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Abstract
Recent work on explainable clustering allows de-
scribing clusters when the features are interpretable.
However, much modern machine learning focuses
on complex data such as images, text, and graphs
where deep learning is used but the raw features
of data are not interpretable. This paper explores a
novel setting for performing clustering on complex
data while simultaneously generating explanations
using interpretable tags. We propose deep descrip-
tive clustering that performs sub-symbolic represen-
tation learning on complex data while generating
explanations based on symbolic data. We form good
clusters by maximizing the mutual information be-
tween empirical distribution on the inputs and the in-
duced clustering labels for clustering objectives. We
generate explanations by solving an integer linear
programming that generates concise and orthogonal
descriptions for each cluster. Finally, we allow the
explanation to inform better clustering by proposing
a novel pairwise loss with self-generated constraints
to maximize the clustering and explanation mod-
ule’s consistency. Experimental results on public
data demonstrate that our model outperforms com-
petitive baselines in clustering performance while
offering high-quality cluster-level explanations.

1 Introduction
As machine learning is applied to more complex data and situ-
ations, the need to understand a model’s decisions becomes
more paramount. The area of explainable AI (XAI) [Adadi
and Berrada, 2018] is motivated to enhance the interpretability
of complex machine learning models, especially deep learn-
ing. Arguably XAI is more needed and more challenging in
unsupervised learning such as clustering as the explanations
are usually at the model level rather than the instance level.
For example, supervised learning explanations mainly focus
on why an instance is classified to a specific class [Ribeiro et
al., 2016]; however, with clustering we need to explain the
semantics of each discovered cluster.

Existing work on explainable clustering (see Figure 1)
typically takes one of two directions: i) explanation by
design algorithms [Bertsimas et al., 2020; Moshkovitz et

Figure 1: Taxonomy of works on clustering explanations.

al., 2020] that use interpretable features to create both a
clustering and an explanation (left branch of Figure 1).
ii) explanation by post-processing [Davidson et al., 2018;
Sambaturu et al., 2020] which take an existing clustering and
generate an explanation using another additional set of fea-
tures (tags) not given to the clustering algorithm (right branch
of Figure 1). Each direction has its limitations: the first type
of work is not suitable for complex data such as images and
graphs as the underlying features are uninterpretable to a hu-
man. Post-processing methods are algorithm-agnostic, but
they did not fully use the information from additional features
to guide the clustering process hence may generate poor expla-
nations as the clustering may be difficult to explain. Instead,
our proposed method will learn a good clustering that is also
interpretable while post-processing approaches only find the
best explanation possible for a given clustering.

Explaining deep clustering results using the underlying com-
plex features is a challenging but alternative direction. Instead,
we explore the situation that a partial set of instance-level se-
mantic tags are known from which we generate a cluster-level
description along with complex features to cluster on. This
setting is not uncommon and was previously studied [Dao et
al., 2018; Davidson et al., 2018]. Example settings include
Twitter graphs where the user-user graph is clustered and ex-
plained using hashtags and personal images where the tags are
descriptors of events in the image.

To address the challenges of simultaneously clustering and
explaining efficiently with incomplete semantic features, we
propose a novel deep descriptive clustering framework (DDC)
that incorporates both deep clustering and cluster-level expla-
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nation. The whole framework is trained iteratively to maxi-
mize the consistency between the clustering and its explana-
tion. To be specific, we formulate the cluster-level description
problem as an Integer Linear Programming (ILP) which is
solved for concise and orthogonal descriptions for each clus-
ter. Inspired by the success of the discriminative clustering
model [Krause et al., 2010] which has fewer assumptions of
the data, our main clustering objective maximizes the mutual
information between empirical distribution on the inputs and
the induced clustering labels. Finally, we propose a pairwise
loss with self-generated constraints to penalize the inconsis-
tency between the clustering feature space and discovered
descriptive tag space to improve the clustering quality. The
major contributions of this paper are listed as follows:

• We propose a novel framework to learn clustering and
cluster-level explanations simultaneously. The proposed
architecture supports learning from the sub-symbolic
level (which clustering is performed on) and symbolic
level (which explanations are created from).

• We formulate the class-level explanation problem as an
ILP to solve concise and orthogonal explanations. A
pairwise loss function is proposed with self-generated
constraints to bridge the clustering and explanation.

• Empirical results on public data demonstrate that our
model consistently achieves better clustering results and
high-quality explanations compared to recent baselines.

• We explore the novel direction of graphical ontology
explanations for clustering when the number of clusters
is large and a lengthy explanation list is problematic.

The rest of this paper is organized as follows. In section 2,
we overview related works. We then introduce our learning
objectives and optimization algorithms in section 3. Experi-
mental results and analysis are reported in section 4. Finally,
section 5 concludes this paper with future research directions.

2 Related Work
Explainable clustering models. Many previous works [Liu
et al., 2005; Fraiman et al., 2013; Ghattas et al., 2017;
Bertsimas et al., 2020] have explored the explainable-by-
design algorithms which consider the simultaneous construc-
tion of decision trees and cluster discovery for explainable
clustering. Typical work such as [Moshkovitz et al., 2020] con-
sidered traditional clustering algorithms like k-medians/means.
However, one major limitation of these methods is that they
require the features used for clustering to be interpretable
which may not be the case for complex data such as graphs
and images. Another line of research [Davidson et al., 2018;
Sambaturu et al., 2020] assumes one set of semantic tags for
each instance are available to do post-processing explanation.
[Davidson et al., 2018] proposed a model-agnostic explana-
tion method that explains any given clustering with tags but
does not change the clustering. Perhaps the closest work to
our own is [Dao et al., 2018] but is limited to simple diameter-
based clustering objectives and scales to just a few thousand
instances whilst making strong assumptions such as having
well-annotated tags for every instance. Our work differs from

the above: we learn a deep clustering model and cluster expla-
nation simultaneously with a partial set of semantic tags and
scales for large data sets.

Multi-view clustering. As our approach uses semantic tags
for explanation this can be seen as another view of the data;
hence we overview the recent works on multi-view cluster-
ing and discuss how our proposed work differentiates from it.
The goal of multi-view clustering [Bickel and Scheffer, 2004;
Xu et al., 2013; Shao et al., 2015; Tao et al., 2017; Wang
et al., 2018; Hu and Chen, 2018] is getting better clustering
results via exploiting complementary and consensus informa-
tion across multiple views rather than simply concatenating
different views. Our descriptive clustering setting is different
from multi-view clustering: Firstly, instead of just one goal
which maximizes clustering performance, our work has an-
other explanation objective to find meaningful descriptions of
clusters. Secondly, most multi-view clustering is for similar
views (i.e., all images) whereas our views are more diverse
(e.g., continuous image features with categorical semantic
tags) than general multi-view clustering settings.

Constrained clustering. Unlike most multi-view cluster-
ing algorithms which leverages the knowledge from dif-
ferent views to maximize the clustering performance, con-
strained clustering assumes the users have access to par-
tial pre-existing knowledge about the desired partition of
the data. The constraints are usually expressed via pair-
wise constraints [Wagstaff et al., 2001; Bilenko et al., 2004;
Basu et al., 2008] such as together and apart which in-
dicates whether two instances belong to the same cluster
or different clusters. Recent works [Fogel et al., 2019;
Zhang et al., 2019] have also extended constrained clustering
to deep learning models. Our work shares one common at-
tribute with these works in using a constrained optimization
objective for better clustering. However, in this work our con-
straints are dynamically self-generated in that they cannot be
known a priori as generating those constraints require both the
feature representation and the clustering explanations.

3 Approach
3.1 Overall Framework
The framework of our proposed Deep Descriptive Clustering
(DDC) is shown in Figure 2. It can be divided into three
learning objectives: i) clustering objective which maximizes
the mutual information between the empirical distribution on
the inputs and the induced label distribution; ii) class-level
explanation objective which finds the shortest and different
explanations for each cluster and creates a tag space mask
function g to filter out uninformative tags; iii) an instance
pairwise loss term with self-generated constraints to maximize
the consistency between the clustering feature space and the
descriptive tag space induced by mask function g.

3.2 Information Maximization for Clustering
Given unlabeled dataset ofN data points asX = {x1, ..., xN}
where xi = (xi1, ..., xiD) ∈ RD are D dimensional feature
vectors, the goal of our proposed model is to predict the clus-
tering assignments y ∈ {1, ...,K} given input x, encoding

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3343



Figure 2: The framework of deep descriptive clustering (DDC). DDC consists of one clustering objective, one sub-symbolic explanation
objective, and one self-generated objective to maximize the consistency between clustering and explanation modules.

network fθ and cluster sizeK. Inspired by RIM [Krause et al.,
2010] which learns a probabilistic clustering model p(y|x,W)
with parametersW to maximize the mutual information be-
tween x and y, we represent the estimated mutual information
[Bridle et al., 1992] between x and y with network fθ as the
difference between marginal entropy H(Y ) and conditional
entropy H(Y |X). Our clustering objective maximizes the
mutual information I(X;Y ) via minimizing loss LMI :

LMI = −I(X;Y ) = H(Y |X)−H(Y )

=
1

N

N∑
i=1

h(p(yi|xi, fθ))− h(
1

N

N∑
i=1

p(yi|xi, fθ))

(1)

where h is the entropy function and p(yi|xi, fθ) is calculated
through fθ and K-way softmax function. Intuitively minimiz-
ing conditional entropy H(Y |X) will map similar x to have
similar clustering predictions y and maximizing the entropy
H(Y ) will incorporate the notion of class balance to avoid
degenerate solution such as all the points map to one class.

3.3 The Cluster-level Explanation Objective
In addition to the unlabeled data X , to provide high-level
explanations we assume a set of partial annotated tags T =
{t1, ...tN} where ti = (ti1, ..., tiM ) ∈ RM is a binary vector.
In real world applications assuming each instance has a com-
plete set of annotated tags is unlikely, thus we assume each
instance’s tag can be missing with a specified probability r.
With the predicted clustering assignments Y we can partition
both X and T into K clusters.

We formulate the cluster-level description problem as an
Integer Linear Programming (ILP) to learn short and orthog-
onal descriptors for each cluster. Specifically, we solve for
the K ×M binary allocation matrix W where Wi,j = 1 iff
cluster Ci is described by tag j. The main objective function

is to find the most concise overall cluster description:

argmin
W

∑
i,j

Wij (2)

Our first constraint set includes the explanation length re-
quirement for each cluster explicitly and set coverage con-
straints implicitly. Given a fixed number of tags as explana-
tions for discovered cluster Ci, a high coverage explanation
indicates that most instances within cluster Ci contain the se-
lected tags. Now we define the fraction of cluster i having tag
j as Qij = 1

|Ci|
∑
tk∈Ci

tkj . Note we use mean imputation
for missing tags. Formally we expect at least α tags being
selected to explain each cluster:

M∑
j=1

WijQij ≥ α ∀i ∈ {1, ..K} (3)

Combining Eq (3) with our main objective in Eq (2), the
constraint set in Eq (3) will naturally require the ILP solver to
select tags that have higher coverage within each cluster.

Our next orthogonal constraint requires that the tags chosen
to represent each cluster have minimum overlap which encour-
ages informative explanations. Denote the hyper-parameter β
as the upper-bound of expected number of overlapping tags
per cluster, the orthogonal constraint can be encoded as follow:

K∑
i=1

WijQij ≤ β ∀j ∈ {1, ..M} (4)

Lastly we have the regular constraints to make W a valid
binary matrix as Wij ∈ {0, 1}. There are KM variables to
solve and K +M constraints for set coverage and orthogonal
requirements. Our proposed ILP objective can be solved effi-
ciently due to the cluster-level explanation design (K � N ).
Empirical results have shown that our ILP module’s running
time only takes 1% of the whole framework’s training time.
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Now we define the tag space mapping function g which is
used in our next objective. Let the solution for our proposed
cluster-level explanation problem be W ∗. We define function
g for all the data as g(ti) = ti ∗ G where G ∈ RM×M is a
diagonal matrix such that Gjj = 1 iff tag j is used in expla-
nation allocation matrix W ∗. Note function g can be treated
as a mask function to filter out less informative semantic tags
solved by our proposed cluster-level explanation objectives.

3.4 Self-generated Pairwise Loss Term
Our first proposed objective trains network fθ for clustering;
the second objective solves for explanations and a tag space
function g. We propose a pairwise loss objective to reconcile
inconsistencies between the two by finding instances that share
similar informative descriptors but from different clusters, that
is g(ti) ≈ g(tj) but fθ(xi) 6= fθ(xj). To achieve this we
introduce a pairwise loss objective to bridge the explanation
and clustering module. This part is important because our goal
is to use semantic tags to generate explanations and reshape
the clustering features for better clustering. Previous works on
constrained clustering [Wagstaff et al., 2001; Basu et al., 2008]
have shown that adding pairwise guidance such as together and
apart constraints to clustering modules can largely improve
clustering performance. However, these algorithms assume
the pairwise guidance is given as ground-truth. In our setting
we propose to add self-generated pairwise constraints with
the assumption that instances which are close in tag space
should be close in clustering feature space. Formally for each
instance xi we search for top l instances which minimize the
objective J for self-generated together constraints:
Ji = min

j∈{1,...,N}
γ ∗ |g(ti)− g(tj)| − |fθ(xi)− fθ(xj)| (5)

where γ is the penalizing weight for tag space’s difference.
Minimizing J requires accessing the whole training set which
is inefficient for mini-batch training. Instead we replace N
with batch size NB and solve an approximated version of
Eq (5) in each mini-batch. We generate l pairs of together
constraints for each instance xi and then directly minimize the
KL divergence between the clustering predictions yi and yj :

LP =
1

Nl

N∑
i=1

l∑
j=1

KL(p(yi|xi, fθ), p(yj |xj , fθ)) (6)

Eq (6) minimizes the inconsistency between the clustering
feature space and the semantic tag space and reshapes the
clustering feature space for better clustering and explanation.

3.5 Overall Training Algorithm
Algorithm 1 presents our training algorithm for the deep de-
scriptive clustering. Firstly we initialize the clustering network
fθ with random weights and initialize the weight matrix G
of function g as identity matrix. Then we minimize the over-
all loss L by combining the clustering objective LMI and
pairwise loss term LP with weight λ:

L =
λ

Nl

N∑
i=1

l∑
j=1

KL(p(yi|xi, fθ), p(yj |xj , fθ))+

1

N

N∑
i=1

h(p(yi|xi, fθ))− h(
1

N

N∑
i=1

p(yi|xi, fθ))

(7)

Algorithm 1 Algorithm for Deep Descriptive Clustering

Input: Data X = {x1, ..., xN}, tags T = {t1, ..., tN}, num-
ber of clusters K, hyper-parameters α, β, γ, λ.

Output: Clustering partitions {C1, ...CK}, well-trained fθ
and g, explanation allocation matrix W ∗.

1: Initialize network fθ and tag space function g.
2: Pre-train fθ via back-propagating overall loss in Eq (7).
3: repeat
4: Construct cluster-level explanation problem as ILP de-

fined in Eq (2,3,4). Initialize β = 0, W ∗ = ∅.
5: while ILP solution W ∗ is not feasible do
6: Increase hyper-parameter β by the fixed step size 1.
7: Solve the ILP for W ∗ and tag space function g.
8: end while
9: for each mini-batch do

10: Generate pairwise constraints based on the objective
J in Eq (5) within each batch.

11: Calculate the pairwise loss LP via Eq (6) and the
clustering loss LMI via Eq (1).

12: Update network parameters fθ by minimizing overall
loss L in Eq (7).

13: end for
14: until Network fθ and explanation results converge

Given the clustering predictions we construct the cluster-level
explanation problem with binary variable W and calculate Q
values for all the discovered clusters {C1, ...CK}. Note given
the expected number of tags used for each cluster as α, we run
our ILP solver iteratively with linear search for the smallest
feasible hyper-parameter β to ensure tightest orthogonal con-
straints. Once the binary explanation allocation matrix W ∗ is
solved, we update the tag space function g and regenerate the
pairwise constraints via objective J to maximize the consis-
tency between clustering features and tag space. The whole
model is trained repetitively until convergence.

4 Experiments
In this section, we conduct experiments to evaluate our ap-
proach empirically. Based on our experiments, we aim to
answer the following questions:

• Can our proposed approach generate better explanations
compared to existing methods? (see Sec 4.2) Can it
generate more complex explanations such as ontologies
(see Sec 4.3)?

• How does our proposed approach perform in terms of
clustering quality? (see Sec 4.4)

• How does simultaneously clustering and explaining im-
prove our model’s performance? (see Sec 4.5)

4.1 Experimental Setup
Data. We evaluate the performance of our proposed model
on two visual data sets with annotated semantic attributes.
We first use Attribute Pascal and Yahoo (aPY) [Farhadi et al.,
2009], a small-scale coarse-grained dataset with 64 semantic
attributes and 5274 instances. We have selected 15 classes for
our clustering task. Further, we have studied Animals with
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C Composition by animals Description by tags TC ↑ ITF ↑
C1 1 grizzly bear, 2 dalmatian, 1 horse, 2 blue whale big, fast, strong, muscle, new world,

smart
0.94 1.34

C2 5 antelope, 2 grizzly bear, 2 beaver, 5 dalmatian, 5 Persian
cat, 5 horse, 6 German shepherd, 3 Siamese cat

furry, chew teeth, fast, quadrupedal,
new world, ground

0.98 0.94

C3 69 beaver, 64 dalmatian, 42 Persian cat, 29 blue whale, 42
Siamese cat

tail, fast, new world, timid, smart,
solitary

0.98 1.17

C4 100 killer whale, 69 blue whale, 1 Siamese cat tail, fast, fish, smart 1.00 1.10
C5 95 antelope, 97 grizzly bear, 29 beaver, 29 dalmatian, 53

Persian cat, 94 horse, 94 German shepherd, 54 Siamese cat
furry, chew teeth, fast, quadrupedal,
new world, ground

1.00 0.94

Table 1: Results generated by descriptive clustering [Dao et al., 2018], we present the first Pareto point of their result such that the diameter of
all the clusters are minimized. ↑ means the larger value the better.

C Composition by animals Description by tags TC ↑ ITF ↑
C1 100 grizzly bear, 100 beaver tough skin, bulbous, paws, quadrupedal, nocturnal, hibernate,

smart, solitary
1.00 2.32

C2 100 Siamese cat, 100 Persian cat white, gray, pads, chew teeth, claws, weak, inactive, old world 1.00 2.32
C3 100 antelope, 100 dalmatian furry, big, long leg, active, new world, ground, timid, group 1.00 2.32
C4 100 killer whale, 100 blue whale spots, hairless, flippers, strain teeth, fish, plankton, arctic, ocean 1.00 2.32
C5 100 horse, 100 German shepherd black, brown, patches, smelly, walks, strong, agility, domestic 1.00 2.32

Table 2: Results generated by our proposed DDC. ↑ means the larger value the better.

Attributes (AwA) [Lampert et al., 2013], which is a medium-
scale dataset in terms of the number of images. For AwA we
use 85 semantic attributes and 19832 instances, we have set
40 classes for clustering, the total number of animals.

Baselines and Evaluation Metrics. In the experiments,
deep descriptive clustering is compared with descriptive clus-
tering [Dao et al., 2018] in terms of the explanation quality.
To evaluate the generated explanations quantitatively and qual-
itatively, we list all the composition and selected tags for each
discovered cluster and report the Tag Coverage (TC) and In-
verse Tag Frequency (ITF). For cluster Ci, let the descriptive
tag set be Di, the TC and ITF for Ci are calculated as:

TC(Ci) =
1

|Di|
∑
d∈Di

|{(x, t) ∈ Ci : d ∈ t}|
|Ci|

(8)

ITF (Ci) =
1

|Di|
∑
d∈Di

log
K∑K

j=1 |d ∈ Dj |
(9)

The Tag Coverage for Ci ranges from [0, 1] and the max value
is achieved when each descriptive tag exists in all the instances
within Ci. The Inverse Tag Frequency for Ci ranges from
[0, logK] and the max value is achieved when each descrip-
tive tag is only used once. For both TC and ITF the larger the
better. We have also generated a graphical ontology as high-
level explanation on the clustering results when the number
of clusters is large and a long explanation list is problematic.
We evaluate its quality by comparing it to human knowledge.
Further, we evaluate the clustering performance with a range
of tag annotated ratios r as [10%, 30%, 50%] and compare
DCC’s results against vanilla k-means clustering and com-
petitive incomplete multi-view clustering approaches such as
MIC, IMG, and DAIMC [Shao et al., 2015; Zhao et al., 2016;
Hu and Chen, 2018]. For the clustering evaluation metric, we

choose to use both Normalized Mutual Information (NMI)
[Strehl et al., 2000] and Clustering Accuracy (ACC) [Xu et
al., 2003] for comprehensive evaluation.
Implementations. For a fair comparison with all the base-
line approaches, we use pre-trained ResNet-101 [He et al.,
2016] features for all the clustering tasks and the encoder net-
works of deep descriptive clustering model are stacked by three
fully connected layers with size of [1200, 1200,K] where K
is the desired number of clusters. We set the expected number
of tags for each cluster as 8 and hyper-parameters l, λ, γ as
1, 1, 100 respectively. The tag annotated ratio r is set as 0.5
by default to simulate a challenging setting. The activation
function is ReLU, and the optimizer is Adam [Kingma and
Ba, 2015] with default parameters.

4.2 Comparison with Descriptive Clustering
We duplicate the experimental setting in [Dao et al., 2018]
by down-sampling 10 classes from AwA and cluster the data
into 5 clusters for a fair comparison. We list the explanation
results in Table 1 and 2. Our model’s Tag Coverage values
for all the clusters are 1; this result shows that our model
successfully maximizes the consistency between the discov-
ered tag space and clustering feature space so that similar
instances with similar tags are grouped. Moreover, the Inverse
Tag Frequency values of our model are much higher than the
competing method. This result indicates that our model se-
lects informative tags for each cluster that differentiate from
other discovered clusters. We also observe that our proposed
model generates high-quality clusters where similar animals
are correctly grouped together. Finally, we have found one at-
tribute’s annotation error in the AwA data when examining our
explanations for C1; the beavers are annotated with attribute
hibernate but the truth is the opposite. This finding suggests
that the labeled attributes are noisy in the AwA data set.
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NMI ACC
Datasets Methods r% 10 30 50 10 30 50

AwA

K-Means 71.67± 0.63 73.72± 0.66 74.23± 0.69 66.21± 0.57 67.98± 0.60 68.24± 0.54
IMG 71.86± 2.41 74.43± 2.69 82.16± 3.01 66.19± 2.05 69.17± 2.25 76.24± 2.78
MIC 72.40± 1.68 76.85± 1.71 83.43± 1.89 67.26± 1.45 70.52± 1.58 77.68± 1.84

DAIMC 72.88± 2.38 79.02± 2.46 87.10± 2.74 67.87± 1.97 73.14± 2.13 82.34± 2.39
Ours DCC 75.62± 1.17 83.93± 1.35 89.57± 1.37 71.19± 0.93 78.74± 1.12 84.48± 1.20

aPY

K-Means 63.08 ± 0.45 63.89 ± 0.42 64.38 ± 0.48 57.11 ± 0.39 58.13 ± 0.36 58.98 ± 0.37
IMG 64.75 ± 2.05 70.19 ± 2.19 77.50 ± 2.37 60.18 ± 1.78 65.72 ± 1.90 71.21 ± 1.96
MIC 65.36 ± 1.49 73.89 ± 1.61 80.38 ± 1.83 62.36 ± 1.28 66.98 ± 1.40 72.42 ± 1.53

DAIMC 69.29 ± 1.82 80.70 ± 1.91 84.24 ± 1.97 68.21 ± 1.54 73.63 ± 1.63 76.11 ± 1.68
Ours DCC 70.54 ± 0.98 82.41 ± 1.15 86.30 ± 1.22 69.30 ± 0.86 76.34 ± 0.95 79.87 ± 1.02

Table 3: Comparison of clustering performance averaged over 10 trials (mean ± var) on AwA and aPY under different tag annotated ratio
r% ∈ {10, 30, 50}. Bold results are the best mean results among all the algorithms.

Figure 3: The graphical ontology generated for aPY data set.

4.3 Novel Explanation as Ontology Extraction
Interpreting the descriptions for each cluster can be problem-
atic when the number of clusters is large and the description
list is long. We propose to generate a graphical ontology that
not only describes each cluster but shows the relationships
between them to better inform people. We have visualized
the ontology graph for aPY in Figure 3. The nodes represent
discovered clusters and the name of the nodes corresponds
to the majority class within each cluster. When two clusters
share at least q tags (q = 3 in our experiments) we add an edge
between these two clusters. This shows a higher level of struc-
ture as we can see the ontology plot in Figure 3 reflects four
distinct communities which are animals, transportation tools,
furniture, and small objects. Those ontologies are generally in
line with human knowledge and provide a high-level abstrac-
tion explanation of our deep descriptive clustering model.

4.4 Evaluating Clustering Performance
Here we report if the descriptive clustering problem can in-
crease clustering quality. Since these methods are not deep
learning based, to make a fair comparison we use the same
pre-trained ResNet-101 features. We report the clustering re-
sults of our model under a range of annotated ratios in Table 3.
We have several observations to highlight: firstly our model
consistently outperforms the k-means and multi-view cluster-
ing baselines with different tag annotated ratios; secondly with
more annotated tags, both multi-view clustering baselines and
our model improves largely comparing to the k-means clus-
tering which naively concatenates the images features with
semantic attributes. We attribute the good clustering perfor-

(a) Parameter analysis on α (b) Ablation study on function g

Figure 4: Plots for parameter analysis and ablation study

mance for both deep representation learning and our novel way
of leveraging semantic tag information for better clustering.

4.5 Parameter Analysis and Ablation Test
Given the hyper-parameter α which denotes the minimum
expected number of tags for description, we plot the automat-
ically searched parameter β for AwA in Figure 4 (a). This
result shows our automatic searching procedure’s success and
suggests that a relatively small α leads to more concise and
orthogonal explanations. Meanwhile, we conduct ablation ex-
periments to analyze the impact of mask function g solved via
our explanation module. In Figure 4 (b), the blue lines indicate
clustering results with function g. In red lines we replace func-
tion g with an identity function to conduct the ablation study.
Comparing red and blue lines we can see that mask function g
can remove the noisy information within semantic tag space
and consistently improve the clustering performance.

5 Conclusion and Future Work
This paper proposes deep descriptive clustering, which can
learn to cluster and generate cluster-level explanations simul-
taneously. We develop a novel deep learning framework that
supports learning from the sub-symbolic level (which clus-
tering is performed on) and symbolic level (which explana-
tions are created from). Empirical results on real-world data
demonstrate the high quality of our generated explanations
and good clustering performance. Our future work will focus
on building an explainable clustering model with noisy seman-
tic features and exploring other novel forms of explanations
beyond ontologies on different types of data.
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Stefan Schrödl, et al. Constrained k-means clustering with back-
ground knowledge. In International Conference on Machine
Learning, volume 1, pages 577–584, 2001.

[Wang et al., 2018] Yang Wang, Lin Wu, Xuemin Lin, and Junbin
Gao. Multiview spectral clustering via structured low-rank matrix
factorization. IEEE transactions on neural networks and learning
systems, 29(10):4833–4843, 2018.

[Xu et al., 2003] Wei Xu, Xin Liu, and Yihong Gong. Document
clustering based on non-negative matrix factorization. In Proceed-
ings of the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval, pages 267–273,
2003.

[Xu et al., 2013] Chang Xu, Dacheng Tao, and Chao Xu. A survey
on multi-view learning. arXiv preprint arXiv:1304.5634, 2013.

[Zhang et al., 2019] Hongjing Zhang, Sugato Basu, and Ian David-
son. A framework for deep constrained clustering-algorithms and
advances. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 57–72. Springer,
2019.

[Zhao et al., 2016] Handong Zhao, Hongfu Liu, and Yun Fu. Incom-
plete multi-modal visual data grouping. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelli-
gence, pages 2392–2398, 2016.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3348


	Introduction
	Related Work
	Approach
	Overall Framework
	Information Maximization for Clustering
	The Cluster-level Explanation Objective
	Self-generated Pairwise Loss Term
	Overall Training Algorithm

	Experiments
	Experimental Setup
	Comparison with Descriptive Clustering
	Novel Explanation as Ontology Extraction
	Evaluating Clustering Performance
	Parameter Analysis and Ablation Test

	Conclusion and Future Work

