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Abstract
Relation discovery for multi-dimensional tempo-
ral point processes (MTPP) has received increasing
interest for its importance in prediction and inter-
pretability of the underlying dynamics. Traditional
statistical MTPP models like Hawkes Process have
difficulty in capturing complex relation due to their
limited parametric form of the intensity function.
While recent neural-network-based models suffer
poor interpretability. In this paper, we propose a
neural relation inference model namely TPP-NRI.
Given MTPP data, it adopts a variational inference
framework to model the posterior relation of MTPP
data for probabilistic estimation. Specifically, as-
suming the prior of the relation is known, the con-
ditional probability of the MTPP conditional on a
sampled relation is captured by a message passing
graph neural network (GNN) based MTPP model.
A variational distribution is introduced to approxi-
mate the true posterior. Experiments on synthetic
and real-world data show that our model outper-
forms baseline methods on both inference capabil-
ity and scalability for high-dimensional data.

1 Introduction
Many real-world temporal processes involving time-stamped
multi-typed event sequences can be modeled by Multivari-
ate or namely Multi-dimensional Temporal Point Processes
(MTPP) [Daley and David, 2007], e.g. earthquake records,
stock transactions and information spread on social networks.
Entities along each dimension in MTPP may have complex
relations among multiple dimensions. For instance, in online
social networks, multiple users’ behavior sequences form an
MTPP. “Friendship” relationships among users form a latent
relation graph. Information spreading via graph edges can af-
fect users’ behaviors (MTPP). Knowing relationships among
dimensions is of great interest to multiple parties.

However, in real-world scenarios, the relation is often im-
plicit and calls for effective inference. Many relation infer-
ence methods for MTPP [Zhou et al., 2013a; Linderman and
Adams, 2014; Eichler et al., 2017; Liu et al., 2018] resort to
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the so-called Multivariate Hawkes Processes (MHP) . How-
ever, MHP makes strong assumption about the underlying dy-
namics of MTPP. Thus, it is hard for these MHP-baesd mod-
els to capture complex real-world dynamics.

Meanwhile, MTPP can be modeled by Recurrent Neu-
ral Networks [Du et al., 2016], Generative Adversarial Net-
works [Xiao et al., 2017], Reinforcement Learning [Li et
al., 2018; Wu et al., 2019] and Neural Ordinary Differential
Equation [Jia and Benson, 2019]. Yet these neural-network-
based models mainly focus on probability modeling and event
prediction, instead of relation inference. The attention model
in [Xiao et al., 2019; Wang et al., 2017] may be used to in-
fer the relation, while the interpretability is still controver-
sial [Jain and Wallace, 2019; Wiegreffe and Pinter, 2019].

To fill the gap, we propose Neural Relation Inference for
Multi-dimensional Temporal Point Processes (TPP-NRI). We
use a variational inference framework which allows us to in-
corporate prior knowledge about the relation. We assume the
prior of the relation is known. A neural model based on mes-
sage passing graph is used to estimate conditional probability
of an MTPP conditional on a sampled relation matrix. Our
goal is to estimate the posterior of the relation. Thus a varia-
tional distribution is introduced to approximate the true pos-
terior. The contributions of our work are as follows.

i) We develop a message passing graph model for multi-
dimensional temporal point processes. Our model can model
more complex dynamics than traditional statistical models
and enjoys a clear probabilistic meaning in contrast to the
few existing neural-network-based works [Xiao et al., 2019;
Wang et al., 2017] which resort to attention mechanisms.

ii) We propose a variational inference framework for neu-
ral MTPP relation inference. The framework can incorporate
different relation priors, thanks to its probabilistic nature. To
our best knowledge, this is the first work for probabilistic re-
lation discovery for MTPP using deep neural networks.

iii) Experimental results on both synthetic and real-world
benchmarks show the effectiveness of our approach, for both
model fitting as well as scalability for high-dimensional data.

2 Preliminaries and Related Works
2.1 Multi-dimensional Temporal Point Process
MTPP [Daley and David, 2007] is a useful tool to model a
group of correlated processes in continuous-time domain. For
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a D-dimensional TPP, we use Ni(t), i = 1, . . . , D, t ∈ [0, T )
to denote the counting process which counts the number of
events in dimension i until time t. An MTPP can be modeled
by its conditional intensity function:

λi(t)dt = P (Ni(t+ dt)−Ni(t) = 1|Ht) (1)
whereHt denotes the historical observations until t.

We denote a sequence of events as S = {(tn, in)}Nn=1,
where tn ∈ [0, T ) is the timestamp of n-th event and in ∈
{1, . . . , D} is the dimension. The log likelihood of S is:

log p(S) =
N∑
n=1

log λin(tn)−
D∑
i=1

∫ T

0

λi(t)dt (2)

Traditional statistical MTPP models design different para-
metric forms, e.g. Hawkes process for the conditional inten-
sity function, to capture underlying dynamics of various pro-
cesses. Maximum Likelihood Estimation (MLE) is used to
estimate parameters in the models by optimizing Eq. 2.

2.2 Traditional Relation Inference for MTPP
As a popular MTPP model, a typical embodiment of Multi-
variate Hawkes Process (MHP) defines the intensity as:

λj(t) = µj +
∑
n:tn<t

Wjing(t− tj) (3)

where µj ≥ 0 is the base intensity and g(t) ≥ 0 is the kernel
function representing the influence of an event. W ∈ RD×D≥0

is called infectivity matrix which captures the exciting rela-
tion: larger Wji means that an event of dimension i is more
likely to trigger events of j. Most works on MTPP relation
inference focus on learning the infectivity matrix.

For MHP, it has been show in [Eichler et al., 2017] that
whether events in dimension i Granger-causes events in j
equals to if Wji = 0. [Etesami et al., 2016] proves that the
infectivity matrix is equivalent to the Directed Information
graph (DIGs). [Zhou et al., 2013a] adds nuclear norm and
`1 norm to the objective to enforce the learned matrix to be
sparse and low-rank, and uses alternating direction method of
multipliers and majorization minimization (ADM4) to solve
the optimization problem. [Linderman and Adams, 2014]
adds a binary mask to the infectivity matrix to control whether
Wji = 0. [Salehi et al., 2019] devises a variational model
with tunable hyper-parameters of regularization. [Liu et al.,
2018] uses external spatio information for regularization.

However, these methods are based on MHP, which makes
strong parametric assumption. It is hard for MHP to cap-
ture complex relations. Nonparametric methods [Zhou et al.,
2013b; Achab et al., 2017] are also proposed, but their gener-
alization ability are still limited with a shallow model.

2.3 Neural Relation Inference for Time-series
Different from MTPP data where events happen irregularly,
time-series (TS) is synchronous and regularly-sampled. As
time-series is measured at grid points, it is easier to model it
using neural networks, as well as for relation inference.

The work [Kipf et al., 2018] introduces an unsupervised
model called Neural Relation Inference (NRI) to infer re-
lation from time-series data. NRI uses a variational auto-
encoder (VAE) framework where the encoder and decoder

Methods Data Model Prob. Relation

[Zhou et al., 2013a] MTPP MHP 7
[Linderman and Adams, 2014] MTPP MHP 7
[Liu et al., 2018] MTPP MHP 7
[Salehi et al., 2019] MTPP MHP 3
[Kipf et al., 2018] TS Neural 3
[Webb et al., 2019] TS Neural 3
[Alet et al., 2019] TS Neural 3
[Graber and Schwing, 2020] TS Neural 3
[Wang et al., 2017] MTPP Neural 7
[Xiao et al., 2019] MTPP Neural 7

TPP-NRI (Ours) MTPP Neural 3

Table 1: Relation inference for temporal data. Only our method can
produce probabilistic estimation using neural networks for MTPP.

are modeled by graph neural networks (GNN). [Webb et al.,
2019] expands NRI by representing relation with a multiplex
graph and proposes Factorised Neural Relational Inference
(fNRI). [Graber and Schwing, 2020] thinks that the relation
changes as time progresses and develops Dynamic Neural Re-
lational Inference (dNRI). [Alet et al., 2019] uses a meta-
learning framework to solve the relation inference problem
so that relations among dimensions can be dependent.

These neural-network-based models all focus on TS data,
which cannot be applied to MTPP data, as the latter is irregu-
lar, asynchronous and more sparse in time domain.
Further Remarks. Note the neural network models [Xiao
et al., 2019; Wang et al., 2017] also mention using attention
for relation inference, though the main purpose of their meth-
ods are event prediction. Attention’s physical meaning is still
not fully clear [Jain and Wallace, 2019; Wiegreffe and Pinter,
2019]. Differently, our model provides probability estimation
of the relation, which is more interpretable. Table 1 compares
our work to peer methods. Our neural method has higher ca-
pacity than traditional parametric models, while in the mean-
while it has more rigorous probabilistic meaning than existing
neural models. To our best knowledge, this is the first work
for neural probabilistic relation mining for MTPP data.

3 Neural Relation Inference for MTPP
In Section 3.1, we first formulate the problem for relation in-
ference, and then provide a variational inference framework
in Section 3.2. The framework involves a probability term es-
timated by the MTPP model in Section 3.3. The whole model
is efficiently trained in Section 3.4.

3.1 Problem Setting and Formulation
Given observed multivariate event sequences, our goal is to
infer whether there exists interaction over dimensions. Con-
sider we have M samples of D-dimensional TPP with obser-
vations S = {Sm}Mm=1, where Sm = {(tmn , imn )}Nmn=1, t

m
n ∈

[0, T ), imn ∈ {1, . . . , D}. We assume these sequences are
generated by the same latent dynamic. Our goal is to infer a
binary adjacency matrix A ∈ {0, 1}D×D for the underlying
relation among dimensions: Aji = 1 iff occurrence of events
in dimension i affects that of j.

Note that like many neural relation inference models [Kipf
et al., 2018; Alet et al., 2019; Webb et al., 2019; Graber and
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Figure 1: Overview of our TPP-NRI framework (for 4-D TPP). Each
node in the relation graph corresponds to one dimension. For train-
ing, edges are sampled from the approximation posterior qφ(A).
Given a new event, node states are updated by three processes:
External Drive (Eq. 8), Self-Update (Eq. 10) and Affected-Update
(Eq. 11). The probability of event sequences is modeled by the gen-
erated node states over time as encoded by the intensity (Eq. 12).

Schwing, 2020], our model signifies if there is an interaction,
but not the exact description (e.g. excitation or inhibition or
other more dynamic influences). In contrast, MHP models’
interaction has a clear meaning but is limited to excitation.

3.2 Model Framework and Overall Objective
We take a relation matrix estimation perspective to the infer-
ence task. Given event sequences S, we assume these se-
quences share the same latent relation matrix A. Rather than
just giving a deterministic binary estimation like [Linderman
and Adams, 2014], we provide a probabilistic framework.

Given prior p(A), we use an MTPP model (detailed in Sec-
tion 3.3) to model the conditional pθ(S|A). The goal is to
maximum the marginal distribution pθ(S), then get the poste-
rior pθ(A|S). As the true posterior has no analytical solution,
we use Variational Inference (VI) [Zhang et al., 2019] for ap-
proximation. A global variational distribution qφ(A) param-
eterized by φ is used to approximate pθ(A|S). We need to
minimize the KL divergence between qφ(A) and pθ(A|S):

KL [qφ(A)‖pθ(A|S)]

=−
∫
qφ

qφ(A) log
pθ(A|S)

qφ(A)
dA = −

∫
qφ

qφ(A) log
p(A)pθ(S|A)

pθ(S)qφ(A)
dA

=−
(
Eqφ

[
log

p(A)

qφ(A)

]
+ Eqφ [log pθ(S|A)]

)
+ log pθ(S)

.
=− L(θ, φ;S) + log pθ(S)

(4)
Rearrange the above formula, we can get:

L(θ, φ;S) = −KL [qφ(A)‖pθ(A|S)] + log pθ(S) (5)

Maximizing the defined L(θ, φ;S) in Eq. 4 is equivalent to
minimizing KL divergence and maximizing log pθ(S). Then,
the problem changes to maximize L(θ, φ;S), which is called
the evidence lower bound (ELBO) [Hoffman et al., 2013]:

maxφ,θ L(θ, φ;S) = Eqφ
[
log p(A)

qφ(A)

]
+ Eqφ [log pθ(S|A)] (6)

Assume that p(A) is a discrete probability distribution
where p(A) =

∏
j 6=i p(Aji = 1) and so is qφ. Then the

first term in Eq. 6 can be computed by (cross) entropy:

Eqφ
[
log

p(A)

qφ(A)

]
= −H (qφ(A), p(A)) +H(qφ(A)) (7)

Specific prior can be introduced based on domain knowl-
edge: e.g. setting p(Aji = 1) = 0.2 encourages the learned
posterior to be sparse.

As the second term in Eq. 6 is intractable, we approximate
it through sampling. Sampling a relation A, the task becomes
to model the conditional probability pθ(S|A).

3.3 Conditional Probability Modeling via Message
Passing Graph Based MTPP model

Sampling a relation matrix A, we propose a model based on
message passing Graph Neural Network (GNN) and RNN to
model the conditional probability, as sketched in Figure 1.

For D-dimensional TPPs, we use hi(t) ∈ Rd to represent
hidden state of dimension i at time t. Thus at time t ∈ [0, T ),
we have a set of vectors H(t) = {hi(t)}Di=1. A can be
viewed as the adjacency matrix of a directed graph and H(t)
can be viewed as the embedding vectors of D nodes. This
forms a directed unweighted graph G = {H(t),A}. Every
time an event (tn, in) occurs, H(t) will be updated by three
processes: External Drive, Self-Update and Affected-Update.

1) External Drive. MTPP can be affected by some external
forces. Thus the node representation can change smoothly
even no event occurs. We use External Drive process to model
the smooth update between two consecutive events:

hi(t
−
n ) = fExt(hi(tn−1),∆tn), ∀i ∈ {1, . . . , D} (8)

where ∆tn = tn − tn−1 is the time interval of two events.
The selected function fExt should satisfy two conditions:

• fExt(h, 0) = h

• fExt(fExt(h,∆1),∆2) = fExt(h,∆1 + ∆2)

For computational efficiency, we simply set:

fExt (hi(tn−1),∆tn) = e−α∆tnhi(tn−1) (9)

2) Self-Update. The occurrence of an event in dimension
in will change state of node in. Because the update should be
related to its previous state, we use RNN for Self-Update:

hin(tn) = GRUSelf (tn,hin(t−n )) (10)

We use Gated Recurrent Unit (GRU) [Chung et al., 2014] for
update. Note Self-Update only updates the latent state of di-
mension in, which is the dimension of occurred event. States
of other dimensions hj(t−n ), ∀j 6= in remain unchanged.

3) Affected-Update. Event in dimension in can also affect
the hidden states of other dimensions j 6= in. We think that
this influence should relate to both hin and h−j . We use mes-
sage passing to model this process:

MSG(in,j)(tn) = AjinfMSG

([
hin(tn),hj(t

−
n )
])

hj(tn) = GRUAffect
(
MSG(in,j)(tn),hj(t

−
n )
) (11)
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The first equation in Eq. 11 computes the message passing
from node in to node j. fMSG, modeled by a small neural
network, computes the original message. And [·, ·] denotes
the concatenation operation. Note that in most cases fMSG

is asymmetric, which means the message passing from i to j
is different from j to i. Recall that Ajin is a binary value to
control message passing. If Ajin = 1, the original message
is passed to node j; otherwise, a zero vector 0 will be passed.

The second equation in Eq. 11 represents the update pro-
cess for hj , ∀j 6= in. Taking the message MSG(in,j)(tn) and
the previous state hj(t

−
n ), we use another GRU for update.

A zero vector 0 contains no information about which event
occurs, thus the update depends only on the previous state.
If the received message is not 0, the update depends on both
effect from in (embedded in message) and previous state.

For D-dimensional sequence Sm = {(tn, in)}Nmn=1, we up-
date the node hidden states using three processes one after
another, resulting in a set of hidden vectors at different time
points H = {H(ti)}Nmi=1, where H(ti) ∈ RD×d. Note that
hj(t

−
n ) are just temporary variables which will not be used in

the following computation. We now use H to model the con-
ditional intensity. Following [Du et al., 2016], we formulate
the intensity of each dimension i by:

λi(t) = exp
(
v> · hi(tn) + wi(t− tn) + bi

)
(12)

where tn < t ≤ tn+1. v is a shared column vector for all
dimensions, and wi, bi are unique scalars for each dimension.

Given the above conditional intensity, we can use Eq. 2 to
compute the log likelihood of a sequence: log pθ(Sm|A). For
a set of sequences S = {Sm}Mm=1, assuming they are (con-
ditional) independent, one can sum the results up to obtain:

log pθ(S|A)

=

M∑
m=1

(
Nm∑
n=1

log λ
(m)
imn

(tmn )−
D∑
i=1

∫ T

0

λ
(m)
i (t)dt

)
(13)

3.4 Training
Our goal is to get the posterior qφ(A) by optimizing Eq. 6.
It is straightforward to compute L and use gradient descent
to optimize. However, the expectation of log pθ(S|A) has
no analytical solution, we approximate it through sampling.
We use Gumbel-Softmax sampling [?] which approximates
discrete distributions with continuous ones to provide differ-
entiable samples. Mini-batch gradient descent is also used
during training. The overall training process is shown in Al-
gorithm 1. Note that the prior p(A) is fixed.
Remarks. Some works also combine graph structure with
MTPP. [Shang and Sun, 2019; Wu et al., 2020; Liu et al.,
2018] use some explicit graph structures to improve event
prediction accuracy. [Zuo et al., 2018; Trivedi et al., 2019]
use MTPP to model topological evolution of dynamic graphs.
These methods are orthogonal to ours.

4 Experiments
We implement our model using PyTorch. We set hidden size
of GRUSelf and GRUAffect to be 20. fExt is implemented

Algorithm 1 Variational training algorithm for TPP-NRI
Input: Observed sequences S = {Sm}Mm=1. Sample size L.
Prior p(A). Mini-batch size B. Training epochs K. Initial
qφ(A) and message passing graph pθ(S|A).
Output: Approximated posterior of (i.e. inferred) relation
matrix qφ(A).

1: for epcoh← 1, · · · ,K do
2: for iter ← 1, · · · , dMB e do
3: Sample a batch of sequences S′ from S;

//Approximate the 2nd term in ELBO (Eq. 6) by first
sampling A then computing conditional likelihood.

4: Sample relation matrix A1, · · · ,AL ∼ qφ(A);
5: Compute conditional log likelihood log pθ(S

′|Al)
using Eq. 8 to 13.
//Compute and optimize the approximated ELBO
(Eq. 6) by min-batch gradient descent.

6: L ← Eqφ [log p(A)
qφ(A) ] + M

BL

∑L
l=1 log pθ(S

′|Al);
7: g ← −∇θ,φL;
8: θ, φ← Update parameters using gradient descent.
9: end for

10: end for
11: return qφ(A).

by a one-layer fully-connected network. Mini-batch size B is
set to 32 and sample size L is set to 1. Adam algorithm with
learning rate 0.005 is used for optimization.

Following [Linderman and Adams, 2014; Salehi et al.,
2019] we perform two tasks: a) link prediction to infer if in-
teractions exist between 2 dimensions, i.e. whether Aji = 1
or not. b) event prediction measuring the probability of next
event given past events. Note that it is impossible to estimate
the performance of link prediction on real-world data as the
ground truth relation is inaccessible. Therefore, we use event
prediction task to estimate indirectly.

4.1 Experiments on Synthetic Data
We use a 100-dimensional Hawkes process for data gener-
ation. Following [Zhou et al., 2013a], we set the true in-
fecticity W = UV>, where U is a 100 × 9 matrix with
U10(i−1)+1:10(i+1),i ∼ Uniform(0.1, 0.2), i = 1, . . . , 9, so is
V. Then the spectral radius of W is scaled to 0.8. Baseline
intensities are set as µi ∼ Uniform(0, 0.02), i = 1, . . . , 100.
We use W and µ to generate the following three datasets.

MHP (Exp). MHP with exponential kernels: set kernel
function in Eq. 3 as g(t) = β exp (−βt). We set β = 2.5
and T = 20. 2,500 samples are generated from this process.
In total, we have 220,235 events in this dataset.

MHP (Power). MHP with power law kernels: set kernel
function as g(t) = (δ + t)−β . We set δ = 0.8, β = 2.5 and
T = 20. 2,500 samples are generated from this process. In
total, we have 155,825 events in this dataset.

MHP (Exp+Power). MHP (Exp) and MHP (Power) are
mixed to get a dataset with 5,000 sequences and 376,040
events. As MHP (Exp) and MHP (Power) are generated by
the same W, they share the same latent relation structure.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3409



To mimic real-world data, we add random noises following
standard Gaussian distribution to every timestamp. All times-
tamps are scaled to [0, 1] for model input. For each dataset,
we randomly sample 80% for training and 20% for testing.

Following [Linderman and Adams, 2014; Salehi et al.,
2019], we use the following three metrics (the first two are
for link prediction, the third is for event prediction):
F1-score. Considering that not all outputs have clear phys-
ical meaning like ours, we threshold at 10-quantiles between
the min and max value of output matrices and compute the
corresponding F1-scores. The best result out of 10 is selected.
Following [Zhou et al., 2013a], we only consider Aji, j 6= i.
ROC curve. We threshold at every point of the inferred ma-
trix and plot Receiver Operating Characteristic Curve (ROC).
Log Likelihood (LL). We estimate LL (Eq. 13) on test set.
For presentation, we normalize LL by number of events.

We compare the performance of the following models:
1) TimeWindow. Divide [0, T ) into bins with equal length.
For each dimension, number of events in each bin is counted.
The cosine similarity of vectors is used as relation matrix.
2) Hawkes. Hawkes process with exponential kernels.
3) ADM4. Alternating direction method of multipliers and
majorization minimization for Hawkes process with sparse
and low-rank regularization [Zhou et al., 2013a].
4) Attention. RNN model with attention mechanism similar
to [Xiao et al., 2019; Wang et al., 2017]. Average attention
matrix among all event sequences is used as inferred relation.
5) TPP-NRI (uniform). Our neural relation model without
prior knowledge (by setting p(Aji = 1) = 0.5).
6) TPP-NRI (sparse). Our neural relation model with prior
that the relation is sparse (by setting p(Aji = 1) = 0.2).
7) TPP-NRI (full). Fix the graph as complete graph and use
the proposed message passing graph to model log likelihood.
8) TPP-NRI (true). Input the real graph structure into the
message passing graph to model log likelihood.

TimeWindow is only for F1-score and ROC curve estima-
tion, TPP-NRI (full and true) are only for LL estimation. For
TPP-NRI (uniform and sparse), we sample 100 graphs from
posterior qφ(A) and estimate the mean LL.
Results. ROC curves are shown in Figure 2, F1-score and
LL are given in Table 2. As for link prediction, ROC
curves and F1-score show that our two TPP-NRI (uniform
and sparse) outperform traditional methods (Timewindow,
Hawkes and ADM4) on all datasets. Sparse prior can slightly
improve the performance. Attention performs better on MHP
(Power), but is not as interpretable as TPP-NRI: output of
TPP-NRI has clear meaning: probability of interaction.

As for LL estimation, TPP-NRI (true) significantly outper-
forms all other methods. This shows that knowing the relation
is of great help in event prediction and emphasizes the impor-
tance of relation inference. TPP-NRI (full) performs well, but
it can not perform relation inference. For relation inference
methods, TPP-NRI models outperform baseline models on
MHP (Exp) and MHP (Exp+Power), but are outperformed by
ADM4 on MHP (Power). However, the gap is small and our
models are more interpretable according to link prediction.

We further show the inferred relation on MHP (Exp)
dataset in Figure 3. It is easy to see that matrix inferred by

Methods MHP (Exp) MHP (Power) MHP (Exp+Power)

TimeWindow .457/∞ .448/∞ .466/∞
Hawkes .842/-.743 .805/-1.26 .910/-.950
ADM4 .897/-.715 .839/-1.24 .941/-.958
Attention .881/-.767 .934/-1.27 .914/-.966
TPP-NRI (uniform) .941/-.711 .898/-1.25 .959/-.916
TPP-NRI (sparse) .954/-.699 .904/-1.25 .958/-.918

TPP-NRI (full) ∞/-.661 ∞/-1.23 ∞/-.892
TPP-NRI (true) ∞/-.654 ∞/-1.22 ∞/-.886

Table 2: F1-score/LL on synthetic datasets with different kernels.
Different priors (denoted in bracket) are used in our TPP-NRI.

Methods Stack Overflow Email Stock

Hawkes 0.272 -0.834 -1.22
ADM4 0.306 0.107 -1.69
Attention 0.367 1.13 1.16
TPP-NRI (uniform) 0.370 1.83 1.30
TPP-NRI (sparse) 0.378 1.76 1.33
TPP-NRI (full) 0.480 2.02 1.32

Table 3: LL estimation on three real-world datasets.

TPP-NRI has less false negative (near the diagonal) and false
positive (around corners) points than ADM4. Attention tends
to output more edges than ground truth relation.

4.2 Experiments on Real-world Data
We also evaluate performance on three real-world datasets:

Stack Overflow contains question answering records on
Stack Overflow over 2,774 days [Paranjape et al., 2017]. Ev-
ery time a user answers a question is recorded as an event
with the user ID as the dimension. We consider the most ac-
tive 100 users which correspond to 783,085 events. We use
events in every half day as a sample of sequence.

Email contains email sending records of 142 members in a
large European research institution during 803 days [Paran-
jape et al., 2017]. Every time a member sends an email is
recorded as an event with the sender’s ID as the dimension.
In total, we have 48,141 events in this dataset. Events in every
24 hours are viewed as a sample of sequence.

Stock contains daily stock prices of 31 compa-
nies(www.kaggle.comszrleestock-time-series-20050101-
to-20171231). A stock changes by ±1% of last day’s price is
recorded as an event with the ID as the dimension [Salehi et
al., 2019]. This dataset contains 36,356 events. Events of a
month are viewed as a sample of sequence.

All timestamps are scaled to [0, 1]. For each dataset, we
randomly sample 80% for training and the rest for testing.

For TPP-NRI, we use same prior as synthetic experiments.
Table 3 shows that our models significantly outperform base-
lines. TPP-NRI (sparse) even outperforms TPP-NRI (full) on
Stock, although its main task is relation inference.

Figure 4 shows the relation of Stock inferred by TPP-
NRI (sparse). Stock 0 ∼ 6 are information technology com-
panies, which are likely to be affected by others and have
stronger interaction within the group. Stock 17 and 19 have
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Figure 2: ROC curve comparison on three synthetic datasets generataed by different MHP models.
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Figure 3: Inferred relation matrices on MHP (Exp). Continuous ma-
trices are thresholded into binary values for visualization and com-
parison. The binary thresholds are set as best in F1-score estimation.

high probability to interact each other. Actually, they are
Chevron Corporation and Exxon Mobil Corporation which
are the only two petroleum industry companies. This shows
that our model really uncovers useful information.

4.3 Scalability for High-dimensional Data
We use process similar to Sec. 4.1 to generate MHP (Exp)
data of different dimensions and test the scalability. We es-
timate the overall training time (in second) and the epochs
for convergence (maximum value is set 50). TPP-NRI runs
on a single RTX-2080Ti (11GB) GPU and ADM4 runs on a
core of Intel i9-7920X CPU @ 2.90GHz with 128GB RAM,
as ADM4 involves CPU-intensive computing. Table 4 shows
that our model outperforms ADM4. The gap gets greater as
the dimension increases. This is because the use of neural
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Figure 4: Probability of stock interaction by TPP-NRI (sparse).

dim F1-score Overall training time (epoch)
ADM4 TPP-NRI ADM4 TPP-NRI

100 0.957 0.960 3,799(44) 932(10)
200 0.813 0.898 10,380(50) 2,024(14)
300 0.713 0.843 16,947(50) 2,930(14)
400 0.584 0.783 26,195(50) 4,092(18)
500 0.452 0.720 34,418(50) 3,672(14)

Table 4: Performance with respect to model dimension. Note ADM4
cannot converge within the given maximum iterations: 50 epochs.

network, which not only captures complex dynamics but also
enjoys acceleration by parallel computing architectures.

5 Conclusion
This paper aims to infer the underlying relation among di-
mensions for a temporal point process, which is fulfilled by
message passing on relation graph via variational learning.
Our method enjoys more rigorous probabilistic formulation
and physical meaning than those attention based models and
it also outperforms traditional parametric models.

Acknowledgements
This work was partly supported by National Key Research
and Development Program of China (2020AAA0107600),
NSFC (61972250, 72061127003), and Shanghai Municipal
Science and Technology Major Project (2021SHZDZX0102).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3411



References
[Achab et al., 2017] Massil Achab, Emmanuel Bacry,
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