPLL and its five ablation variants.

and Birdsong respectively. (2) Out of the total 35 comparison
cases (5 comparison methods × 7 datasets), MGPLL signifi-
cantly outperforms all the comparison methods across 77.1%
of the cases, and achieves competitive performance in the re-
maining 22.9% of cases. (3) It is worth noting that the perfor-
mance of MGPLL is never significantly inferior to any other
comparison method. These results again validate the efficacy
of the proposed method.

4.4 Ablation Study
The objective function of MGPLL contains five loss terms:
classification loss, adversarial loss at the label level, adver-
sarial loss at the feature level, generation loss and auxiliary
classification loss. To assess the contribution of each part,
we conducted an ablation study by comparing MGPLL with
the following ablation variants: (1) CLS-w/o-advn, which
drops the adversarial loss at the label level. (2) CLS-w/o-
advx, which drops the adversarial loss at the feature level. (3)
CLS-w/o-g, which drops the generation loss. (4) CLS-w/o-
aux, which drops the auxiliary classification loss. (5) CLS,
which only uses the classification loss by dropping all the
other loss terms. The comparison results are reported in Ta-
ble 3. We can see that comparing to the full model, all five
variants produce inferior results in general and have perfor-
mance degradations to different degrees. This demonstrates
that the different components in MGPLL all contribute to the
proposed model to some extend. From Table 3, we can also
see that the variant CLS-w/o-advn has a relatively larger per-
formance degradation by dropping the adversarial loss at the
label level, while the variant CLS-w/o-aux has a small per-
formance degradation by dropping the auxiliary classification
loss. This makes sense as by dropping the adversarial loss for
learning noise label generator, the generator can produce poor
predictions and seriously impact the label denoising of the

MGPLL model. This suggests that our non-random noise la-
bel generation through adversarial learning is a very effective
and important component for MGPLL. For CLS-w/o-aux, as
we have already got the classification loss on real data, it is
reasonable to see that the auxiliary classification loss on gen-
erated data can help but is not critical. Overall, the ablation
results suggest that the proposed MGPLL is effective.

5 Conclusion

In this paper, we proposed a novel multi-level generative
model, MGPLL, for partial label learning. MGPLL uses a
conditional label level generator to model the target label
dependent non-random noise label appearances and perform
candidate label denoising, while using a conditional feature
level generator to generate data samples from denoised la-
bel vectors. Moreover, a prediction network is incorporated
to predict the denoised true label of each instance from its
input features, which forms bi-directional inverse mappings
between labels and features, together with the data feature
generator. The adversarial learning of the overall model si-
multaneously identifies true labels of the training instances
from both the observed data features and the observed can-
didate labels, while inducing an accurate prediction network.
We conducted extensive experiments on real-world and syn-
thesized PL datasets. The proposed MGPLL model demon-
strates the state-of-the-art PL performance.

Acknowledgements

This research was supported in part by the NSERC Discovery
Grant, the Canada Research Chairs Program, the Canada CI-
FAR AI Chairs Program, and the China Scholarship Council.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3269



References
[Arjovsky et al., 2017] Martin Arjovsky, Soumith Chintala,
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