Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Combining Tree Search and Action Prediction for State-of-the-Art Performance in
DouDiZhu

Yunsheng Zhang'*, Dong Yan'T, Bei Shi?, Haobo Fu®, Qiang Fu?, Hang Su', Jun
Zhu' and Ning Chen*
'Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Lab, Tsinghua University
2Tencent Al Lab

3Tencent
“Independent Researcher

ys-zhang 18 @mails.tsinghua.edu.cn, sproblvem @ gmail.com, {beishi, haobofu, leonfu} @tencent.com,
{suhangss, dcszj, ningchen} @mail.tsinghua.edu.cn

Abstract

AlphaZero has achieved superhuman performance
on various perfect-information games, such as
chess, shogi and Go. However, directly applying
AlphaZero to imperfect-information games (IIG) is
infeasible, due to the fact that traditional MCTS
methods cannot handle missing information of
other players. Meanwhile, there have been several
extensions of MCTS for IIGs, by implicitly or ex-
plicitly sampling a state of other players. But, due
to the inability to handle private and public infor-
mation well, the performance of these methods is
not satisfactory. In this paper, we extend AlphaZero
to multiplayer IIGs by developing a new MCTS
method, Action-Prediction MCTS (AP-MCTS). In
contrast to traditional MCTS extensions for IIGs,
AP-MCTS first builds the search tree based on
public information, adopts the policy-value net-
work to generalize between hidden states, and fi-
nally predicts other players’ actions directly. This
design bypasses the inefficiency of sampling and
the difficulty of predicting the state of other play-
ers. We conduct extensive experiments on the pop-
ular 3-player poker game DouDiZhu to evaluate
the performance of AP-MCTS combined with the
framework AlphaZero. When playing against ex-
perienced human players, AP-MCTS achieved a
65.65% winning rate, which is almost twice the hu-
man’s winning rate. When comparing with state-
of-the-art DouDiZhu Als, the Elo rating of AP-
MCTS is 50 to 200 higher than them. The ablation
study shows that accurate action prediction is the
key to AP-MCTS winning.

1 Introduction

Compared to the much progress on solving perfect-
information games [Silver ef al., 2018], imperfect infor-

*This work was partially done when Yunsheng Zhang was an
intern at Tencent Al Lab.
TContact Author

3413

mation games (IIGs) are more challenging and relatively
under-explored. The representative progress on IIGs is on
solving poker games with counterfactual regret minimiza-
tion (CFR) [Zinkevich er al., 2008]. For example, Deep-
Stack [Morav¢ik et al., 2017] and Libratus [Brown and Sand-
holm, 2018] have beaten top professional players in Heads-
Up No-Limit Texas Hold’em using CFR. However, these
methods require a complete expansion of the whole game tree
to calculate counterfactual values, thereby heavily relying on
a domain-specific abstraction [Brown and Sandholm, 2019]
to reduce the game scale [Sandholm, 2015]. Existing im-
provements such as MCCFR [Lanctot ef al., 2009] can reduce
but not fundamentally eliminate the heavy dependence on do-
main knowledge. When applying these methods to other sce-
narios, or even other poker games, users need to have a deep
insight on both the target scenario and the CFR algorithm in
order to design an appropriate abstraction method.

In contrast, Monte Carlo Tree Search (MCTS) without
any abstraction or prior knowledge has proven its success on
large-scale zero-sum games. Especially, AlphaZero [Silver et
al., 2017] achieves superhuman performance on chess, shogi
and Go based on MCTS, which scales more efficiently. Com-
pared with CFR, MCTS grows the tree asymmetrically via the
selection of leaf nodes to concentrate on the more promising
subtrees. Moreover, in the simulation step, the method only
needs to complete one path from the leaf node to the terminal
node instead of the full expansion as in CFR. It contributes
to an efficient traversal of the game tree. However, the direct
application of AlphaZero for IIGs is infeasible because tradi-
tional MCTS methods cannot handle missing information of
other players. The hidden information makes constructing a
search tree problematic.

Some attempts has been made to extend MCTS to han-
dle hidden information in games. For instance, information
set MCTS (ISMCTS) [Cowling et al., 2012] grows a tree
over the information sets for each player instead of construct-
ing a separate tree for each determinization. However, ISM-
CTS suffers from the information leaking problem [Furtak
and Buro, 2013]. Fictitious Play MCTS (FPMCTS) [Jiang
et al., 2019] explicitly estimates a posterior distribution in a
Bayesian manner, samples a concrete state from the distri-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

bution, and then predicts actions via policy-value networks
according to the sampled state. However, the sampled state
is usually inaccurate because of the vast state space and the
unobservable information of opponents. Another drawback
of FPMCTS is that it has to generate a policy network from a
heuristic AI’s self-play results to bootstrap the reinforcement
learning procedure.

In this paper, we propose Action-Prediction MCTS (AP-
MCTS), a variant of MCTS that extends AlphaZero to mul-
tiplayer IIGs. Specifically, to handle the hidden information
of opponents, we sample their actions from the policy-value
network when the node in MCTS represents the opponents.
Unlike existing methods based on MCTS, we exploit the data
from self-play to train the policy-value network and predict
the actions directly. Without knowing the underlying state,
it has an advantage that our framework avoids the inaccurate
sampling of states from opponents. We test our benchmark
on DouDiZhu (which has 3-players), the most popular poker
game in China. Since playing a Nash equilibrium in games
with three or more players may not be wise [Brown and Sand-
holm, 20191, finding or even approximating a Nash equilib-
rium is hard [Rubinstein, 2018]. Thus, our goal in this paper
is to build a DouDiZhu Al, which has a high Elo rating'. We
invited experienced human players to play hundreds of games
with our Al, and AP-MCTS defeats them with 65.65% win-
ning rate. We also validate our method by playing our Al
against previous SOTA DouDiZhu Als and achieve a signifi-
cant advantage.

Compared with previous state-of-the-art baseline meth-
ods [You et al., 2019; Jiang et al., 2019], our framework uses
less training time (reduced from several months to one week)
while achieving better performance. Furthermore, we do not
need any heuristic Al or rules to help the agent for bootstrap-
ping. Overall, our contributions are as follows:

* We propose a general training framework for large scale
IIGs, which can handle hidden information and long se-
quences in the game.

e We train an expert-level DouDiZhu Al, which outper-
forms all other state-of-the-art methods largely. We open
source the code and neural network weights to facilitate
following research works. 2

2 Background and Related Work
2.1 DouDiZhu

DouDiZhu, also known as China Competitive Poker, is a
trendy poker game in China, and has been used as a chal-
lenging benchmark of imperfect-information games [Powley
et al., 2011]. DouDiZhu is a 3-player zero-sum game, where
one landlord plays against two peasants. It uses a standard
deck of 54 cards, including two Jokers. At the beginning of
the game, each player receives 17 cards and then bids for the
landlord position. The highest bidder becomes the landlord
and gets three extra cards. The other two players become
peasants and form a team to play against the landlord.

"Elo rating is a widely used method to calculate the relative skill
levels of players, named after its creator Arpad Elo.
“https://github.com/1310183534/DouDiZhu

3414

Cards are played in rounds, starting from the landlord. At
each round, the current player plays one category of cards
(e.g., solo, pair, trio, etc.), and then every player in order plays
the same category of cards or pass. The round ends when two
players choose a pass, the other player wins the round and
starts the next round. The goal of the game is to play all cards
in hand. If the landlord is the first of the three to play all the
cards, he/she wins. Otherwise, the peasants win.

The average length of the decision sequence is about 30,
which is much longer than that of the Texas Hold’em decision
sequence. Furthermore, at the beginning of the game, the
number of the possible situations for opponent’s hand cards
is about 2 x 10°, far more than the 10 of Texas Hold’em.

2.2 Monte Carlo Tree Search and AlphaZero

Monte Carlo Tree Search (MCTS) [Coulom, 2006] is widely
used in game playing, it grows the search tree asymmetri-
cally by concentrating on those states that are more likely to
arrive. Many researchers try to extend MCTS to imperfect-
information games (IIGs). For instance, [Powley et al., 2011]
introduce a way to extend MCTS to IIGs by determinization,
which is a well-known method first introduced by [White-
house et al., 2011]. Tt transforms the imperfect information
into the perfect information by determining the opponent’s
state and runs the original MCTS algorithm at the perfect in-
formation state. Determinization has two critical problems,
namely non-locality and strategy fusion [Whitehouse ef al.,
2011]. Strategy fusion means that an agent cannot make dif-
ferent decisions from different states in the same information
set, while non-locality means that the different determiniza-
tion of the same information set may derive very distinct
probabilities distributions. ISMCTS [Cowling et al., 2012]
aims to resolve the strategy fusion problem while still suffers
from the information leaking problem, as pointed out by [Fur-
tak and Buro, 2013]. FP-MCTS [Jiang et al., 2019] derives its
strategy based on a sampled state, which is usually inaccurate
because of the enormous state space and the unobservable in-
formation of opponents.

AlphaZero achieves dramatic performance improvement in
perfect-information games by combining MCTS and policy-
value networks [Silver et al., 2018]. Conventionally, the
policy-value network of AlphaZero takes the real state as in-
put, which can only be speculated but not directly observed in
IIGs. Previous works either abandon the planning part com-
pletely [You et al., 2019] or adopt a Bayesian method to infer
the real state [Jiang ef al., 2019], but the impact of the inabil-
ity to know the real state on performance has not been well
resolved.

3 Method

An essential feature of imperfect-information games is that
different roles in the game have different information per-
spectives. Taking DouDiZhu as an example, an audience can
only see public actions (e.g., play a card); a player can see
his/her hands additionally, while the dealer knows the hands
of all players. For convenience, we name these perspectives
as public information [Johanson et al., 20111, private infor-
mation and perfect information, correspondingly.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Private Information of the Current Player
J

Public Information of the Audience

o
r N
‘\
Conv-LSTM
Agent
Action
History ResNet
Sample

Oppnent NG --mmmmemmoomoed Policy [«

Action T

Agent PUCT

Action / \&emeeeeeeeeees Y- Value |/

Figure 1: The architecture of Action-Prediction MCTS. The node of
the search tree denotes the public information, e.g., the play history,
and the partial state denotes the hand cards of the current player.
On each decision point, they are fed together to the neural network
to generate the policy and value of current situation. Note that the
current player does not know the opponent’s hand cards. Thus, the
partial state always encodes current player’s hand cards, no matter
who’s turn to play. Different decision points are differed by identity
channels.

We now formally present the Action-Prediction MCTS
(AP-MCTS). AP-MCTS builds the search tree on the audi-
ence’s public information while feeding the accompanying
policy-value network with the private information of the cur-
rent player. In AP-MCTS, there is only one search tree and
an accompanying policy-value network, as shown in Fig. 1.
The fundamental difference between AP-MCTS and previous
methods is that AP-MCTS chose the action based on the play
history instead of the opponents’ state. AP-MCTS adopts the
LSTM to extract the play history information and adopts the
convolution layer to extract the hand cards information. Such
information is all that the player can access while playing.
It is enough to decide which action to take without know-
ing the opponents’ state. Reasoning the opponents’ state is
costly and unnecessary. Actually, human players also make
decisions directly based on the current play history, rather
than guessing all possible states and extrapolating from those
states. AP-MCTS uses the neural network’s powerful gen-
eralization ability to learn the mapping between play history
and the outcome. The role of different players is indicated by
the identity channels, and the hand cards of the current player
are encoded in other channels (details are described in Tab 1).
This architecture enables sharing common experiences while
retaining the motivation of exploration without assuming the
knowledge of any information unknown in the real game.

3.1 Action-Prediction MCTS for Imperfect
Information Games

Based on this architecture, AP-MCTS predicts actions instead
of states to make decisions with imperfect information. The
working procedure of AP-MCTS is shown in Alg. 1.

On each node of the current player, AP-MCTS selects

3415

Algorithm 1 Action-Prediction Monte-Carlo Tree Search

Require: partial state s, history h, neural network parameter 6,
game simulator G, game reward R(R(s,h) € {—1,0, 1} means
lose, draw, win)

Function: SIMULATE(u, s, h)
if IS-TERMINAL(s, h) then

return r ~ R(s, h)
end if
if u ¢ T then
Add the node u to the tree T’
return r ~ Vy(s, h)
end if
if IS-AGENT’S-TURN(s, h) then
a = PUCT-SELECT(u, s, h)
else
a~ Py(s,h)
end if
(s',h') « G(s,h,a)
Find the node u’ representing (s’, h’) in the tree T
r < SIMULATE(u', s’, h')
N(u) + N(u)+1
W(u) « W(u)+r
W(u
Q) + Fi
return r

Function: AP-MCTS(s, h)

Create the node uroor represents (s, h)

Create the tree T" with 100t Uroot

while within computational budget do
SIMULATE (Uroot; S, h)

end while

return arg max, N (Uroot, @)

the action according to the Predictor Upper Confidence Tree
(PUCT) algorithm [Silver ef al., 2017], while on each node
of the opponent, AP-MCTS directly samples the action from
the policy distribution given by the policy-value network. A
tricky part is how to ensure that the sampled opponent action
is legal. Intuitively, opponents may have different legal ac-
tions depending on some of state variables that are privately
known only to them. But as long as we notice the fact that all
cards remain in the standard deck are legal actions, only ex-
cept those ones that are already played or held by the current
player. Since the play history and hand cards are encoded in
the input of the accompany policy-value network, AP-MCTS
is able to filter out illegal moves.

The policy-value network is denoted by fy, where 6 is the
neural network parameters. The input of fj is the partial state
s (hand cards of the current player) and play history h. The
output of fy can be expressed as fo = (Py(s,h), Vy(s,h)).
During each simulation, for the AP-MCTS agent «, it only
uses the searching algorithm to improve its own policy and
regards other players’ policy as fixed. Specifically, if it is
a’s turn, we select action a using a a variant of the PUCT
algorithm:

N (u)
1+ N(u,a)’
where u is the node representing (s,h), Pp(u,a) =

Pr(als, h) estimates the probability of choosing action a for
given partial state s and decision sequence h, N(u, a) is the

(D

a = argmax Q(u, a) + cpuePo(u, a)
a

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

ResNet2

LSTM Gate

si&ap_

Figure 2: Neural Network Architecture

...... — T e >

Conv-LSTM Cell

visit count for action a in node u, Q(u, a) is the mean action-
value.cpy is a constant determining the level of exploration.
If it is not a’s turn, it will sample action a from move distri-
bution estimated by the policy network directly a ~ Py(s, h).
This shows that if we can fit the other players’ policy distribu-
tion Py(s, h) well, we do not need to use any determinization,
and the search algorithm can still work.

As shown in Fig 2, the policy-value neural network con-
sists of two modules, Conv-LSTM and ResNet [He et al.,
2015]. The Conv-LSTM module encodes historical actions,
and the ResNet module takes h; as input to calculate the value
v and the policy p for the agent. The ResNetl contains eight
residual blocks with a width of 160, The ResNet2 contains
sixteen residual blocks with a width of 256. Short-term mem-
ory h; and long-term memory c; each have 128 channels.
Note that, there is only one instance of the neural network.
All self-play data that played by the landlord and the peasant
are fed to it to achieve the maximum sampling efficiency.

3.2 Input and Output Encoding of Neural
Network

There are 15 ranks of cards in DouDiZhu, of which {4, 2, 3,
4,56,7,8 9 10, J, O, K} and two Jokers. Each rank except
the Joker has four cards. So we adopt a 4 x 15 matrix to
encode the card information. The input of the neural network
(s¢,az—1) is represented as 14 channels, and each channel is
a 4 x 15 matrix. The meaning of each channel is described in
Table 1. Note that, DouDiZhu is played in turn. The position
of a player determines the play order. It is represented by
one-hot encoding in channel 1-3, 4-6 and 7-9.

The neural network outputs a scalar v and a vector p, where
v € [—1, 1] is a scalar evaluation , and p is the probability dis-
tribution of selecting each action. The tricky part of the output
encoding is that DouDiZhu allows players to combine differ-
ent card types then play them together. This combination will
make the action space huge. So we decompose those combi-
nation as individual actions, and represent them by a vector
of length 356. Details are shown in Table 2.

4 Experiment

In this section, we conduct extensive experiments to evalu-
ate our AP-MCTS method. First, we played hundreds of

3416

Channel | Description
0 The hand cards of the player controlled by the
agent. If the type (0 < i < 15) cards in the
player’s hand cards is more than j(0 < j < 4),
then the element of j-th row and ¢-th column
is 1, otherwise 0.
1-3 Position of the player controlled by the agent.
4-6 Position of the current player.
7-9 Position of the landlord player.
10 last action(if it is not kicker). Similar to chan-
nel 0.
11 last action(if it is kicker). Similar to channel 0.
12 The three extra cards that the landlord re-
ceived.
13 Bid action. The entire plane is filled with b,
where b € {0, 1,2, 3} indicates the bid.
Table 1: Input Encoding
Action | Description | Action Description
0 pass 108-143 | solo chain
1-14 bomb 144-195 | pair chain
15-29 solo 196-240 | trio chain
30-42 pair 241-308 | trio chain with
kicker
43-55 trio 309-323 | solo kicker
56-81 trio with | 324-336 | pair kicker
kicker
82-107 | four with | 337-351 | extra cards
kicker
352-355 | bid

Table 2: Output Encoding

games against human players, and AP-MCTS achieved a win-
ning rate of over 65%. Second, we compare AP-MCTS with
other state-of-the-art methods on the DouDiZhu game. The
result shows that AP-MCTS outperforms all those methods.
Finally, we conduct an ablation study to illustrate how each
module of AP-MCTS affects the final performance.

4.1 Experiment Settings and Hyper-Parameters

In our experiment, we evaluated the relative strength of our
agents and baselines by Elo Rating System with Bayesian
Logistic Regression [Coulom, 2008]. Elo Rating System is
a widely used rating system that is used to rank a group of
players. Players with higher Elo rating have a higher proba-
bility of defeating players with lower Elo rating. We estimate
the probability of one landlord player a(defeating two peas-
ant players al, a2 by a logistic function P(aq defeat a1, as),
described below:

1
Plag defeat a1, a2) = 1= oo et a—e@y @

where e(a) denotes the Elo rating of player a. We set the ceo
to the standard constant ﬁ. This means that if an agent’s
Elo is 100 higher than another agent’s Elo, then it has a 64%
probability of winning in games.

We use 96 CPUs and 24 GPUs for generating self-play
games, and 4 GPUs for training the neural network. The

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2200

2100

2000

Elo Rating
= =
[o2] ©
(=] (=]
o o

1700

1600

1500

0 1 2 3 4 5 6 7
Running Time(days)

Figure 3: Growth of Elo rating over time. The horizontal line rep-
resents the Elo score of the strongest agent through reinforcement
learning, which is 2154.

training process and the self-playing process are performed
simultaneously. About 200,000 self-play games can be gen-
erated in one day. The training data is the latest 300,000 self-
play games data. Neural network parameters are optimized
by stochastic gradient descent with momentum[Rumelhart et
al., 1986]. We set the initial learning rate as 0.01 and mini-
batch size as 1024, then adjust the learning rate to 0.001 on
the fourth day. We use truncated backpropagation through
time[Jaeger, 2002] to calculate the gradient of LSTM part and
the longest back propagation length is 16 time-steps.

Our self-playing reinforcement learning started with ran-
dom neural network parameters and ran for seven days. The
player oy, controlled by the latest neural network parameters
0: are used to generate self-play games. «y, selects each ac-
tion using 800 AP-MCTS simulations during inference. Ev-
ery four hours, we save the current version of our agent in an
agent pool. The growth of Elo rating over time is shown in
Figure 3. We use Bayesian Logistic Regression to calculate
the Elo rating of each agent, and the game is played by three
agents randomly selected from the pool. We can see that our
method converges on the sixth day.

4.2 Play with Experienced Human Players

In order to test the ability of our agent against humans, we
invited 15 DouDiZhu enthusiasts for testing. Three of these
players are in the top 5% of a DouDiZhu online platform.
Without sponsorship, these are the highest level of human
players we could find. Our agent plays a total of 294 games
with them. Each game consists of one human player and two
agents. The results are shown in Table 3.

Since the winning or losing of the DouDiZhu game is
closely related to the hand cards, which is completely ran-
dom, a total of 65.65% of the winning rate can show that
our agent is much stronger than ordinary experienced human
players.

Number of Matches Winning Rate
Human as Landlord 173 36.42 %
Human as Peasant 121 31.40 %
Total 294 34.35 %

Table 3: Al against experienced human player

3417

2200 Elo Rating

2150

2100

2050

2000

1950

1900

1850

Aot liapgSlapaC O Micn

(0]
5‘800 S\'ZOO 0‘800 U~100

Figure 4: Comparison between our method, Actor-Critic, RHCP,
CQL and DeltaDou. The numbers 800 and 100 indicate the times of
simulations for MCTS during the period of self-play in each step.

4.3 Comparison with State of The Art AI for
Solving DouDiZhu

In this section, we compare the performance of our frame-
work with the previous state-of-the-art solution on the entire
game by the Elo Rating System.

As far as we know, there are mainly two branches of meth-
ods applied to the game of DouDiZhu. One is based on pure
reinforcement learning. You et al. [2019] propose a method
of Combinational Q-Learning for DouDiZhu. Considering
numerous card combinations at each time step leading to a
huge number of actions, they employ a two-stage network to
reduce action space and also leverage order invariant max-
pooling operations to extract relationships between primitive
actions. Their experiments results demonstrate that Com-
binational Q-Learning outperforms other standard reinforce-
ment learning baselines such as A2C [Mnih et al., 2016] and
DQN [Mnih ef al., 2013]. The final agents can be competitive
to human. The other branch uses variants of MCTS to con-
struct DouDiZhu Al. Whitehouse et al. [Whitehouse et al.,
2011] applied the technique of determinization coupled with
MCTS into DouDiZhu. DeltaDou [Jiang et al., 2019] exploits
FPMCTS and clams that it dominates all other Doudizhu AI’s
they are aware of. In their experiment, DeltaDou shows a
comparable strength against human experts.

We use the following methods as our baselines:

e Actor-Critic [Konda and Tsitsiklis, 2000]. We use the
standard actor-critic method as one of our baselines.

e RHCP. It is an open-source heuristics-based algorithm
available online 3. It decides the hand to play purely by
some handcrafted hand value estimation function.

« Combinational Q-learning (CQL) [You et al., 2019].
As mentioned in Section 2, it is one of the state-of-the-
art methods which is based on pure reinforcement learn-

ing.
¢ DeltaDou [Jiang er al., 2019]. It is a DouDiZhu expert-
level Al that uses deep learning, Bayesian method and

3https://blog.csdn.net/sm9sun/article/details/707878 14

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Fictitious Play MCTS(FP-MCTS) as mentioned in Sec-
tion 2.

We have tried to train DeltaDou through self-play rein-
forcement learning from random neural network parameters,
but the performance of the agent does not improve. It is be-
cause their methods need a hand-coded heuristic algorithm to
bootstrap the training process in the original paper [Jiang et
al., 2019]. Therefore, we used a well-trained agent to gener-
ate a dataset containing 300,000 games data. For a fair com-
parison, we train the neural networks used in AP-MCTS and
DeltaDou on this generated dataset and calculate their Elo
rating, respectively.

The results compared with all the baseline methods are
shown in Figure 4. It demonstrates that our method out-
performs all the baseline methods with a substantial mar-
gin. Especially, our method AP-MCTS outperforms Delta-
Dou with an improvement of 55 Elo scores over the range of
times of simulations. Compared with CQL, the state-of-the-
art method based on pure reinforcement learning, our method
can still achieve an improvement of 201 Elo scores. That is,
our method has a winning rate of about 57.9% against Delta-
dou and a 76.1% winning rate against CQL.

4.4 Ablation Study

Effect of Action Prediction

In order to show that it is necessary to predict the opponent’s
action in AP-MCTS, we replace this module with randomly
selecting one of all possible opponent’s actions, and named
this method as Random Action-Prediction MCTS (RAP-
MCTS). We compare the ability of agents using AP-MCTS
and RAP-MCTS. The Elo ratings are shown in Table 4. All
agents use the same neural network parameters.

Table 4 demonstrates that without the accurate prediction
of the actions from opponents, the more number of simulation
times, the strength of the agent will become worse. It proves
the effectiveness of our action prediction module.

Both our AP-MCTS method and FP-MCTS predict actions
of opponents during the inference of the game tree in MCTS.
The difference is that we predict actions of opponents directly
via the policy network while FP-MCTS use a Bayesian way
to predict actions over the space of the state. We compare
the performance of predicting actions of opponents between
our method and the Bayesian method used in DeltaDou. The
training dataset and test dataset each contains 300,000 and
3,000 self-play games data. The neural network architecture
of the Bayesian method used in the experiment is the same
with our neural network except for the Conv-LSTM part. The

Method Simulation Times Elo Rating
AP-MCTS 800 2148
AP-MCTS 100 2121

Policy Network - 2094
RAP-MCTS 100 2089
RAP-MCTS 800 2067

Table 4: Comparison between the agents using AP-MCTS and RAP-
MCTS

3418

MSE Cross-Entropy Accuracy
Conv-LSTM 0.612 0912 67.5%
Bayes 0.686 1.081 63.3%

Table 5: Prediction comparison between Conv-LSTM used in our
method and Bayesian method used in DeltaDou.

2200

2100

2000

ELO Rating
=
©o
o
o

1800

1700 — 1 simulation
— 100 simulations
1600 — 800 simulations
0 1 2 3 4 5 6 7

Running Time(days)

Figure 5: Elo rating with different number of simulations. Note that
the neural network at the same time is same for all the three settings.
The only difference is the simulation times of AP-MCTS for the
inference of the next motion.

Bayesian method use 1000 times of determinization. The re-
sults are shown in Table 5. We conclude that our methods can
predict actions of opponents better than DeltaDou.

Effect of Simulation Times

To investigate the effectiveness of MCTS, we use the same
neural network but set the number of simulation times during
inference as 1, 100, and 800, respectively. More simulation
times indicate that MCTS can evaluate the next move in a
more accurate way. In particular, using 1 simulation in AP-
MCTS means directly acting according to the prediction of
policy head.

The final results are shown in Figure 5. It can be seen from
the results that at the beginning of self-play reinforcement
learning when the model parameters are approximately ran-
dom, the agent using 800 simulations has a great advantage
over the agent using 1 simulation. At the end of self-play
reinforcement learning, the agent using 800 simulations still
has 55.8% probability of defeating the agent using 100 sim-
ulations, and 59% probability of defeating the agent using 1
simulation.

5 Conclusion and Future Work

In this paper, we propose AP-MCTS and a neural network
structure that can efficiently process historical information,
and extend the AlphaZero algorithm to large-scale imperfect
information games. The experiments show that our frame-
work is able to beat previous state-of-the-art DouDiZhu solu-
tions. In addition, we have open-sourced our code and model
parameters.

In future work, we will extend our framework to more com-
plicated games, e.g. Stratego. Small experiments demon-
strate the universality of our framework, the only change of
porting it to Stratego is input and output encoding.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

References

[Brown and Sandholm, 2018] Noam Brown and Tuomas
Sandholm. Superhuman ai for heads-up no-limit poker:
Libratus beats top professionals. Science, 359(6374):418—
424, 2018.

[Brown and Sandholm, 2019] Noam Brown and Tuomas
Sandholm. Superhuman ai for multiplayer poker. Science,
365(6456):885-890, 2019.

[Coulom, 2006] Rémi Coulom. Efficient selectivity and
backup operators in monte-carlo tree search. In 5th In-
ternational Conference on Computer and Games, 20006.

[Coulom, 2008] Rémi Coulom. Whole-history rating:
A bayesian rating system for players of time-varying
strength. In H. Jaap van den Herik, Xinhe Xu, Zong-
min Ma, and Mark H. M. Winands, editors, Computers
and Games, pages 113-124, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[Cowling er al., 2012] Peter I Cowling, Edward J Powley,
and Daniel Whitehouse. Information set monte carlo tree

search. IEEE Transactions on Computational Intelligence
and Al in Games, 4(2):120-143, 2012.

[Furtak and Buro, 2013] Timothy Furtak and Michael Buro.
Recursive monte carlo search for imperfect information
games. In 2013 IEEE Conference on Computational In-
teligence in Games (CIG), pages 1-8. IEEE, 2013.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoging
Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

[Jaeger, 2002] Herbert Jaeger. Tutorial on training recur-
rent neural networks, covering bppt, rtrl, ekf and the echo
state network approach. GMD-Forschungszentrum Infor-
mationstechnik, 2002., 5, 01 2002.

[Jiang et al., 2019] Qiqi Jiang, Kuangzheng Li, Boyao Du,
Hao Chen, and Hai Fang. Deltadou: expert-level doudizhu
ai through self-play. In Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence, pages
1265-1271. AAAI Press, 2019.

[Johanson ef al., 2011] Michael Johanson, Kevin Waugh,
Michael Bowling, and Martin Zinkevich. Accelerating
best response calculation in large extensive games. In
Twenty-Second International Joint Conference on Artifi-
cial Intelligence, volume 11, pages 258-265, 2011.

[Konda and Tsitsiklis, 2000] Vijay R Konda and John N
Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008—1014, 2000.

[Lanctot et al., 2009] Marc Lanctot, Kevin Waugh, Martin
Zinkevich, and Michael Bowling. Monte carlo sampling
for regret minimization in extensive games. In Advances in
neural information processing systems, pages 1078—1086,
2009.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

3419

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In In-

ternational conference on machine learning, pages 1928—
1937, 2016.

[Moravéik et al., 2017] Matej Moravéik, Martin Schmid,
Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard,
Trevor Davis, Kevin Waugh, Michael Johanson, and
Michael Bowling. Deepstack: Expert-level artifi-
cial intelligence in heads-up no-limit poker. Science,
356(6337):508-513, 2017.

[Powley et al., 2011] Edward J Powley, Daniel Whitehouse,
and Peter I Cowling. Determinization in monte-carlo tree
search for the card game dou di zhu. Proc. Artif. Intell.
Simul. Behav, pages 17-24, 2011.

[Rubinstein, 2018] Aviad Rubinstein. Inapproximability
of nash equilibrium. SIAM Journal on Computing,
47(3):917-959, 2018.

[Rumelhart er al., 1986] David E. Rumelhart, Geoffrey E.
Hinton, and Ronald J. Williams. Learning representations
by back-propagating errors. Nature, 323:533-536, 1986.

[Sandholm, 2015] Tuomas Sandholm. Abstraction for solv-
ing large incomplete-information games. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 29, 2015.

[Silver et al., 2017] David Silver, Julian Schrittwieser,
Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human
knowledge. Nature, 550(7676):354, 2017.

[Silver et al., 2018] David Silver, Thomas Hubert, Julian
Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-
play. Science, 362(6419):1140-1144, 2018.

[Whitehouse et al., 2011] Daniel Whitehouse, Edward J
Powley, and Peter I Cowling. Determinization and infor-
mation set monte carlo tree search for the card game dou
di zhu. In 2011 IEEE Conference on Computational Intel-
ligence and Games (CIG’11), pages 87-94. IEEE, 2011.

[You et al., 2019] Yang You, Liangwei Li, Baisong Guo,
Weiming Wang, and Cewu Lu. Combinational g-learning
for dou di zhu. arXiv preprint arXiv:1901.08925, 2019.

[Zinkevich et al., 2008] Martin Zinkevich, Michael Johan-
son, Michael Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In

Advances in neural information processing systems, pages
1729-1736, 2008.

	Introduction
	Background and Related Work
	DouDiZhu
	Monte Carlo Tree Search and AlphaZero

	Method
	Action-Prediction MCTS for Imperfect Information Games
	Input and Output Encoding of Neural Network

	Experiment
	Experiment Settings and Hyper-Parameters
	Play with Experienced Human Players
	Comparison with State of The Art AI for Solving DouDiZhu
	Ablation Study
	Effect of Action Prediction
	Effect of Simulation Times

	Conclusion and Future Work

