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Abstract

Reinforcement Learning (RL) with sparse rewards
is a major challenge. We propose Hindsight Trust
Region Policy Optimization (HTRPO), a new RL
algorithm that extends the highly successful TRPO
algorithm with hindsight to tackle the challenge
of sparse rewards. Hindsight refers to the algo-
rithm’s ability to learn from information across
goals, including past goals not intended for the cur-
rent task. We derive the hindsight form of TRPO,
together with QKL, a quadratic approximation to
the KL divergence constraint on the trust region.
QKL reduces variance in KL divergence estima-
tion and improves stability in policy updates. We
show that HTRPO has similar convergence prop-
erty as TRPO. We also present Hindsight Goal Fil-
tering (HGF), which further improves the learning
performance for suitable tasks. HTRPO has been
evaluated on various sparse-reward tasks, including
Atari games and simulated robot control. Results
show that HTRPO consistently outperforms TRPO,
as well as HPG, a state-of-the-art policy gradient
algorithm for RL with sparse rewards.’

1 Introduction

Reinforcement Learning (RL) has been widely investigated
to solve problems from complex strategic games [Mnih et
al., 2015] to precise robotic control [Deisenroth et al., 2013].
However, current successful practice of RL in robotics re-
lies heavily on careful and arduous reward shaping[Ng er al.,
1999; Grzes, 2017]. Sparse reward, in which the agent is
rewarded only upon reaching the desired goal, obviates de-
signing a delicate reward mechanism. It also guarantees that
the agent focuses on the intended task itself without any devi-
ation. However, sparse reward diminishes the chance for pol-
icy to converge, especially in the initial random exploration
stage, since the agent can hardly get positive feedbacks.
Recently, several works have been devoted to sparse-
reward RL. [Andrychowicz et al., 2017] proposes Hindsight
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Experience Replay(HER), which trains the agent with hind-
sight goals generated from the achieved states through the his-
torical interactions. Such hindsight experience substantially
alleviates exploration problem caused by sparse-reward set-
tings. [Rauber et al., 2019] proposes Hindsight Policy Gra-
dient (HPG). It introduces hindsight to policy gradient, re-
sulting in an advanced algorithm for RL with sparse reward.
However, for HPG, there remain several drawbacks hinder-
ing its application in more cases. Firstly, as an extension to
“vanilla” policy gradient, its performance level and sample
efficiency remain limited. Secondly, it inherits the intrinsic
high variance of PG methods, and the combination with hind-
sight data further exacerbates the learning stability.

In this paper, we propose Hindsight Trust Region Policy
Optimization (HTRPO), a hindsight form of TRPO [Schul-
man et al., 2015b], which is an advanced RL algorithm with
approximately monotonic policy improvements. We prove
that HTRPO theoretically inherits the convergence property
of TRPO, and significantly reduces the variance of policy im-
provement by introducing Quadratic KL divergence Estima-
tion (QKL) approach. Moreover, to select hindsight goals that
better assist the agent to reach the original goals, we design a
Hindsight Goal Filtering mechanism.

We demonstrate that in a wide variety of sparse-reward
tasks including Atari games and robotic control, HTRPO can
consistently outperform TRPO and HPG in both performance
and sample efficiency with commendable learning stability.
We also provide a comprehensive comparison with HER,
showing that HTRPO achieves much better performance in
6 out of 7 benchmarks. Besides, we also conduct ablation
studies to show that Quadratic KL divergence Estimation can
effectively lower the variance and constrain the divergence
while Hindsight Goal Filtering brings the performance to a
higher level especially in more challenging tasks.

2 Preliminaries

2.1 RL Formulation and Notation

Consider the standard infinite-horizon reinforcement learning
formulation which can be defined by tuple (S, A, 7, po, 7, 7).
S and A denote the set of states and actions respectively.
m: S — P(A) is a policy mapping states to a distribution
over actions. pg is the distribution of the initial state so. Re-
ward function r : S — R defines the reward obtained from


https://drive.google.com/file/d/1XFjPv0X50eYIPPcXS8C8jMbefssYtYUQ/view?usp=sharing

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

the environment and v € (0,1) is a discount factor. In this
paper, the policy is a differentiable function regarding param-
eter 6. We follow the standard formalism of state-action value
function Q(s,a), state value function V' (s) and advantage
function A(s, a) in [Sutton and Barto, 2018]. We also adopt
the definition of ~-discounted state visitation distribution as
po(s) = (1 —7) > 2gv' P(s¢ = s) [Ho et al., 2016]. Cor-
respondingly, y-discounted state-action visitation distribution
[Ho er al., 2016], also known as occupancy measure [Ho and
Ermon, 2016], is defined as py (s, a) = pp(s) X mp(als).

2.2 Trust Region Policy Optimization

TRPO [Schulman er al., 2015a] is an iterative trust region
method that effectively optimizes policy by maximizing the
per-iteration policy improvement. The optimization problem
proposed in TRPO can be formalized as follows:

max E {We(lﬂ )A (s, a)} (D
0 samps(s (als)
M.E)WM((HWMHHSG o)
s~pg(s
in which p;(s) = 327" P(s¢ = s). 0 denotes the parame-

ter of the new policy while 8 is that of the old one.

2.3 Hindsight Policy Gradient

HPG [Rauber et al., 2019] combines the idea of hind-
sight [Andrychowicz et al., 2017] with policy gradient meth-
ods. Though goal-conditioned reinforcement learning has
been explored for a long time and actively investigated in
recent works [Peters and Schaal, 2008; Schaul et al., 2015;
Veeriah et al., 2018], HPG firstly extends the idea of hind-
sight to goal-conditioned policy gradient and shows that the
policy gradient can be computed in expectation over all goals.
The goal-conditioned policy gradient is derived as follows:

T-1
Von(mo) = E Zvelogwe(atstvg>Ae(st7at7g)] 3)
T Lt=0

where 7 ~ pg(7|g). Then, by applying hindsight formula-
tion, it rewrites goal-conditioned policy gradient with trajec-
tories conditioned on achieved goal ¢’ using importance sam-
pling to solve sparse-reward problems efficiently.

3 Hindsight Trust Region Policy Optimization

In this section, we firstly introduce Quadratic KL divergence
Estimation (QKL) method, which efficiently reduces the vari-
ance of KL estimation in TRPO and results in higher learn-
ing stability. With QKL, we show that TRPO maintains the
monotonically-converging property. After that, we derive the
hindsight form of TRPO, called Hindsight Trust Region Pol-
icy Optimization algorithm, to tackle the severely off-policy
hindsight data for better learning with sparse rewards. Specif-
ically, the expected return and the KL divergence constraint
are both modified to adapt to hindsight data with importance
sampling. Benefiting from QKL, we can precisely estimate
KL divergence using hindsight data while keeping the vari-
ance below a reasonable level. Intuitively, HTRPO utilizes
hindsight data to estimate the objective and the constraint,
and iteratively find out the local optimal policy to ensure the
approximately monotonous policy improvements.

3.1 TRPO with Quadratic KL Divergence

In TRPO, the KL divergence expectation under p;(s) is esti-
mated by averaging values of KL divergence conditioned on
collected states. However, this method is no longer valid if
KL divergence cannot be analytically computed (e.g. Gaus-
sian Mixture Model) or the state distribution changes (e.g. us-
ing hindsight data instead of the collected ones). To solve this
problem, we firstly transform the KL divergence to an expec-
tation under occupancy measure p;(s,a) = p;(s) x wz(als).
It can be estimated using the collected state-action pairs
(s,a), no longer depending on the analytical form of KL di-
vergence. Also, such formulation is convenient for correct-
ing changed distribution over state and action by importance
sampling, which will be discussed in section 3.2. However,
it will increase the estimation variance, causing instability of
training. Therefore, by making use of another f-divergence,
we propose QKL to approximate KL divergence for variance
reduction, and both theoretically and practically, we prove the
effectiveness of such an approximation.

Given two policies m;(als) and mg(als), the KL-
divergence over state s can be converted to a logarithmic
form:

Dir(mz(als)l|me(als)) = E

ar~g(als)

[log m(als) — log mg(als)]
However, simply expanding the KL-divergence into logarith-
mic form still leaves several problems unhandled. Firstly,
such formulation causes excessively high estimation vari-
ance. Secondly, such estimation of KL-divergence is of pos-
sible negativity. To overcome these two drawbacks, we pro-
pose Quadratic KL Divergence Estimation in Proposition 1
and prove that such approximation will reduce the estimation
variance in Proposition 2 (detailed proof can be found in Ap-
pendix A.1 and A.2):

Proposition 1. (Quadratic KL Divergence Estimation). For
policy m5(al|s) and my(a|s), and for n = me(als) — wz(als),

E [log m5(als) — log mg(als)]

= E |3 (ogsals) ~ logm(als))?| +E [007)] @)

where a ~ m5(als).

Proposition 1 demonstrates that when 6 and 0 is of lim-
ited difference, the expectation of log m;(als) — log my(als)
can be sufficiently estimated by the expectation of its square.
In fact, Eqrr,(als) [3(l0g m5(als) — logme(als))?] is an f-
divergence, where f(z) = Sx(log z)?, which we call Dgrr,
in this paper. Noticeably, though f(x) is a convex function
only when x € (é, 00), and it indeed does not correspond to
, :ggz::; > % holds, hence
we can define a convex function on R*: f(z) = jz(logz)?
when z € (1,00) and —2 + 2 when z € (0, 1], with an

1
unused piece defined over (0, %]

an f-divergence, in our practice

Proposition 2. (Variance of Constraint Function). For policy
w5(als) and mo(als), let Var denote the variance of a vari-
able. For any action a € A and any state s € S, when
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—logmg(als) € [—0.5,0.5], then

e [Uogmslals) — logma(als)

a~ms(als) 2

< Var [logmy(als) —logmg(als)] . 5)

a~g(als)

log 7;(als)
2

Proposition 2 illustrates that there is a decrease from the
variance of log m;(a|s) — logmy(als) to the variance of its
square. In fact, the closer it is between 6 and 6, the more the
variance decreases. Next, we will show that with the intro-
duction of QKL, TRPO still maintains similar convergence

property.
Proposition 3. (Policy Improvement Guarantee) Given two
policies wg and 7z, Let

a(als), mo(als))

D (mz(als™),mo(als™))
IfDQKL Tfe( [s%),70(a]s*)) < m, then

1(mg) 2 Li;(m9) — CDGiL(mg(als), mo(als))  (6)

s* = arg max Dry (7

where
Lﬂ'g (’/Tg) = 77(”@) + Es~7rg(s),a~7r9(a|s) [Aﬂg (57 CL)} 7
and n(mg) = E [>_ v'ry] is the expected return, C = (14_5;*)2,

ﬂ = mazs,a‘Aﬂé (57 CL) B (pv Q) = % Zz |pl - (h‘

The proof and detailed analysis are given in Appendix B.
Intuitively, Proposition 3 means that when two policies are
not far from each other, the convergence property of TRPO
also holds for the QKL constraint. As a result, with Propo-
sition 3, we can derive a new but similar monotonically-
converging algorithm as in TRPO, given in Appendix B.2. By
taking a series of approximation as shown in Appendix B.2,
the following policy optimization problem is derived, called
QKL-TRPO.

mo(als)

mg(als)

max E {

0 s.ampy(s.a)

As(s, a)] ¢))

st. E B(logﬂg(cﬂs) - log7r9(a|s))2] <e (8)

It is noteworthy that QKL-TRPO can be applied to policies
which do not correspond to an analytic KL. divergence (e.g.
GMM policies). We also provide a simple analysis of QKL-
TRPO compared with the original TRPO in Appendix G.1,
which shows that QKL-TRPO is comparable with TRPO in a
series of MuJoCo benchmarks.

3.2 Hindsight Formulation of QKL-TRPO

In this section, we derive the hindsight form of the QKL-
TRPO, called Hindsight Trust Region Policy Optimization
(HTRPO), to efficiently tackle severely off-policy hindsight
experience and sparse-reward RL problems.

Starting from eq.1, it can be written in the following variant
form:
c- ﬂe(at\St)A

m5(at|se) (50, ar) ©)

T~Pg (T) t=0
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The derivation process of this variant form is shown explic-
itly in Appendix C.1 and in [Schulman et al., 2015a]. Given
the expression above, similar to eq.3, we consider the goal-
conditioned objective function:

-5 |

where 7 ~ p;(7|g). Though it seems that eq.10 makes it pos-
sible for off-policy learning, it can be used as the objective
only when policy 7y is close to the old policy 7y, i.e. within
the trust region. Using severely off-policy data like hindsight
experience will make the learning process diverge. Therefore,
importance sampling is integrated to correct the difference of
the trajectory distribution caused by changing the goal. Based
on eq.10, the following Proposition gives out the hindsight
objective function conditioned on some goal g’ with the dis-
tribution correction derived from importance sampling.

at|3t7
A; 10
at|5ta ) O(Staahg) ( )

Proposition 4. (Hindsight Expected Return). For the orig-
inal goal g and hindsight goal ¢', the object function of
HTRPO L;(0) is given by:

m(at|st,g')
ﬂ-é(at‘stvg/)

W@(ak\smgl) t
m5(ak|sk, g)

Aé(sty at, gl)

(1)

in which 7 ~ py(7|g) and T = sg, a9, 81,01, .., St, Q4.

Appendix C.2 presents an explicit proof of how the
hindsight-form objective function derives from eq.10. In our
practice, we introduce a baseline Vy(s) for computing the ad-
vantage Ay. Though Ay here can be estimated by combining
per-decision return [Precup et al., 20001, due to its high vari-
ance, we adopt one-step TD method instead to get Ay, i.e.,
Ap(s,a) = r(s,a) +vVp(s") — Vi(s). Intuitively, eq.11 pro-
vides a way to compute the expected return in terms of the
advantage with new-goal-conditioned hindsight experiences
which are generated from interactions directed by old goals.

Next, we demonstrate that hindsight can also be introduced
to the constraint function. The proof follows the methodology
similar to that in Proposition 4, and is deducted explicitly in
Appendix C.3.

Proposition 5. (HTRPO Constraint Function). For the orig-
inal goal g and hindsight goal ¢', the constraint between pol-
icy m5(als) and policy mg(als) is given by:

co t - ] /
E E Z H M,}/t}(t <  (12)
g" | T~po(Tlg)

=0 k=0 m5(ak|sk, 9)
in which € =

log g (ac|st, gl))2~

Proposition 5 implies the practicality of using hindsight
data under condition ¢’ to estimate the KL expectation. From
all illustration above, we give out the final form of the opti-
mization problem for HTRPO:

€
1—

= and K; = %(logﬂg(aﬂstag/) -

max [E

E (13)
0 g’ |T~po(rlg)
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Figure 1: Procedure of Hindsight Goal Filterring

co t - . /
st.E| E ZHMW% < (14)
g | r~polrle) |25 iy Talaklsk, 9)
where R, = %ﬁ:g:;/x@(st,at,g’) and K, =

1 (log mz(as|s, tq’).f log o (atlse, g’))z. The solving process
for HTRPO optimization problem is explicitly demonstrated
in Appendix D.

4 Hindsight Goal Filtering

In hindsight learning, the agent generalizes to reaching the
original goal through learning to reach the hindsight goal first.
Therefore, the selection of hindsight goals imposes a direct
impact on the performance. If the hindsight goals are far from
the original ones, the learned policy may not generalize well
to the original goals. For example, in Fetch PickAndPlace,
the initialized random policy barely grasps the target success-
fully, which results in the hindsight goals majorly distributing
on the table. Given the original goals up in the air, such a dis-
crepancy can cause a lower learning efficiency.

In this section, we introduce a heuristic method called
Hindsight Goal Filtering(HGF). Intuitively, HGF is trying to
filter the most useful goals from the achieved ones instead
of random selection. Specifically, based on our analysis (eq.
13), the performance improves if we reduce the distribution
discrepancy between original goals g and hindsight goals ¢’.
Ideally, if the distribution of ¢’ matches that of g, the agent
will reach g after learning to reach ¢’. Therefore, we restrict
the selected hindsight goals to distribute in the original goal
space whenever possible to cover the area of original goals.

The main idea is shown in Figure 1 and the algorithm is
summarized in Appendix E.1. The input of HGF includes
2 parts: the achieved goal set G, and the original goal set
G,. At the beginning, especially for some complex tasks, G,
can only have small or even no overlap with G,. Under this
situation, we encourage the agent to learn to reach the origi-
nal goal region by selecting the nearest achieved goals as the
hindsight goals. Once some achieved goals fall in the origi-
nal goal region, they are considered valid achieved goals, and
a subset of this intersection will be sampled to cover the re-
gion as fully as possible. This subset is selected following the
procedure in Figure 1. Note that the distance metric should
be determined by the collected original goal distribution. In
our experiments, we use the density-weighted Euclidean dis-
tance. Specifically, we initialize the hindsight goal set G with
a randomly sampled achieved goal. To make the goal dis-
tribute dispersedly, we use Max-Min Distance as the mea-
surement, which indicates the minimal distance between the
new goal and the selected ones. By maximizing the minimal
distance, it ensures an overall large distance between the new
goal and the rest. HGF is related to Curriculum-guided HER
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Initial  Target

(b) Ms. Pacman (c) Fetch

(a) Bit Flipping
Figure 2: Demonstration of experiment environments

(CHER)[Fang et al., 2019] to some extent. However, CHER
is suitable for transition-based RL, and cannot be applied to
episode-based policy gradient algorithms directly.

The complete algorithm of HGF and HTRPO is presented
in Appendix E.

S Experiments
Our experiments aims to answer the following questions:

1. How does HTRPO compared to other methods when
performed over diversified tasks? (Section 5.2)

2. What are the main contributors to HTRPO? (Section 5.3)

3. How do key parameters affect the performance? (Sec-
tion 5.4)

For 1), we show that HTRPO consistently outperforms
both HPG and TRPO on success rate and sample efficiency in
a wide variety of tasks, and achieves state-of-the-art perfor-
mance in sparse-reward stochastic policy gradient methods.
We also provide an in-depth comparison with HER in this
part. For 2), we ablate the main components of HTRPO. The
ablation study shows that QKL effectively reduces the vari-
ance and significantly improves the performance in all tasks.
HGF plays a crucial role in improved performance for the
more challenging tasks (e.g. Fetch PickAndPlace). For 3), we
vary the scale of KL estimation constraint and the numbers of
hindsight goals and choose the best parameter settings.

5.1 Benchmark Settings

We implement HTRPO on a variety of sparse reward tasks.
Firstly, we test HTRPO in simple benchmarks established in
previous work [Andrychowicz er al., 2017] including 4-to-
100-Bit Flipping tasks. Secondly, We verify HTRPO’s per-
formance in Atari games like Ms. Pac-Man [Bellemare et
al., 2013] with complex raw image input to demonstrate its
generalization to convolutional neural network policies. Fi-
nally, we test HTRPO in simulated robot control tasks like
Reach, Push, Slide and PickAndPlace in Fetch [Plappert et
al., 2018] robot environment. As mentioned in [Plappert et
al., 2018, it still remains unexplored that to what extent the
policy gradient methods trained with hindsight data can solve
continuous control tasks. Since HTRPO is a natural candi-
date that can be applied to both discrete and continuous tasks,
other than discrete Fetch environments introduced in [Rauber
et al., 2019], we also implement HTRPO in continuous en-
vironments including Fetch Reach, Fetch Push, Fetch Slide,
Fetch PickAndPlace. A glimpse of these environments is
demonstrated in Figure 2, and the inclusive introductions are
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Figure 3: Success rate for benchmark environments. Top row: performance of discrete environments. Bottom row: performance of
continuous environments. The full lines represent the average evaluation over 10 trails and the shaded regions represent the corresponding

standard deviation.

included in Appendix F.1. Detailed settings of hyperparame-
ters are listed in Appendix F.2. All experiments are conducted
on a platform with NVIDIA GeForce GTX 1080Ti.

We compare HTRPO with HPG [Rauber e al., 2019] and
TRPO [Schulman et al., 2015a], which are chosen as the
baseline algorithms. The reward setting used in our paper
is purely sparse reward, i.e., when the task has not been fin-
ished, the agent receives O reward in each time step, and once
the task is finished, the agent will receive a high positive re-
ward. Besides, TRPO is also implemented with dense re-
wards and the new KL estimation method proposed in Section
3.1. For a fair comparison, we also combine HPG with Hind-
sight Goal Filtering in our experiments. To demonstrate the
performance level of HTRPO more comprehensively, we also
compare HTRPO with the well-known HER algorithm. In all
experiments, we directly use the accumulated time steps the
agent takes while interacting with the environments through-
out episodes and batches, and do not count the hindsight steps
which are generated using hindsight goals.

5.2 Comparative Analysis

We evaluate HTRPO’s performance from success rate and
sample efficiency, and test its generality to different tasks in-
cluding image-based Atari games, and simulated robot con-
trol tasks. Results show HTRPO’s consistent effectiveness
and strong generality to different kinds of tasks and policies.

Compare with Baselines

The success rate curves for the trained policy are demon-
strated in Figure 3. We can conclude that HTRPO consis-
tently outperforms all baselines, including different versions
of TRPO and HPG, in most benchmarks, including image-
based Atari games (Ms. Pac-Man) and a variety of sim-
ulated robot control tasks with different control modes. It
demonstrates that HTRPO generalizes well in different kinds
of tasks and policies with high-dimensional inputs. Besides,
the sample efficiency of HTRPO also exceeds that of HPG,
for it reaches a higher average return within less time in most

environments.

Compare with HER

We implement HER with DQN [Mnih er al., 2015] for dis-
crete environments and DDPG [Lillicrap et al., 2015] for con-
tinuous environments based on OpenAl baselines?. We found
that HER cannot work well with the purely sparse reward, i.e.,
the reward is available only when reaching the goal. Thus, we
also follow the reward setting in [Andrychowicz et al., 2017]
to conduct HER experiments for reference (HER _).

Toy example. To begin with, we test HTRPO on 4-to-100-
Bit Flipping task [Andrychowicz et al., 2017] as well as HER
(Figure 4). The maximum training steps are 2 - 10°. In all Bit
Flipping tasks, HTRPO can converge to nearly 100% success
rate with much fewer time steps while HER is much data-
inefficient as the number of Bits increases.

Benchmarks. Table 1 shows the comparison over the
benchmark environments. We can conclude that: 1) HER
can not work quite well with the purely sparse reward set-
ting, and HTRPO outperforms HER in 6 out of 7 benchmarks
significantly. 2) For discrete robot control tasks, HTRPO can
learn a good policy while HER_;+DQN cannot work well.
For continuous environments, HER_; slightly outperforms
HTRPO. In summary, HTRPO can be applied both in discrete
and continuous tasks without any modification and achieve
commendable performance compared to HER.

5.3 Ablation Studies

There are mainly 2 components in HTRPO, QKL and HGF,
that impose an effect on the performance. Besides, we will
also investigate the impact of Weighted Importance Sampling
(WIS), which is conducive to variance reduction. To study the
effect of reward settings, we implement HTRPO with dense
rewards. Selected results are shown in Figure 5 and the full
ablation study is available in Appendix G.2. We can conclude
that: 1) QKL plays a crucial role for the high performance

“https://github.com/openai/baselines

3339



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

—— HTRPO HER

Success Rate Training Time Steps (x106)

1.0 2
0.5 1
00t ———1 o=
4 20 36 52 68 84100 4 20 36 52 68 84100
Numbner of Bits Numbner of Bits
Figure 4: Performance of Bit Flipping.
Environment HER HER_; HTRPO
Ms. Pacman 72+3 74 £ 4 64 +6
FetchReachD 53 +41 100+£0 100+0
Fetch Push D 8+1 T2 88 +2
Fetch Slide D 1143 1045 76 +9
Fetch Reach C 183 100+0 10040
Fetch Push C 72 100+ 0 98 +1
Fetch Slide C 1+1 93 +7 85+4

Table 1: Success rate comparison between HTRPO and HER (%).
HER_; means using the original -1-and-0 reward setting instead of
the purely sparse reward that HTRPO used, i.e., only when the agent
achieves the goal can it receive a high reward.

of HTRPO by significantly reducing the estimation variance
of KL divergence; 2) HGF can enhance the performance of
HTRPO to a higher level; 3) WIS is important since it can
reduce the variance of importance sampling significantly; 4)
Dense-reward setting harms the performance, which has also
been verified in [Plappert et al., 2018].

5.4 Hyperparameter Selection

We take Continuous Fetch Push as an example to study the
impact of different KL estimation constraint scales and dif-
ferent numbers of hindsight goals.

Different KL estimation constraint scales. KL estimation
constraint, i.e. max KL step specifies the trust region, the
range within which the agent searches for the next-step op-
timal policy. In the sense of controlling the scale to which
the agent updates the policy per step, this parameter presents
similar functionality as learning step size. If set too low, say
5e-6 shown in Figure 6, it would inevitably slow down the
converging speed. If set too high, the potentially large di-
vergence between the new and old policy may violate the
premise for some core parts of HTRPO theory derivation in-
cluding Proposition 1 and HTRPO solving process.

Different number of hindsight goals. From the results in
Figure 7, it is straightforward that more hindsight goals lead
to faster converging speed. This phenomenon accords with
the mechanism of how hindsight methodology deals with
sparse reward scenarios, i.e. it augments the sample pool
with substantial hindsight data rather than leaving it with few
valid original trajectories. It’s intuitive that the more hind-
sight data there are, the higher sample efficiency HTRPO
achieves. However, limited by the hardware resources, we
need to trade off the sampled goal number.
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—— HTRPO —— HTRPO w/o QKL —— HTRPO w/o WIS
HTRPO Dense —— HTRPO w/o HGF
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Figure 5: Ablation Experiments.
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Figure 6: Max KL steps. Figure 7: Goal numbers.

6 Conclusion

We proposed Hindsight Trust Region Policy Optimiza-
tion(HTRPO), a new RL algorithm that extends the highly
successful TRPO algorithm with hindsight to tackle the chal-
lenge of sparse rewards. We show that with the help of
the proposed Quadratic KL divergence Estimation (QKL),
HTRPO significantly reduces the variance of KL estimation
and improves the performance and learning stability. More-
over, we design a Hindsight Goal Filtering mechanism to
narrow the discrepancy between hindsight and original goal
space, leading to better performance. Results on diversified
benchmarks demonstrate the effectiveness of HTRPO.

Since HTRPO is a natural candidate for both discrete
and continuous tasks and the QKL constraint gets rid of
the demand for analytical form, it is promising to opti-
mize policies with non-Gaussian (e.g. GMM) or mixed
(discrete+continuous) action space. It also provides the pos-
sibility to tackle high-dimensional real-world problems and
train robot control policies without arduous reward shaping.
Besides, HGF can be integrated into hindsight-goal explo-
ration methods naturally [Ren ef al., 2019; Pitis et al., 2020],
which should lead to a higher performance.
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