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Abstract
Most of the existing advantage function estimation
methods in reinforcement learning suffer from the
problem of high variance, which scales unfavorably
with the time horizon. To address this challenge,
we propose to identify the independence property
between current action and future states in environ-
ments, which can be further leveraged to effectively
reduce the variance of the advantage estimation. In
particular, the recognized independence property
can be naturally utilized to construct a novel im-
portance sampling advantage estimator with close-
to-zero variance even when the Monte-Carlo re-
turn signal yields a large variance. To further re-
move the risk of the high variance introduced by
the new estimator, we combine it with the existing
Monte-Carlo estimator via a reward decomposition
model learned by minimizing the estimation vari-
ance. Experiments demonstrate that our method
achieves higher sample efficiency compared with
existing advantage estimation methods in complex
environments.

1 Introduction
Policy gradient method [Sutton et al., 2000] and its vari-
ants have demonstrated their success in solving a variety
of sequential decision making tasks, such as games [Mnih
et al., 2016] and continuous control [Lillicrap et al., 2015;
Fujimoto et al., 2018]. The large variance associated with
vanilla policy gradient estimator has prompted a series of
previous works to use advantage function estimation, due
to its variance-minimized form [Bhatnagar et al., 2008], to
get a stable policy gradient estimation [Mnih et al., 2016;
Schulman et al., 2015a; Schulman et al., 2015b; Schulman
et al., 2017]. For a policy π and a state-action pair (s, a),
all these works estimate the advantage function Aπ(s, a) by
subtracting an estimate of the value function V π(s) from the
estimate of Q-value Qπ(s, a). The estimation of Qπ(s, a) or
V π(s) typically involves a discounted sum of future rewards,
which still suffers from the high variance especially when fac-
ing the long time horizon.
∗Corresponding author.

Meanwhile, in many real-world reinforcement learning ap-
plications, we observe that not all future rewards have a de-
pendency with the current action. For example, consider a
simple multi-round game where at the end of each round of
this game, the agent will be assigned a reward, representing
whether it wins this round. An episode of the whole game
consists of multiple independent rounds, where each round
lasts constant timesteps. In this example, an action in the cur-
rent round will not affect the rewards in future rounds, and not
all rewards received in future states do contribute to the ad-
vantage function of the current action. However, most of the
existing RL methods [Sutton et al., 2000; Mnih et al., 2013;
Schulman et al., 2015b] sum all future rewards to evaluate
each action without considering their dependency. By iden-
tifying the independence between current action and future
states in the environment, we are able to take advantage of
such independence to reduce the variance of advantage esti-
mation.

In this paper, we propose Independence-aware Advantage
Estimation (IAE), an algorithm that can identify and utilize
the independence property between current action and future
states. We first introduce a novel advantage estimator that can
utilize the independence property by importance sampling.
The estimator formalizes a dependency factor Cπ , represent-
ing the contribution level of each future reward to advantage
function estimation. For those states with no dependency on
the current action, there will be a close-to-zero dependency
factor Cπ , and the importance sampling estimator can reduce
the variance of advantage estimation by ignoring the rewards
on these states. For those states with a large dependency
factor, the importance sampling estimator will potentially in-
crease variance. In order to take advantage of variance reduc-
tion caused by small Cπ while removing the risk of increased
variance by large Cπ , we further combine existing Monte-
Carlo estimator with the proposed estimator by decompos-
ing the reward into two estimators and learning the optimal
decomposition by minimizing the corresponding estimation
variance. Ideally, when facing states with zero dependency
on the current action, our model can learn to distribute all the
reward into the importance sampling estimator, where the re-
ward can be ignored; when those states yield extremely large
Cπ , our model can learn to distribute part of rewards into the
Monte-Carlo estimator to reduce the potential high variance
caused by importance sampling. Details of our method are
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described in Section 3, 4 and 5.
Empirically, we show that our estimated advantage func-

tion is closer to ground-truth advantage function Aπ than
existing advantage estimation methods such as Monte-Carlo
and Generalized Advantage Estimation [Schulman et al.,
2015b]. We also test IAE advantage estimation in policy opti-
mization settings on environments with high-dimensional ob-
servations, showing that our method outperforms other ad-
vantage estimation methods in sample efficiency. Results of
our experiments are reported in Section 7.

As far as we know, we are the first to explore and utilize
the independence property between current action and future
states in environments to improve advantage estimation. The
independence property can help us ignore the unnecessary
high variance parts in Monte-Carlo estimator which do not
contribute to advantage function. Moreover, we propose a
practical advantage estimation method to identify and utilize
the independence property in environments, which achieves
better performance than other advantage estimation methods.

2 Background
2.1 Notations & Problem Settings
We consider a finite-horizon Markov Decision Process de-
fined by (S,A, P,R, ρ0, γ, T ), where S is the set of states,
A is the finite set of actions, P : S × A × S → R de-
notes the transition probability, R : S × A → R denotes
the reward function, ρ0 : S → R denotes the distribu-
tion of initial state S0, γ ∈ (0, 1] is the discount factor, T
is the total time steps. We denote St, At, Rt as the ran-
dom variable of state, action, reward at time t, and τt :=
(St, At, Rt, St+1, ..., ST , AT , RT ) as trajectory starting from
time t.

We denote π : S × A → R as a stochastic policy, and use
the notation of Qπ(st, at), V π(st), Aπ(st, at) as state-action
value function, state value function and advantage function
respectively. In the following discussions, we will recognize
(st, at) as a constant state-action pair whose advantage func-
tion needs to be estimated.

2.2 Advantage Function Estimators
Monte-Carlo estimator ÂMC

t of advantage function
Aπ(st, at) is formalized below:

ÂMC
t := −Vθ(st) +

T−t∑
k=0

γkRt+k,where τt ∼ Pπ(τt|st, at).

Here Vθ(st) denotes the function approximator of the value
function V π(st). We use τt ∼ Pπ(τt|st, at) to denote that
trajectory τt is generated by policy π from st, at.

Some previous works focus on reducing the variance of
ÂMC
t at the cost of introducing bias [Schulman et al., 2015b],

by using the n-step TD estimator and GAE estimator of ad-
vantage function Aπ(st, at):

Â
TD(n)
t := −Vθ(st) +

n−1∑
k=0

γkRt+k + γnVθ(St+n)

ÂGAE
t := (1− λ)

∞∑
n=0

λnÂ
TD(n+1)
t ,where τt ∼ Pπ(τt|st, at).

3 Utilizing Independence Property in
Advantage Estimation

In many cases, we can utilize the independence between cur-
rent action and future states to avoid unnecessary parts of
variance in the Monte-Carlo estimator. Consider the example
where we have a current state st whose advantage functions
with respect to all actions are needed to be estimated. For
a set of st+k which can be reached from st, we have inde-
pendence property such that the probability Pπ(st+k|st, at)
is constant with respect to different choices of at. Although
the Monte-Carlo return estimator from st+k may have large
variance, it is clear that the return after reaching st+k gives
no contribution to Aπ(st, at) in this case.

In this section, we propose a new advantage estimator
based on importance sampling, which removes the variance
in Monte-Carlo return estimator after st+k by utilizing inde-
pendence property, inspired by the cases we described above.
In later discussions, we will name the proposed estimator as
importance sampling advantage estimator.

By importance sampling, we present our way to derive
Aπ(st, at) into a form which utilizes independence property:

Aπ(st, at)

= EPπ(τt|st,at)
[ T−t∑
k=0

γkRt+k
]
− EPπ(τt|st)

[ T−t∑
k=0

γkRt+k
]

= EPπ(τt|st)
[ T−t∑
k=0

γkRt+k(
Pπ(St+k, At+k|st, at)
Pπ(St+k, At+k|st)

− 1)
]
. (1)

To briefly summarize our derivation, we perform importance
sampling in every future time t+k, estimating the discounted
reward γkRt+k in distribution Pπ(St+k, At+k|st, at) by
sampling on distribution Pπ(St+k, At+k|st)1.

For the simplicity of discussion, we will use the following
definition:

Cπk (st, at, st+k, at+k) :=
Pπ(st+k, at+k|st, at)
Pπ(st+k, at+k|st)

− 1, (2)

where we call Cπk (st, at, st+k, at+k) the dependency fac-
tor, since the value captures how taking a specific action at
changes the probability of reaching a future state-action pair
(st+k, at+k). It is clear from equation (1) that future states
st+k that has nearly zero dependency factor has small con-
tribution to Aπ(st, at), which further demonstrates that the
rewards from independent future states do not contribute to
advantage estimation, even if Monte-Carlo return signal has
high variance.

Finally, we define the form of the importance sampling ad-
vantage estimator as follows:

ÂIS
t :=

T−t∑
k=0

γkRt+kC
π
k (st, at, St+k, At+k), (3)

where τt follows distribution Pπ(τt|st). By previous analy-
sis, we have E[ÂIS

t ] = Aπ(st, at). In practice, we face the

1It is worth noting that when k ≥ 1, we are able to omit At+k
in the importance ratio in equation (1), since At+k is independently
sampled by St+k.
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challenge to estimate the dependency factor Cπ by data sam-
ples. We propose a novel modeling method and a temporal
difference training strategy to solve this problem, which is
detailed in Section 5.

4 Optimal Combination with Monte-Carlo
Estimator

The advantage estimation method proposed in section 3
nicely deals with those future rewards which are independent
with current action, since the dependency factors are close to
zero and those rewards are ignored by importance sampling.
However, the importance sampling advantage estimator may
badly deal with those rewards with large dependency factors,
which can increase the variance in estimation. To illustrate,
consider the case where Monte-Carlo return starting from st
following π is always close to a constant q, while there is a
large gap between Pπ(St+k|st, at) and Pπ(St+k|st). This
dependent case can cause high variance in importance sam-
pling advantage estimator, even when Monte-Carlo estima-
tion has low variance.

To deal with the potential high variance problem, we seek
to find the optimal combination between the proposed im-
portance sampling estimator and the Monte-Carlo estima-
tor. There have been some previous works [Grathwohl et al.,
2017; Liu et al., 2017] focusing on combining two estimators
by optimizing a control variate, producing an estimator with
less variance. Inspired by that, we decompose the reward into
two estimators with a reward decomposition model, and learn
the reward decomposition model by minimizing estimation
variance.

The following theorem demonstrates our derivation to
combine the two estimators:
Theorem 1. Suppose R′t+k ∼ R̂(R′t+k|st, at, τt+k), where
R̂ is any probability distribution. Then

Aπ(st, at) = Eτt∼Pπ(τt|st,at)
[ T−t∑
k=0

γk(Rt+k −R′t+k)
]

− Eτt∼Pπ(τt|st)
[ T−t∑
k=0

γk(Rt+k −R′t+k)
]

+ Eτt∼Pπ(τt|st)
[ T−t∑
k=0

γkR′t+kC
π
k (st, at, St+k, At+k)

]
. (4)

The proof of theorem 1 is not hard after realizing the sum of
three terms includingR′t+k is zero, which can be explained by
the correctness of importance sampling. In equation (4), the
first and second expectation can be estimated by Monte-Carlo
estimator, and the last expectation can be estimated by the im-
portance sampling estimator. As a bridge to connect these two
parts, R′t+k aims to determine the way in which rewards are
divided into two estimators. If R′t+k is close to 0, rewards are
divided into the Monte-Carlo estimator; if R′t+k is close to
Rt+k, rewards are divided into the importance sampling ad-
vantage estimator. Further, we parameterize R′t+k as R′t+k,ψ
with a deep neural network R′ψ(st, at, St+k, At+k, Rt+k, k),
which is composed of feature extractors of st and St+k, a
concatenation layer that merges features of current state and

future state, and a multi-layer perceptron which produces the
outputs.

In order to learn such R′t+k,ψ , we first define the advan-
tage estimator derived from equation (4) and derive the form
of variance (section 4.1). We then demonstrate our method
to optimize ψ by minimizing the variance of this estima-
tor (section 4.2). Finally, we give the practical form of
independence-aware advantage estimator with function ap-
proximations (section 4.3).

4.1 Definition of Advantage Estimator
In this section, we precisely define the combined estimator
and derive its form of variance. For simplicity, we will use
Jψ(τt) and Iψ(τt, at) to denote two terms inside expectation
in equation (4), which is written by:

Jψ(τt) :=

T−t∑
k=0

γk(Rt+k −R′t+k);

Iψ(τt, at) :=

T−t∑
k=0

γkR′t+kC
π
k (st, at, St+k, At+k). (5)

Derived from equation (4), we define the form of the com-
bined estimator as follows:

ÂCombinedt := Jψ(τ
1
t )− Jψ(τ2t ) + Iψ(τ

3
t , at), (6)

where τ1t ∼ Pπ(τt|st, at), τ2t ∼ Pπ(τt|st), τ3t ∼ Pπ(τt|st),
and τ1t , τ

2
t , τ

3
t are mutually independent.

By equation (4), we have E[ÂCombinedt ] = Aπ(st, at). The
variance of ÂCombinedt can be directly derived as follows:

Var[ÂCombinedt ] = Varτt∼Pπ(τt|st,at) [Jψ(τt)]

+ Varτt∼Pπ(τt|st) [Jψ(τt)]

+ Varτt∼Pπ(τt|st) [Iψ(τt, at)] . (7)

4.2 Optimize ψ for Variance Minimization
Based on equation (7), we further derive the upper bound of
variance which is friendly to optimize:

Eat∼π(at|st)Var[Â
Combined
t ] ≤ L(ψ),

where L(ψ) := 2Varτt∼Pπ(τt|st) [Jψ(τt)]

+ Eat∼π(at|st)Varτt∼Pπ(τt|st) [Iψ(τt, at)] . (8)

We use L(ψ) as the objective function for optimizing ψ, since
it provides the variance upper bound of the advantage estima-
tor ÂCombinedt . To minimize the objective function, we firstly
use two value function approximators Vw1(st), Iw2(st, at) to
approximate the expectation of two estimators respectively:

Vw1(st) ≈ Eτt∼Pπ(τt|st) [Jψ(τt)] ;
Iw2(st, at) ≈ Eτt∼Pπ(τt|st) [Iψ(τt, at)] . (9)

To approximate the expectation, we use SGD to minimize the
mean squared error. The parameter update process can be
finally expressed as follows, where αw represents the step-
size:

w′1 = w1 −
αw
2
∇w1(Jψ(τt)− Vw1(st))

2, (10)

w′2 = w2 −
αw
2
∇w2(Iψ(τt, at)− Iw2(st, at))

2, (11)
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where τt follows distribution Pπ(τt|st).
If we assume that the two expectation terms in equation (9)
can be precisely captured by Vw1

(st) and Iw2
(st, at), we can

get the gradient of the L(ψ) with respect to ψ as follows1:

∇ψL(ψ) = Eτt∼Pπ(τt|st)
[
2∇ψ(Jψ(τt)− Vw1(st))

2

+ Eat∼π(at|st)∇ψ(Iψ(τt, at)− Iw2(st, at))
2
]
. (12)

We can use SGD to optimize ψ expressed by equation (13),
where αψ represents the step-size:

ψ′ = ψ − αψ
[
2∇ψ(Jψ(τt)− Vw1(st))

2

+
∑
at

π(at|st)∇ψ(Iψ(τt, at)− Iw2(st, at))
2
]
, (13)

here τt follows distribution Pπ(τt|st). Note that the two gra-
dient terms of equation (13) are optimizing the same MSE
loss function as equation (10) and (11), but here the different
parameter ψ is being optimized.

Here we will illustrate why performing gradient descent
on ψ leads to an advantage estimation with lower variance.
The gradient component in the first term of equation (13) will
adapt reward decomposition to make Jψ(τt) move towards
the mean value, and further reduce its variance; meanwhile,
the second term of equation (13) counteracts the gradient in
the first term, preventing the Jψ(τt) to become constant by
the restriction in variance of importance sampling estimator
Iψ(τt, at) =

∑T−t
k=0 γ

kR′t+k,ψC
π
k (st, at, St+k, At+k). When

we have the independence property in environments (i.e. the
value of Cπk is close to zero), the counteraction effect in the
second term will disappear. With the gradient in the first term,
R′t+k,ψ will be rapidly optimized to reduce the variance of
Jψ(τt), making the variance of advantage estimator to dra-
matically decrease along the training process.

4.3 Advantage Estimator with Function
Approximators

In regular reinforcement learning settings, we cannot sample
multiple trajectories from the same state st. To handle this
issue, we replace two terms in equation (6) by function ap-
proximators Vw1

and Iw2
defined in equation (9). This leads

to the form of independence-aware advantage estimator:

ÂIAE
t := Jψ(τt)− Vw1(st) + Iw2(st, at), (14)

where τt follows distribution Pπ(τt|st, at).

5 Dependency Factor Estimation
The final challenge in our method is to estimate the depen-
dency factor Cπ , which is crucial to make the advantage esti-
mator low-biased. In this section, we will introduce our mod-
eling and training method, which is able to give accurate de-
pendency factor estimation in experiments.

1We have the form of Var[Xψ] in the objective function L(ψ).
Since we have Var[Xψ] = E[(Xψ − E[Xψ])2], it can be derived
that ∇ψVar[Xψ] = E[∇ψ(Xψ − E[Xψ])2]. By replacing E[Xψ]
with the approximated value Vw1(st) and Iw2(st, at), we can get
the gradient with respect to ψ in equation (12).

It is hard to estimate the transition probability in equation
(2) because of the high dimensionality of state space. Here
we derive the ratio between two transition probabilities into
a form which can be represented by an action classifier by
equation (15), whose proof can be directly obtained by the
definition of conditional probability.
Pπ(st+k, at+k|st, at)
Pπ(st+k, at+k|st)

=
Pπ(at|st, st+k)

π(at|st)
,when k ≥ 1. (15)

In order to approximate and learn the value of the de-
pendency factor, we use an action classification model
Pφ(at|st, st+k, k) to approximate Pπ(at|st, st+k). If the
action classifier is learned accurately, the approximated de-
pendency factor Cφ(st, at, st+k) :=

Pφ(at|st,st+k,k)
π(at|st) − 1

equals the dependency factor Cπ(st, at, st+k). We call
Pφ(at|st, st+k, k) dependency model in later discussions.

Inspired by the derivation in previous work [Liu et al.,
2018], we can prove that the probability Pπ(at|st, st+k) has
temporal difference property as follows:

Pπ(at|st, st+k2)
= Est+k1∼Pπ(st+k1 |st+k2 ,st) [P

π(at|st, st+k1)] , (16)

when k2 > k1 ≥ 1.
Moreover, if equation (16) still holds after substituting the

probability Pπ(at|st, st+k) by the prediction of the depen-
dency model Pφ(at|st, st+k, k), and this dependency model
has accurate prediction when k = 1, this dependency model
must have accurate prediction for any k ≥ 1 on any current
state st and reachable future state st+k.

With the above analysis, we are able to train the model
Pφ by minimizing the difference between two sides of equa-
tion (16) after substituting Pπ by the prediction of Pφ.
Practically, we use a mixture of temporal difference target
Pφ(at|st, st+k, k) and the ground truth at as the training tar-
get for the dependency model Pφ(at|st, st+k+1, k+1) in the
next step. We demonstrate the effectiveness of our approach
to accurately estimate dependency factors in section 7.2.

6 Related Work
Policy gradient [Sutton et al., 2000] provides the basic form
to optimize a parameterized policy in expected returns. Gen-
eralized Advantage Estimation [Kimura et al., 2000; Schul-
man et al., 2015b] replaces Monte-Carlo estimator by the
mixture of N-step temporal difference estimator, reducing the
variance of policy gradient estimator while introducing bias.

Some of previous works [Liu et al., 2017; Wu et al., 2018;
Papini et al., 2018] discuss other approaches to reduce vari-
ance in policy gradient estimation. Comparing our work to
this series of work, there are significant differences in the es-
timator being used and the cases where variance is reduced.
Our method relies on independence property to reduce vari-
ance; in contrast, previous works use Stein’s identity [Liu et
al., 2017] or the property that each dimension of action is
individually sampled [Wu et al., 2018] to reduce variance,
where fundamental difference exists.

Some previous works discuss how properties of future
states can be leveraged to enable better credit assignment.
HCA [Harutyunyan et al., 2019] proposes a form of advan-
tage estimator similar to the form of equation (3) in our work,
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but their approach can yield an estimator with larger variance
than Monte-Carlo estimator as we discuss in section 4. Be-
yond their work, we propose a novel reward decomposition
model and a learning approach to effectively reduce the vari-
ance of the proposed estimator, and make IAE work well in
environments with high-dimensional observation. Another
previous work [Mesnard et al., 2020] extracts the indepen-
dent features of future observation to serve as value baseline
function in policy gradient, yielding another form of policy
gradient estimator. Their work focuses on how to extract tra-
jectory features and how to make them independent with ac-
tions, instead of leveraging future states with independence
property to decrease the variance of advantage estimation,
which forms a different direction from our work.

Our method performs gradient descent on estimation vari-
ance to improve the estimator as training proceeds. Similar
approaches have been used in recent works on various ap-
plications. One previous work [Hanna et al., 2017] focuses
on optimizing a behaviour policy to minimize the variance
of off-policy value estimation; another previous work [Grath-
wohl et al., 2017] focuses on getting the optimal variance bal-
ance between REINFORCE estimator and reparameterized
gradient estimator by minimizing estimation variance.

7 Experiments
In our experiments, we provide empirical results to answer
the following questions:

• Can our dependency model training method in section 5
precisely estimate the dependency factor Cπ , and cap-
ture the independence property in environments?

• Can our method utilize the independence property to re-
duce the variance in advantage estimation, and further
give more accurate advantage estimation than other ad-
vantage estimation methods?

• Can IAE improve the overall performance of policy op-
timization algorithms, for instance, PPO algorithm?

To answer the first question, we train the dependency
model by the method in section 5 and compare the prediction
with ground-truth value, proving the capability of our train-
ing method to model the dependency factor Cπ . This part of
the results is detailed in section 7.2.

For the second question, we show that IAE gives advantage
estimation with less variance in tabular settings, and reduces
value function training error in function approximation set-
tings. In the Pixel Grid World environment, we further show
that our method gives advantage estimation closer to ground-
truth advantage function than MC and GAE method under
cosine similarity metric. This part of the results is detailed in
section 7.3.

For the last question, we provide training curves in sec-
tion 7.4 in Pixel Grid World environment. Compared with
the PPO algorithm with Monte-Carlo advantage estimation
and generalized advantage estimation, IAE makes the policy
optimization process more sample-efficient.

7.1 Environment Settings
We perform experiments on two types of environments:
finite-state MDPs and Pixel Grid World.

(a) (b) (c)

Figure 1: Results on dependency factor modeling. (a): The top
and bottom images respectively illustrate st and st+k on which
we visualize the dependency model’s prediction, and here we
set k to be 7. (b): Dotted lines show the true distribution of
Pπ(at|st, st+k); solid lines show the dependency model’s predic-
tion for Pφ(at|st, st+k, k). Four different colors represent four dif-
ferent actions. Purple dashed line shows the KL divergence between
the true distribution and the predicted distribution. (c): The blue line
shows the mean KL divergence between true distributions and pre-
dicted distributions over the dataset of 300 random (st, st+k) pairs,
averaged in 10 runs.

Finite-state MDP settings. To evaluate the quality of ad-
vantage estimation of our method in tabular cases, we con-
struct different 3-state MDPs with different transition prob-
ability and reward functions. We categorize state transition
probability settings into connected settings and isolated set-
tings, and categorize reward settings into high-variance set-
tings and low-variance settings. In isolated transition settings,
there are some state pairs with low mutual reaching probabil-
ity; in connected transition settings, all state pairs have high
mutual reaching probability. In high-variance reward settings,
the variance of Monte-Carlo return signal is large compared
to the average total return; in the low-variance reward setting,
the variance of Monte-Carlo return signal is small compared
to the average total return.
Pixel Grid World environment. To evaluate our method
in function approximation settings, we build Pixel Grid World
environment where observations are provided by 128×128×
3 RGB pixels. As illustrated in Figure 1a, the blue square
represents the position of the agent and the yellow square
represents the position of the current goal. The agent gets
a positive reward for reaching the goal. To make the problem
harder, the environment will do periodic resets multiple times
in an episode, by which the agent and the goal are randomly
repositioned. We use two different reward settings: per-step
punishment setting and no punishment setting. In the per-step
punishment setting, the agent gets r = −0.03 reward in every
step before reaching its goal, r = 1 reward when reaching its
goal for the first time, and r = 0 reward for every step after
reaching its goal. In no punishment setting, the agent gets
r = 1 reward when reaching its goal for the first time, and
gets r = 0 reward otherwise.

7.2 Dependency Factor Modeling
In this section, we investigate our estimation of the depen-
dency factor Cπ , and show the general similarity between
our estimation and the ground-truth Cπ . We train our model
Cφ with data generated by a fixed uniform random policy π.
Figure 1a and 1b show the case where the dependency is pre-
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MC IS IAE

Connected-low 0.61 1.43 0.56
Isolated-low 1.65 8.70 0.63
Connected-high 6.28 1.44 0.68
Isolated-high 16.60 8.70 0.64

Table 1: Standard derivation of various estimators in different tran-
sition probability settings (connected and isolated) and different re-
ward settings (low-variance and high-variance).

(a) (b)

Figure 2: (a): Mean squared error of two value functions Vw1 and
Iw2 averaged in 10 runs on Pixel Grid World. Green and red lines
show the MSE of Vw1 and Iw2 respectively, when the reward de-
composition model is fixed; blue and orange lines show the MSE of
Vw1 and Iw2 respectively, when the reward decomposition model is
trained by our method. (b): The cosine similarity between advan-
tage estimation and ground-truth advantage function. We compare
IAE estimation, Monte-Carlo estimation and GAE estimation.

cisely captured: given the future state st+k shown in Fig-
ure 1a, the model Pφ(at|st, st+k, k) correctly predicts Right
and Up actions that more likely lead the current state st to
the future state st+k. We also build a dataset consisting of
300 random (st, st+k) pairs, where k is uniformly sampled
from 1 to 30. We evaluate the mean KL divergence between
the true value of Pπ(at|st, st+k) and the prediction from
Pφ(at|st, st+k, k) averaged in 10 runs, as shown in Figure
1c. The mean KL divergence decreases to a relatively small
value during training, showing that the dependency model Pφ
gives a generally precise estimation of the dependency factor.

7.3 Variance and Accuracy of
Independence-aware Advantage Astimation

We evaluate the variance of IAE estimator on a variety of
finite-state MDP settings. We train tabular reward decom-
position for 10000 episodes and then test the advantage esti-
mator by performing advantage estimation multiple times to
get the estimation variance. We compare the variance of IAE
estimator with Monte-Carlo advantage estimator (MC) and
importance sampling advantage estimator (IS) on the same
state-action pair. For IAE, we individually sample three tra-
jectories for each estimation of advantage function, use these
three trajectories as samples of the three random variables in
equation (4). In this experiment, we use the precise value
of dependency factors for IS and IAE estimators. Table 1
demonstrates the standard derivation of advantage estimation.
In both environments suitable for MC estimation and ones
suitable for IS estimation, our method gives estimation with

(a) (b)

Figure 3: Training curve on Pixel Grid World environment. Fig-
ure (a) and (b) respectively show the training curve in per-step pun-
ishment setting and no punishment setting, averaged in 10 random
seeds. In the per-step punishment setting, the agent gets negative
rewards before reaching goals; in no punishment setting, the agent
gets no reward before reaching goals.

less variance than both MC and IS methods. In some cases,
IAE estimation dramatically reduces the variance of both MC
and IS estimation.

On function approximation settings, we show that our
method dramatically reduces the mean squared error in train-
ing value function approximators, as shown in Figure 2a. We
initialize the reward decomposition model R′ψ to be zero for
all inputs, which constructs a precise Monte-Carlo advantage
estimator initially, and compare the value function training er-
ror with or without training the reward decomposition. When
the reward decomposition model is fixed, the loss of value
function training keeps being high because of the high vari-
ance of Monte-Carlo return signal, while in our method, the
reward decomposition helps reward to be distributed into the
importance sampling advantage estimator, reducing the mean
squared error of value function. In Figure 2b, we show that
IAE estimation has much higher cosine similarity to ground-
truth advantage function, compared with Monte-Carlo (MC)
and GAE estimation. For GAE, we use λ = 0.95.

7.4 Performance of Policy Optimization
We run Proximal Policy Optimization algorithm [Schulman
et al., 2017] with IAE advantage estimation method, and
compare the result to PPO algorithm with Monte-Carlo (MC)
and GAE advantage estimation. For GAE, we use λ = 0.95.

Figure 3 shows the result on two different reward settings.
Compared with two existing advantage estimation methods,
Monte-Carlo and GAE, IAE makes the policy improvement
process more sample-efficient.

8 Conclusions
In this work, we addressed the large variance problem in ad-
vantage estimation for policy gradient methods. We proposed
a novel advantage estimation method by importance sam-
pling, which identifies and utilizes the independence prop-
erty, reducing the variance by ignoring those independent re-
wards. We further combined the proposed estimator with
Monte-Carlo estimator in an optimal way, making the final
IAE estimator to have low variance in general cases. The ef-
fectiveness of our method can be verified on pixel-input envi-
ronments compared with existing advantage estimation meth-
ods such as Monte-Carlo and GAE.
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