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Abstract
Multi-label text classification is an essential task in
natural language processing. Existing multi-label
classification models generally consider labels as
categorical variables and ignore the exploitation of
label semantics. In this paper, we view the task as a
correlation-guided text representation problem: an
attention-based two-step framework is proposed to
integrate text information and label semantics by
jointly learning words and labels in the same space.
In this way, we aim to capture high-order label-
label correlations as well as context-label correla-
tions. Specifically, the proposed approach works
by learning token-level representations of words
and labels globally through a multi-layer Trans-
former and constructing an attention vector through
word-label correlation matrix to generate the text
representation. It ensures that relevant words re-
ceive higher weights than irrelevant words and thus
directly optimizes the classification performance.
Extensive experiments over benchmark multi-label
datasets clearly validate the effectiveness of the
proposed approach, and further analysis demon-
strates that it is competitive in both predicting low-
frequency labels and convergence speed.

1 Introduction
Multi-label text classification (MLTC) deals with real-world
objects with rich semantics, where each text is simultaneously
associated with multiple class labels that tend to be corre-
lated. It is a fundamental task in natural language processing
(NLP), which aims to learn a predictive model that assigns an
appropriate set of labels to an unseen text. It is worth not-
ing that to learn from multi-label text data, one needs to pay
attention to two key factors: 1) How to generate more dis-
criminative text representation; 2) How to effectively mine
correlations to facilitate the learning procedure.
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†Work done during an internship at Tencent.

Text representation is critical in multi-label text classi-
fication. Transformer-based studies [Devlin et al., 2019;
Lan et al., 2019] demonstrate the effectiveness of Trans-
former module for capturing the dependencies of all words
in a sequence and provide a contextualized representation for
classification tasks. Nevertheless, utilizing only contextual
information to generate the text representation is suboptimal
as it ignores the information conveyed by class labels and
thus fails to take advantage of potential correlations among
label-label and word-label. The fact that different labels may
share the same subset of words is beneficial to help gener-
ate strong text representation. For example, academic liter-
ature containing keywords such as “neural network” is of-
ten tagged with “artificial intelligence” and “deep learning”.
Closely related labels tend to co-occurr. Therefore, it is rather
desirable to fully exploit potential correlation information in
text representation generation, which could be investigated in
two-fold: 1) On one hand, label-label correlations can be ex-
ploited to extract latent inter-dependent features; 2) On the
other hand, context-label correlations can be exploited to en-
hance discriminative abilities of extracted features. As far as
we know, the simultaneous exploitation of both correlations
has still not been well studied.

Generally, the learning process must be facilitated by ex-
ploiting correlations among labels in order to tackle the chal-
lenge of an exponential-sized output space for MLTC. Specif-
ically, CNN-RNN [Chen et al., 2017] presents an ensemble
method of CNN and RNN to capture semantics and model la-
bel correlations. SGM [Yang et al., 2018] captures high-order
correlations between labels through the sequence generation
model. We argue that correlations change dynamically in dif-
ferent contexts, so if we can learn words and labels jointly
in the same space, we will get better label-label correlations
as well as context-label correlations that fit a text. To further
model the context-label correlations, several label embedding
methods, including C2AE [Liu et al., 2017], LEAM [Wang et
al., 2018], LSAN [Xiao et al., 2019], X-Transformer [Chang
et al., 2020], etc., are proposed to take advantage of label
information and construct label-specific text representation
through the refinement of the word embedding. However,
they fail to provide implicit information among label space,
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which leads to the prediction bias in favor of the majority
classes while ignoring the minority classes. Furthermore,
such methods are limited to a certain extent when the labels
do not carry semantic description information. As an exam-
ple, “deep learning” is a label with description, but the sym-
bol “DL” has no description. Providing labels with abbre-
viations or symbols in a dataset can lead to poor prediction
performance or inapplicability.

Inspired by the potential of correlations, we import label
semantics as auxiliary information by a global embedding
strategy. The encoder learns word-word, label-label, and
word-label correlations globally through Transformer mod-
ule. Since not all text words contribute equally to the pre-
diction, we construct an attention vector from the word-label
correlation matrix to extract more discriminative words. The
attention mechanism can improve performance with inter-
pretability for text classification, which means that it helps
relevant words to get higher attention than irrelevant words.
To the best of our knowledge, we are the first to learn
label-label and context-label correlations together with an
attention-based two-step framework, and the main contribu-
tions of this paper include:

1. We propose a basic global embedding strategy that rep-
resents context and all class labels in the same latent
space by Transformer to generate token-level represen-
tations, which captures correlations and reduces the de-
pendence on label description information.

2. We propose an effective and novel method, called CORE,
which exploits COrrelation-guided REpresentation for
multi-label text classification. CORE utilizes higher-
order context-label correlations to guide attention pro-
cesses and attempts to produce a semantic-aware repre-
sentation.

3. Experimental results show that CORE achieves compet-
itive performance against other state-of-the-art multi-
label text classification approaches. We further provide
a series of BERT-based methods and analyze the perfor-
mance with macro-based and rank-based metrics. Re-
sults show that the utilization of label embedding and
label correlations have a significant impact on the per-
formance of our approach.

2 The CORE Approach
In this section, we first introduce the standard formal defini-
tion of multi-label text classification. Afterwards, the formu-
lation of our method is illustrated. The technical details of
CORE are detailed in three steps, including global embedding
strategy, text representation learning, and predictive model in-
duction.

2.1 Problem Formulation
Given a training set S = {(Xi, Yi)}Ni of multi-label text
classification data, where Xi ∈ X is the text sequence and
Yi ⊆ Y is its corresponding labels, the task of MLTC is to
learn a predictive function f . More specifically, an input
text sequence X of length m is composed of word tokens:
X = {x1, x2, ..., xm}, and Y = {y1, y2, ..., yl} is the label

[CLS]
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[SEP]
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Figure 1: The framework of CORE. Specifically, word and label
representations are first generated by a multi-layer Transformer en-
coder, which learns effectively about word-word, word-label, and
label-label correlations through self-attention. After that, we focus
on learning context-label correlation matrix by the output represen-
tations. Text representation vector is generated by the part of context
output and attention vector, which is finally used to predict labels.

space with l labels. Different from the single-label classifi-
cation where only one label is associated with Xi, the multi-
label classification function f : X → 2Y assigns a set of
possible class labels (Y , 0 ≤ |Y | ≤ l) for the unseen text.
Here, yi is either regarded to be relevant (y ∈ Y ) or irrelevant
(y /∈ Y ) for instance X . Note that we use ki ∈ {0, 1} to
denote the categorical information of yi.

A typical text classification approach first preprocesses text
data X for the model to obtain text representation X . Then,
the classifier annotates the text representation with a set of
proper labels Y . Intuitively, the approaches utilize only the
information from the input text sequence. Our method ex-
tends the input by adding label information. Therefore, the
new input sequence of CORE is overlaid with both text and
labels, which is composed of all tokens like: {X;Y} =
{x1, x2, ..., xm; y1, y2, ..., yl}, the number of labels is fixed
to l in the data. The preprocessing is to obtain text represen-
tation C from context and labels. The aim of the predictive
function f : C → 2Y is to minimize a loss function which
ensures that the model predicts relevant and irrelevant labels
for each training instance with minimal misclassification.

2.2 Global Embedding Strategy
We utilize BERT [Devlin et al., 2019], which outperforms
state-of-the-art models on a wide range of NLP tasks, as the
base encoder in the CORE framework. The basic architecture
of BERT is a multi-layer bidirectional self-attention Trans-
former. For classification tasks, a special token [CLS] is put
to the beginning of the text and the output vector of the token
[CLS] is designed to correspond to the final text representa-
tion. Different from this operation, we unite the input text
with all class labels, which are packed into a single sequence
and separated by a special token [SEP].

Let {[CLS], x1, x2, ..., xm, [SEP ], y1, y2, ..., yl, [SEP ]}
be the token sequence which input into Transformer mod-
ule. Note that the input representation of each given token
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is constructed by summing the corresponding token, seg-
ment, and position embeddings. We simply use the same
pre-trained model parameters as the official public model to
initialize our model, and finetune all the parameters end-to-
end to obtain the contextualized token-level representations
H , i.e., {h[CLS], hx1, ..., hxm, h[SEP ], hy1, ..., hyl, h[SEP ]}.
As shown in Figure 1, the utilization of global embedding
strategy guarantees that we consider both label correlations
and context-label correlations in the same space at the begin-
ning. Note that when label descriptions are unavailable, we
represent each label with a new word token (unused token) to
learn the hidden representation.

2.3 Text Representation Learning
To characterize the underlying structure of the contextual-
ized representations, CORE works by constructing an atten-
tion vector (Hx, Hy) → −→α . Hx corresponds to the set of
context sequence representations and Hy corresponds to the
set of label sequence representations. Since the input text is
often flexible, we fixed the length for ease of use, i.e., the
excess is trimmed off and the deficient is padded.

Attention Discovery
A simple way to measure the deep context-label correlations
is to multiply matrix Hx by matrix Hy:

G = HxH
T
y (1)

where G ∈ Rm×l, note that Hx and Hy have been normal-
ized by L2 norm.

We consider a further generalization of Eq. (1), which aims
to strengthen the relative spatial information among consecu-
tive tokens. In particular, for a text fragment of length 2r+ 1
centered at p, the local matrix block Gp−r;p+r in G measures
the correlation in the word-label fragment pairs. Since the
matrix G can be viewed as an extension in the spatial orien-
tation, we use g(·) to denote a convolution layer with ReLU
activation to learn the higher-order correlation matrix:

M = g(Gp−r;p+rW1 + b1) (2)
where M ∈ Rl×m, p ∈ {1, ...,m}. Here, W1 ∈ R2r+1

and b1 ∈ Rl represent weight matrix and bias vector respec-
tively. We compress the matrix M into a vector of length m
by selecting the maximum value and reduce the effect of the
fluctuating value: −→α = Ω(M) (3)
Here, the length of −→α is m, softmax and hyperbolic tangent
are executed sequentially in Ω(·). By learning the context-
label correlation matrix M from Eq.(2), the attention vector−→α can be instantiated in a manageable range in Eq.(3).

Text Representation Generation
Given the attention vector−→α , the original contextualized rep-
resentations of text sequence can be transformed into an en-
riched version. In CORE, the final text representation is gen-
erated by aggregation of word representations, weighted by
attention vector: −→c = −→α ·Hx (4)
Intuitively, the text representation uses higher-order context-
label correlations to guide attention processes. The nonlinear
interaction between context and labels has been adequately
considered to improve the performance.

Dataset |S| L(S) WCard(S) LCard(S)
AAPD 55,840 54 163.42 2.41
RCV1-V2 804,414 103 123.94 3.24

Table 1: Characteristics of datasets. Here, |S| and L(S) denote
the total number of samples and labels, respectively. WCard(S)
means Label Cardinality, which is the average number of words per
sample. LCard(S) means Label Cardinality, which is the average
number of labels per sample.

2.4 Predictive Model Induction
According to the objective function f : C → 2Y , the
correlation-guided representation replaces the original text
representation for multi-label prediction. We choose standard
neural networks to annotate the correlation-guided represen-
tation with a set of relevant labels:

p = Sigmoid(W2
−→c T + b2) (5)

where W2 ∈ Rl×|−→c | and b2 ∈ Rl are parameters to be
learned. Notice that, the sigmoid function allows to deal with
non-exclusive labels, while the softmax function only deals
with exclusive classes.

In CORE, binary cross-entropy losses are used to measure
probability errors in multi-label classification tasks where
each class is independent, rather than mutually exclusive:

lossi = −[ki ln pi + (1− ki) ln(1− pi)] (6)

In order to minimize the loss function, we train the model
end-to-end with all above parameters.

3 Experimental Setup
In this section, the datasets, comparing algorithms, evaluation
metrics and parameter settings are introduced.

3.1 Datasets
We use two datasets for MLTC: AAPD [Yang et al., 2018]
and RCV1-V2 [Lewis et al., 2004]. Table 1 summarizes the
detailed characteristics of the two datasets. Each dataset is di-
vided into a training set, a validation set, and a test set, which
are used as basic divisions in the performance experiments of
each algorithm [Yang et al., 2018].

3.2 Comparing Algorithms
The performance of CORE is compared against the following
multi-label algorithms:
• SGM [Yang et al., 2018] proposes the sequence-to-
sequence model with an attention mechanism to capture la-
bel correlations. Although label correlations are exploited, it
ignores the use of label semantics to construct text represen-
tations.
• Seq2Set [Yang et al., 2019] utilizes deep reinforcement
learning to improve the performance of seq2seq model, which
reduces the dependency of the label order. Similar to SGM, it
lacks the use of label information.
• LSAN [Xiao et al., 2019] makes use of content and la-
bel text to learn the label-specific text representation with the
help of self-attention and label-attention mechanisms.
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methods AADP dataset RCV1-V2 dataset
Algorithm LE LC HL↓ Micro-P↑ Micro-R↑ Micro-F1↑ HL↓ Micro-P↑ Micro-R↑ Micro-F1↑
BR no no 0.0316 0.644 0.648 0.646 0.0086 0.904 0.816 0.858
CNN no no 0.0256 0.849 0.545 0.664 0.0089 0.922 0.798 0.855
BERT no no 0.0224 0.786 0.687 0.734 0.0073 0.927 0.832 0.877
CC no yes 0.0306 0.657 0.651 0.654 0.0087 0.887 0.828 0.857
LP no yes 0.0312 0.662 0.608 0.634 0.0087 0.896 0.824 0.858
CNN-RNN no yes 0.0278 0.718 0.618 0.664 0.0085 0.889 0.825 0.856
SGM no yes 0.0251 0.746 0.659 0.699 0.0081 0.887 0.850 0.869
Seq2Set no yes 0.0247 0.739 0.674 0.705 0.0073 0.900 0.858 0.879
LSAN yes no 0.0242 0.777 0.646 0.706 0.0076 0.913 0.841 0.875
LEAM yes no 0.0261 0.765 0.596 0.670 0.0090 0.871 0.841 0.856
LEAMw/BERT yes no 0.0237 0.753 0.700 0.726 0.0077 0.893 0.857 0.875

BERTonelab yes no 0.0239 0.775 0.659 0.712 0.0077 0.909 0.835 0.871
BERTlabseq yes yes 0.0236 0.742 0.727 0.734 0.0074 0.897 0.862 0.879
Ours (CORE) yes yes 0.0210 0.803 0.704 0.750 0.0069 0.911 0.864 0.887

Table 2: Predictive performance of each comparing algorithm on two datasets. BERTonelab and BERTlabseq are comparable baselines that
we proposed. Note that LE and LC indicate whether the algorithm considers label embedding and label correlations, respectively. HL,
Micro-P, Micro-R denote hamming loss, micro-precision, and micro-recall, respectively. The best performance is highlighted in bold.
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[SEP]
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[SEP]

...x1 x2 x3 x4 xm y1 y2 yl...

[CLS]

[SEP]

[SEP]
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[SEP]
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Figure 2: Illustration of different BERT-based methods. Subfig-
ure(a) corresponds to the classical BERT of the classification task.
Subfigure(b) represents a label embedding method that does not con-
sider label correlations, corresponding to BERTonelab. Subfigure(c)
uses the label-related parts of the context-label representations, cor-
responding to BERTlabseq . Subfigure(d) is a simplified diagram of
Figure 1, corresponding to CORE.

• LEAM [Wang et al., 2018] applies label embedding in text
classification, which obtains each label’s embedding by its
corresponding text descriptions. Here, we provide a com-
parable baseline method LEAMw/BERT , which uses BERT
to provide text encoding, but its labels are encoded indepen-
dently.
• BERT [Devlin et al., 2019] is a recently proposed language
representation model that generates contextualized word vec-
tors. For multi-label text classification, it only uses text as
input, no label information. As is shown in Figure 2, we pro-
pose two comparable baseline methods. BERTonelab is in-
put only one label at a time, and divides l labels into l times
to perform the binary classification task. While incorporat-
ing label embedding, no label correlations can be learned.
BERTlabseq uses the output of the part of label sequence
Hy as multiple contextual representations for multiple binary
classification. It considers our global embedding strategy and

solves the problem as a sequence annotation task with an ad-
ditional BiLSTM-CRF layer.

More information about other baselines can be found in
Binary Relevance (BR) [Boutell et al., 2004], CNN [Kim,
2014], Classifier Chains (CC) [Read et al., 2011], Label Pow-
erset (LP) [Tsoumakas and Katakis, 2007] and CNN-RNN
[Chen et al., 2017].

3.3 Evaluation Metrics
Following the previous work [Yang et al., 2018; Zhang and
Zhou, 2014], we adopt Hamming Loss and Micro-F1 as our
main metrics, the micro-precision and micro-recall are also
reported for reference. We further used Macro-F1 assuming
equal label weights as the key metric, which provides a differ-
ent analytical perspective. The macro-precision, macro-recall
are also reported for reference. When the intermediate real-
valued function is available, macro-AUC, ranking loss, and
coverage are provided as rank-based metrics, which expect
related labels to score higher than the unrelated labels. For
each evaluation metric, “↓” indicates “the smaller the better”,
while “↑” indicates “the larger the better”.

3.4 Experimental Setting
We implement our experiments in Tensorflow on NVIDIA
Tesla P40. In the experiments, we fine-tuned models on the
base-uncased versions of BERT for English texts. The batch
size is 32, the learning rate is 5e−5, and the window size of
additional layer is 10. Based on WCard(S) and L(S) in Ta-
ble 1, the maximum total input sequence length is 320. In
addition, learning rate decay is added to the BERT training
part, which starts with a large learning rate and then decays
multiple times [Clark et al., 2019]. Note that all BERT-based
models in this paper use learning rate decay technique to im-
prove performance.

4 Experimental Results
We report the detailed experimental results of all comparing
algorithms on two datasets in Table 2. The following obser-
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methods AADP dataset
Algorithm LE LC Macro-P↑ Macro-R↑ Macro-F1↑ Macro-AUC↑ RL↓ coverage↓
BERT no no 0.687 0.521 0.572 0.8843 0.0866 0.2018
LEAM yes no 0.547 0.386 0.453 0.9372 0.0451 0.1048
LEAMw/BERT yes no 0.627 0.555 0.577 0.8446 0.1123 0.2448
BERTonelab yes no 0.666 0.483 0.534 0.9200 0.0480 0.1195
BERTlabseq yes yes 0.610 0.585 0.586 0.9463 0.0362 0.0962
Ours (CORE) yes yes 0.704 0.546 0.595 0.8866 0.0614 0.1545

RCV1-V2 dataset

BERT no no 0.773 0.619 0.667 0.9460 0.0310 0.1140
SGM no yes 0.713 0.680 0.681 - - -
LEAM yes no 0.741 0.649 0.692 0.9881 0.0073 0.0440
LEAMw/BERT yes no 0.743 0.676 0.684 0.9543 0.0357 0.1176
BERTonelab yes no 0.752 0.616 0.659 0.9866 0.0075 0.0436
BERTlabseq yes yes 0.735 0.678 0.686 0.9949 0.0037 0.0308
Ours (CORE) yes yes 0.759 0.684 0.703 0.9909 0.0064 0.0414

Table 3: The performance of different models on macro-based and rank-based metrics. Note that Macro-P, Macro-R, RL denote macro-
precision, macro-recall, and ranking loss, respectively.

vations can be made according to the results:
1) Our proposed CORE presents the best performance in

terms of hamming loss and micro-F1. We perform a signif-
icant test among the comparing algorithms suggesting that
performance is statistically significant (p < 0.05). On AAPD
dataset, compared to the traditional deep learning model
CNN which only considers text content, CORE decreases by
17.97% on hamming loss and improves by 12.95% on micro-
F1. As for BERT, CORE continues to perform well, with a
relative reduction of 6.25% on hamming loss and an improve-
ment of 2.18% on micro-F1. On RCV1-V2 dataset, com-
pared with Seq2Set which only uses label semantics for cor-
rected predictions, CORE achieves a reduction of 5.48% on
hamming loss and an improvement of 0.91% on micro-F1.
It shows that modeling correlations with label semantics can
lead to performance gains.

2) With our global embedding strategy, BERTlabseq has
made a significant improvement in micro-recall compared to
BERT. We argue that the potential correlations among label-
label and word-label can help capture more meaningful fea-
tures. BERTonelab predicts labels one by one, but compared
to BERT, it achieves a reduction of 3.00% micro-F1 score on
AAPD dataset. LEAMw/BERT improves LEAM by Trans-
former, but its performance is rather slightly lower than BERT
because the labels are encoded independently. It indicates
that the lack of label correlations may lead to performance
degradation.

3) Algorithms like CNN, BERT, LSAN, etc., are biased
to predict positive examples as negative examples, resulting
in fewer matches than the actual number of samples in each
class. CORE ensures good micro-precision while improving
micro-recall. We attribute this phenomenon to the effect of
the attention mechanism. According to the above observa-
tions, it is noteworthy that no algorithm significantly outper-
forms CORE across all evaluation metrics.

To summarize, comparing the proposed CORE against the
recent state-of-the-art models, our method significantly im-
proved previous state-of-the-art results in the main metrics.

5 Further Analysis
In this section, several studies are used to argue intuitively
that CORE has good capability to learn high-order corrections
and generate correlation-guided representation with compet-
itive convergence speed. Moreover, CORE can classify each
class well, even if that class is low-frequency.

We provide the macro-based and rank-based metrics in Ta-
ble 3 to quantify the prediction performance from different
analytical perspectives. Our proposed CORE shows the best
performance on macro-F1, which proves that our method ef-
fectively improves the performance of all classes. In addi-
tion, BERTlabseq , which we proposed to validate the global
embedding strategy, has the best performance on rank-based
metrics. The direct use of label sequence representations
has a more primitive preservation of label-label correlation,
which favors relevant labels to rank higher than irrelevant
ones. However, this method has weak word-label correlation
and is prone to misclassification.

Alternatively, we divide labels on AAPD into three groups
according to their occurring frequency. Nearly 56% of labels
appearing more than 60 times are high-frequency labels and
form Group1. Labels appearing 15-60 times form Group2
(34%), and the remaining 10% of labels form Group3. Figure
3 shows that all algorithms perform better on high-frequency
labels (Group1) than on low-frequency labels (Group3),
which is reasonable since there are more samples of high-
frequency labels. More significantly, CORE improves macro-
F1 on Group2 and Group3 compared to other methods, and
it is more robust to classify mid/low-frequency labels. These
results demonstrate the superiority of our proposed models in
predicting low-frequency labels.

The convergence speed of three BERT-based models are
shown in Figure 4. Both CORE and BERTlabseq outperform
BERT in terms of convergence speed. CORE converges sig-
nificantly faster than BERT, which means that the perfor-
mance of our proposed CORE can approach the optimal so-
lution more efficiently by global embedding strategy and text
representation learning.
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Figure 3: Macro-F1 for three groups on AAPD. All classes are
sorted in descending order of their frequency of occurrence. Group1,
Group2, and Group3 denote high-frequency labels, mid-frequency
labels, and low-frequency labels, respectively.
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Figure 4: The convergence speed of three BERT-based methods.
The x-axis refers to the training steps, and the y-axis refers to the
micro-F1 score performance.

In Figure 5, we visualize one example on the AAPD
dataset. The dark orange means more important words. For
the label “CV” and “CL”, the selected informative words are
videos, image, movie, descriptions, etc. For the
label “CV” and “LG”, the selected informative words are
images, machine, etc. Benefiting from the interpretability
of the attention mechanism, the text representation learning
can correctly detect the key words with proper scores.

6 Related Work
Text representation plays a significant role in model perfor-
mance. It is crucial to extract essential hand-crafted fea-
tures for early models [Joachims, 1998], but features can be
extracted automatically by DNNs. During the past decade,
DNNs have been employed progressively in classification
tasks by learning a set of nonlinear transformations that serve
to map text directly to outputs, such as CNN [Kim, 2014].
Each word in the text is represented by a specific vector
obtained through the word embedding technique [Joulin et
al., 2017]. Recently, Transformer, which is proposed by
[Vaswani et al., 2017], relies entirely on an attention mecha-
nism to draw global dependencies between input and output.
[Devlin et al., 2019] is an important turning point in the devel-
opment of text classification task and it works by generating
contextualized word vectors using Transformer. [Yang et al.,
2018; Yang et al., 2019] use the sequence-to-sequence model
that consists of an encoder and a decoder connected through
an attention mechanism. [Pang et al., 2021] performs the few-
shot learning for text classification. To further manipulate the

generating descriptions for videos has many applications 
including assisting blind people and human robot 
interaction the recent advances in image captioning.
• reference labels: “CV” and “CL”
compared to machines , humans are extremely good at 
classifying images into categories , especially when they 
possess prior knowledge of the categories at hand if this 
prior information is not available. we propose an interactive 
machine teaching algorithm that enables a computer to 
teach challenging visual concepts to a human our adaptive 
algorithm chooses 
• reference labels: “CV” and “LG”

Figure 5: Visualization of attention mechanism on the AAPD
dataset. The reference labels are displayed after abstracts. Note
that “CV”, “CL”, and “LG” denote computer vision, computational
language, and machine learning, respectively.

feature space, [Sun and Zhang, 2021] exploits distance metric
to generate discriminative meta-level features.

Label embedding techniques are gaining attention and ap-
plication in large-scale heterogeneous networks [Tang et al.,
2015], multi-class learning [Joshi et al., 2017], and label dis-
tribution learning [Peng et al., 2018]. [Pappas and Hender-
son, 2019] propose a non-linear transformation to capture the
relationships across labels, which performs significantly bet-
ter on unseen labels. [Liu et al., 2017] is the first DNN-based
multi-label embedding method that seeks a deep latent space
to jointly embed the instances and labels. [Chang et al., 2020]
considers the extreme multi-label text classification (XML)
problem and performs label embedding via label text or pos-
itive instances.

7 Conclusions and Future Work
In this paper, we present the CORE approach, which exploits
correlation-guided representation for multi-label text classi-
fication. We first introduce the global embedding strategy
which learns high-order corrections between context and all
class labels in the same space. Then, the attention mecha-
nism is used to highlight the most informative words in the
text sequence. Extensive comparative studies clearly validate
the superiority of our proposed CORE against state-of-the-art
multi-label classification algorithms.

Our method treats all class labels as a label sequence,
which means that our default labels are ordered. However,
it can also be treated as an unordered set. On the other hand,
one label is virtualized as one single token. If the label has
descriptive text, there could be multiple tokens for seman-
tic learning, which might be useful for XML problems. The
above issues should be further explored in the future.
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