
Uncertainty-aware Binary Neural Networks
Junhe Zhao1 , Linlin Yang2 , Baochang Zhang1∗ , Guodong Guo3 and David Doermann4

1 Beihang University, Beijing, China
2University of Bonn, Germany

3Institute of Deep Learning, Baidu Research; National Engineering Laboratory for Deep Learning
Technology and Application
4University at Buffalo, USA
{jhzhao, bczhang}@buaa.edu.cn

Abstract
Binary Neural Networks (BNN) are promising
machine learning solutions for deployment on
resource-limited devices. Recent approaches to
training BNNs have produced impressive result-
s, but minimizing the drop in accuracy from full
precision networks is still challenging. One rea-
son is that conventional BNNs ignore the uncer-
tainty caused by weights that are near zero, result-
ing in the instability or frequent flip while learn-
ing. In this work, we investigate the intrinsic un-
certainty of vanishing near-zero weights, making
the training vulnerable to instability. We introduce
an uncertainty-aware BNN (UaBNN) by leverag-
ing a new mapping function called certainty-sign
(c-sign) to reduce these weights’ uncertainties. Our
c-sign function is the first to train BNNs with a de-
creasing uncertainty for binarization. The approach
leads to a controlled learning process for BNNs.
We also introduce a simple but effective method to
measure the uncertainty-based on a Gaussian func-
tion. Extensive experiments demonstrate that our
method improves multiple BNN methods by main-
taining stability of training, and achieves a higher
performance over prior arts.

1 Introduction
Binary neural networks (BNNs) [Courbariaux et al., 2016]
quantize weights and features to single bits and have attract-
ed intense interest for their promising computation accelera-
tion and model compression. Existing BNNs have been ap-
plied in many tasks like classification [Rastegari et al., 2016]
and detection [Wang et al., 2020]. However, BNNs are still
challenged by a drastic drop in performance compared to the
full-precision counterparts. One of the main reasons for the
performance drop is the discrete weight optimization. The
optimization is performed using a non-smooth sign function
whose derivative is 0 everywhere except at 0. We denote the
point around the zeros as “sensitive points”.

To handle these sensitive points, existing BNNs prefer
to approximate either the derivative of the sign function

∗Baochang Zhang is the corresponding author.

Epoch

Value Value

Epoch

+1

-1

Epoch

Value Value

Epoch

binary

binary

binary

Real-Valued Kernel

Binary Kernel

0

0

0

+1

-1

0

Figure 1: An illustration of the weight fluctuation during the training
process of BNNs is shown here. The diagram above corresponds
to an unstable real-valued weight, leading to an uncertain binarized
state. In contrast, the weight in the diagram below is relatively mild
and results in a stable state.

or the sign function itself. The straight through estimator
(STE) [Bengio et al., 2013] proposes to approximate the
derivative of the sign function with the identity for BNNs.
Inspired by STE, more precise approximations, including a
1-order approximation [Rastegari et al., 2016] and a polyno-
mial approximation [Liu et al., 2018], were introduced to re-
place the derivative. These methods provide gradients of sen-
sitive points. In addition to direct derivative approximation,
some sign-like functions [Qin et al., 2020; Lin et al., 2020;
Liu et al., 2020] have been designed with adaptive parame-
ters or learnable parameters during training to take an asymp-
totic approach for estimating the sign function. As the train-
ing proceeds, those sign-like functions enlarge the gradient of
sensitive points to make the gradient large enough to change
the binary weights.

However, the existing derivative or sign function approxi-
mation methods all emphasize the gradient magnitude of the
sensitive points but ignore the optimization direction. The
sign may provide the unstable optimization direction because
of the instability of sensitive points. It is obvious that weights
near zero are more uncertain and are thus vulnerable and un-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3441



stable during binarization. As shown in Fig. 1, the weights
that fluctuate around zero provide unstable optimization di-
rections. Learning with uncertain direction will induce slow
convergence and instability for BNNs.

Helwegen et al. [Helwegen et al., 2019] proposes to direct-
ly optimize the binary weights according to the gradient and
skip the update of full-precision auxiliary weights. However,
this approach is ineffective when attempting to estimate the
gradient required for sign flipping. Instead, we propose to
model the uncertainty of the binarization and determine the
optimization direction based on the uncertainty. The uncer-
tainty can be used to determine which weights are hard to
binarize. It reflects the reliability of the optimization.

In this paper, we analyze the influence of uncertainty in-
troduced by weight binarization and present an uncertainty-
aware BNN (UaBNN) to learn BNNs by minimizing the
uncertainty of binarization. More specifically, we describe
a simple yet effective method based on a Gaussian func-
tion to quantitatively measure uncertainty in BNNs. A new
certainty-sign (c-sign) function is introduced to reduce the
uncertainty, improve stability during training. Our contribu-
tions can be summarized as follows:

• We introduce a Gaussian function to quantitatively mea-
sure the uncertainty in BNNs. We further show that un-
certainty is caused by weight binarization.

• We design a new certainty-sign function (c-sign) to con-
trol the binarization during training. We further propose
an uncertainty-aware BNN (UaBNN) to learn BNNs
with a decreasing uncertainty.

• Extensive experiments illustrate that our method im-
proves multiple BNN methods by maintaining stability
during training.

2 Related Work
Very low bit-width quantization on the model will inevitably
cause information loss due to the quantization error. Many
approaches have been proposed to alleviate the information
loss, such as minimizing the distance between the real-valued
weight and the binarized weight [Rastegari et al., 2016] or
adjusting the distribution of parameters to reduce the quanti-
zation error [Gu et al., 2019b]. However, there still exists a
nontrivial accuracy gap between BNN and its full-precision
counterpart. This accuracy gap mainly comes from two as-
pects, the limited representation capacity of low bitwidth and
the difficult optimization of a non-smooth sign function.

Introducing extra feature information, and therefore in-
creasing the model capacity, is one effective way to improve
the performance of BNNs. XNOR-Net [Rastegari et al.,
2016] adds a layer-wise “scale factor” to reconstruct the bi-
narized kernels and achieves a better approximation. Inspired
by this, XNOR-Net++ [Bulat and Tzimiropoulos, 2019] fur-
ther applies three learnable scale factors corresponding to d-
ifferent dimensions of the feature maps of 1-bit convolution.
Besides adding more scale factors, Real-To-Binary [Martinez
et al., 2019] introduces a gating module like SE-Net [Hu et
al., 2018] to rescale the feature maps of the channels before
binarization.

Another way to improve the performance of BNNs is by
adopting a proper optimization method for the quantization.
Inspired by STE [Courbariaux et al., 2016], most existing
works update the parameters approximately and introduce
auxiliary loss functions. Gu et al. [Gu et al., 2019a] refor-
mulates the optimization using a projection function from a
discrete backpropagation view and proposes projection con-
volution neural networks. BONN [Gu et al., 2019b] mini-
mizes the quantization error based on the Bayesian method
and redistributes the real weights to a bimodal distribution.
IR-Net [Qin et al., 2020] introduces the information entropy
loss and optimized it with quantization error simultaneously.
Our work also falls into this line. We investigate the intrinsic
uncertainty nature behind the weight binarization and propose
c-sign and UaBNN to learn binarized neural networks with
improved stability, and higher accuracy.

3 Method
In this section, we first introduce BNNs briefly and then
present the details of uncertainty in weight binarization. Fi-
nally, we propose our UaBNN that minimizes the uncertainty
of BNNs during training.

3.1 Preliminary
In the L-layer CNN, we denote the weights and features of
the l-th layer asW l and F l. The operation in the l-th layer is
expressed as:

F l+1 = φl(W l ∗ F l), (1)
where ∗ denotes convolution operation, and φl(·) represents
other operations in the l-th layer, such as BatchNorm, ReLU,
and else for simplicity. In BNNs, each element of W l and
F l are mapped to {+1,−1} by sign function, i.e. , W l

B =
sign(W l), F l

B = sign(F l).
However, the sign function discards the amplitude infor-

mation of variables and leads to large quantization errors. To
alleviate the precision loss, the scale factor [Rastegari et al.,
2016] is used to enhance the representation ability of the 1-
bit network and widely used in existing BNNs methods while
keeping the weights and features still binarized. And the op-
erations in l-th layer can be represented as:

F l+1 = φl(αl · (W l
B ~ F l

B)), (2)
where ~ stands for a binary convolution consisting of XNOR,
and popcount operations, and scale factor is denoted as αl.
In this way, the operands in convolution are turned into
{−1,+1}, and thus the multiply-accumulation operations in
real-weight convolution can be replaced with light-weighted
XNOR and popcount operations for a simplified convolu-
tion [Courbariaux et al., 2016] to accelerate computation and
reduce the storage.

3.2 Uncertainty in BNN
Conventional methods utilize the sign function for mapping
the continuous weight value to a discrete state, whereas d-
ifferent full-precision networks correspond to an identity bi-
nary network and lead to the same performance in forward
propagation, returning the same gradients. This is an obsta-
cle to the optimization of BNNs. Moreover, the continuous

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3442



(a) (b)

Figure 2: (a) An example of real value and its corresponding uncertainty based on Eq. 5, (b) The binarization results of the example using the
sign and the c-sign functions with m = 2.

weight values around zero are clearly unstable. An alterna-
tive is to calculate the discrete state based on the uncertainty
instead of the continuous value - this is much reliable and sta-
ble. In this case, we first introduce the concept of uncertainty
for BNNs, which can distinguish BNNs even if they perfor-
m the same in forward propagation, and then introduce our
uncertainty aware optimization for BNNs.

Intuitively, the sign of weights close to zero may frequent-
ly flip in the training process, leading to the state more uncer-
tain. In contrast, the state that is far from zero weight is more
stable and thus more certain. In order to quantitatively esti-
mate the uncertainty of BNNs, we introduce a novel function
to estimate the uncertainty of weight binarization by consider-
ing the following characteristics: the uncertainty is maximum
at 0 and decreases gradually as the weights approach +1/-1.
Using the predicted continuous value x (−1 ≤ x ≤ 1) and its
target (+1 and -1), we model the uncertainty as below:

f(x) =
1√
2πσ

exp(− x2

2σ2
), (3)

with σ as a hyperparameter. For simplicity, we also denote
it as an element-wise function for matrices. We apply this
Gaussian function to formulate the uncertainty of BNNs. A
binarization with a higher score means a lower confidence
and a larger potential for reversal. Although Eq. 3 provides a
measure of uncertainty for static BNNs. For better optimiza-
tion, it is also necessary to consider the fluctuation of uncer-
tainty in the dynamic BNNs training. We not only aim to ob-
tain a certainty state this time but also keep a stable training
process and avoid outliers. To this end, we comprehensive-
ly estimate the uncertainty by bringing in the last m state of
BNNs as:

f̂(xt) =


f(xt) t ≤ m

1−
t∏

i=t−m

(1− f(xi)) t > m,
(4)

where t denotes t-th iteration. In this way, we dynamically

calculate the uncertainty of the BNNs in the training process.

3.3 Uncertainty aware Binary Neural Networks
To minimize the uncertainty of BNNs, we propose a
certainty-sign (c-sign) function. Considering the t-th itera-
tion in training, c-sign can be represented as:

csign(xt) =

{
sign(xt) f̂(xt) ≤ max(f̂(xt−1),∆)

csign(xt−1) otherwise,

(5)
where xt is the full-precision weight and f̂(xt) is calculated
as Eq. 4. ∆ here is a threshold for uncertainty. For conve-
nience, instead of a certain value, we introduce ∆ as an adap-
tive threshold for uncertainty. In details, the value of ∆ in
the following section corresponds to the percent of the sorted
values in each layer. And excessive ∆ may cause the c-sign
function to degenerate to sign function. By replacing the sign
function with c-sign function, the uncertainty of binarization
can be theoretically proven to decrease, as shown in Theo-
rem 1. An example of sign and c-sign is shown in Fig. 2.

Theorem 1. If f̂(xt) ≤ f̂(xt−1) is satisfied throughout the
training, f(xt) is decreasing with m intervals.

Proof.

f̂(xt)− f̂(xt−1)

=
t−1∏

i=t−m−1

(1− f(xi))−
t∏

i=t−m

(1− f(xi))

= (f(xt)− f(xt−m−1))
t−1∏

i=t−m−1

(1− f(xi))

(6)

Since
0 ≤ f(·) ≤ 1,

and x is updated only if

f̂(xt) ≤ f̂(xt−1),

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3443



FPConv 

Input Image

Binary 
Block FCBinary 

Block Dog

BinConv PReLUBatchNorm BinActivation +

BinConv PReLUBinActivation

UaBNN

Bias BatchNorm Bias Bias+

UaBNN*

Figure 3: Network architectures of UaBNN and UaBNN*. For UaBNN, in both WRN22 and ResNet18, we replace the original block with
illustrated block, following the same structure as [Gu et al., 2019b] but modify the kernel quantization method with the c-sign function. For
UaBNN*, the sign function is replaced by c-sign function when binarizing the weights, while other structures setting are consistent with
ReActNet [Liu et al., 2020].

based on Eq. 5, we can get that f(x) is decreasing with m
intervals. That is to say, along with t increase, f(x) will de-
crease at each m intervals.

In this way, we can denote the uncertainty of the binary
network at the t-th iteration as

∑
f̂(Wt), i.e. , the sum of all

the uncertainty of weights at t-th iteration. Then in the next
iteration, the element of Wt will be updated according to E-
q.5, its state at t + 1 iteration will be retained as the former
state. More specifically, we apply an asynchronous update
during training. In the forward propagation, we binarize the
full-precision weights following Eq. 5. Some of the binariza-
tion weights will not be updated because of their uncertainty.
In the backpropagation, the gradients are utilized to update
the corresponding full-precision weights. Note that the gra-
dients of full-precision weights may be unmatched to their
full-precision weights’ actual values. In this way, we ensure
the uncertainty of BNN decrease. A detailed process is pre-
sented in Alg. 1.

4 Experiments
In this part, we investigate the effectiveness of the proposed
method on CIFAR-10/100 [Krizhevsky and others, 2009] and
ILSVRC12 ImageNet [Deng et al., 2009] datasets with the
mainstream deep CNN architectures, including ResNet [He
et al., 2016] and Wide ResNet [Zagoruyko and Komodakis,
2016]. Firstly, we elaborate the experiment setups in Sec-
tion 4.1, including datasets, models, as well as hyperparam-
eter settings. In section 4.2, a comprehensive comparison on
both the CIFAR and the ImageNet datasets in terms of ac-
curacy is illustrated. Finally, we further analyze the effects
of the proposed c-sign method during the training process in
Section 4.3.

Algorithm 1 Uncertain aware Binary Neural Network
Input:

The full-precision weights W ; the input dataset.
Output:

UaBNN with the updated W .
1: Initialize W randomly;
2: repeat
3: // Forward propagation
4: for l = 1 to L do
5: Calculate the uncertainty based on Eq. 3;
6: Modify ∆ and binarize weights W l

B use Eq. 5;
7: Perform activation binarization F l

B ; // Using the sign func-
tion

8: Perform 2D convolution with W l
B

9: end for
10: // Backward propagation
11: for l = L to 1 do
12: Compute gradients based on the binarization weights W l

B

13: Update full-precision weights W l

14: end for
15: until convergence

4.1 Datasets and Implementation Details
CIFAR is a small-scale natural image classification dataset,
with the color image size of 32 × 32. The training set and
testing set of CIFAR10/100 are composed of 50,000 pictures
and 10,000 pictures, respectively, across the 10/100 classes.
Moreover, ILSVRC12 ImageNet is a more challenging and
diverse dataset, which contains 1.2 million training images
and 50,000 validation images across 1000 classes. Its large
scale and high resolution make it a harder task compared to
CIFAR.

For the CIFAR10/100 dataset, we employ Wide ResNet
(WRN) to verify the superiority and effectiveness of our

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3444



Model Kernel-Stage Method #Param W/A CIFAR10(%) CIFAR100(%)

WRN22 16-16-32-64

XNOR-Net[Rastegari et al., 2016] 0.27M 1/1 81.90 53.17
Bi-Real Net[Liu et al., 2018] 0.27M 1/1 85.16 57.34

BONN[Gu et al., 2019b] 0.27M 1/1 87.34 60.91
UaBNN 0.27M 1/1 88.03 61.68

FP32 0.27M 32/32 91.66 67.51

WRN22 64-64-128-256

Bi-Real Net[Liu et al., 2018] 4.3M 1/1 90.65 68.51
PCNN[Gu et al., 2019a] 4.3M 1/1 91.37 69.98
BONN[Gu et al., 2019b] 4.3M 1/1 92.36 -

UaBNN 4.3M 1/1 93.37 72.01
FP32 4.3M 32/32 95.75 77.34

Table 1: Test accuracies on CIFAR Dataset. ‘W’ and ‘A’ refer to the weight and activation bitwidth, respectively. ‘FP’ denotes the full-
precision model. The backbone of all of the models is WRN22.

Figure 4: The accuracy of ReActNet using sign and csign on Im-
ageNet. The backbone of the two networks is ResNet18. We can
see that ReActNet with csign achieves higher accuracy and faster
convergence.

UaBNNs. In contrast, we adopt ResNet18 to evaluate our
UaBNNs for the ImageNet dataset. For ResNet18, we bi-
narizes the features and kernels in the backbone convolu-
tion layer except for the first and last layers full-precision,
the same with other BNNs methods. Moreover, we also ap-
ply the modified shortcut method in Bi-Real Net, which uses
additional shortcut layers in each block and keep them real-
valued. The learning rate is initially set to 0.001, with an
Adam optimizer of momentum 0.9. A linear decay strategy is
employed for the learning rate, which degrades the learning
rate in a linear manner.

WRN is a network taking the ResNet as the prototype but
introduce a new depth factor k to adjust the feature map depth
expansion through 3 stages, where the spatial dimension of
the features remains the same. For brevity, we set k to 1 in
the following experiments. The number of channels in the
first stage is another important parameter in WRN. We set it to
16 and 64, and thus result in network configurations with 16-
16-32-64 and 64-64-128-256, respectively. The learning rate
is initially set to 0.1, with an SGD optimizer of momentum

0.9, and we also apply a cosine annealing decay methods.
And other training settings are the same as those described
in [Gu et al., 2019b]. We denote WRN-22 as a WRN network
with 22 convolutional layers. The network architectures of
our UaBNN and UaBNN* are shown in Fig. 3.

As for the hyperparameters introduced in UaBNN, m is
set to 2. σ is influenced by the initialize method of corre-
sponding parameters, and we set it equals to the variance of
initialization parameters. For ∆, which controls the stabili-
ty of training and adaptively varies in the training, we test it
from (0.05, 0.5), and set it to 0.1 for a relative rate for a better
performance.

4.2 Results
Firstly, we evaluate our UaBNN on CIFAR with WRN in t-
wo different configurations, 16-16-32-64 and 64-64-128-256.
Moreover, we report the accuracy of the full-precision coun-
terpart. We train the BNNs in our UaBNN manner, following
the settings as depicted in Section 4.1. Data augmentation is
applied during training. The images are padded with a size of
4 and are randomly divided into 32×32 windows for CIFAR-
10/100. Table 1 illustrates that our UaBNN outperforms other
BNNs on both CIFAR-10 and CIFAR-100 datasets, which in-
dicates the advantage of our method in building 1-bit CNNs.

On the ImageNet dataset, we further evaluate the perfor-
mance of our method on the ImageNet dataset. Notably, we
adopt two data augmentation methods in the training set: 1)
cropping the image to the size of 224×224 at random lo-
cations, and 2) flipping the image horizontally. In the test
set, we simply crop the image to 224×224 from the center.
We use ResNet18 as the backbone and only slightly adjust
the structure following [Gu et al., 2019b]. We compare our
UaBNN with other state-of-the-art quantized networks, in-
cluding TBN [Wan et al., 2018], BNN [Courbariaux et al.,
2016], XNOR-Net [Rastegari et al., 2016], ABC-Net [Lin et
al., 2017], Bi-Real Net [Liu et al., 2018], PCNN [Gu et al.,
2019a], IR-Net [Qin et al., 2020], BONN [Gu et al., 2019b],
and RBNN [Lin et al., 2020]. Table 2 indicates that UaBN-
N achieves a superior performance among these 1-bit CNNs.
From Table 2, we can see that our method makes full usage
of uncertainty, and the improvements are up to 1.0% Top-1
accuracy and 0.6% Top-5 accuracy. The results show that
UaBNN is not limited to small datasets, but also works well

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3445



Model W A Top-1 Top-5
ResNet18 [He et al., 2016] 32 32 69.3 89.2

TBN [Wan et al., 2018] 1 2 55.6 79.0
BNN [Courbariaux et al., 2016] 1 1 42.2 67.1

XNOR-Net [Rastegari et al., 2016] 1 1 51.2 73.2
ABC-Net [Lin et al., 2017] 1 1 42.7 67.6

Bi-Real Net [Liu et al., 2018] 1 1 56.4 79.5
PCNN [Gu et al., 2019a] 1 1 57.3 80.0
IR-Net [Qin et al., 2020] 1 1 58.1 80.0
BONN [Gu et al., 2019b] 1 1 59.3 81.6
RBNN [Lin et al., 2020] 1 1 59.6 81.6

UaBNN 1 1 60.6 82.2
ReActNet* [Liu et al., 2020] 1 1 61.4 83.2

UaBNN* 1 1 61.9 83.4

Table 2: Test accuracies on ImageNet. ‘W’ and ‘A’ refer to the weight and activation bitwidth, respectively. The backbone of all the models
is ResNet18. ReactNet* means a quick version of original implement for 64 epoch from scratch.

Figure 5: The flip rate of binary weights, i.e. the frequency of
sign changes. Big value of flipping rate means more frequent flips.
UaBNN can adjust the flip rate and therefore control the stability of
training.

on the large dataset. This further verifies the generalization
capability of the proposed UaBNN. We also compare with
ReActNet [Liu et al., 2020] on the ImageNet dataset. Re-
ActNet achieves the best performance on BNNs so far, with
the accuracy of 65.9% on ImageNet. It introduces some full-
precision parameters and a two-steps training strategy with
512 epochs in total, which is computation-consuming. Here,
we evaluate our UaBNNs on a relatively quick version of Re-
ActNet, which is trained from scratch for 64 epochs for a fair
comparison with other methods. Our method still achieves
an impressive 0.5% improvement, which further verifies the
effectiveness of our method.

4.3 Analysis
In this part, we analyze the influence of our proposed c-sign
function on the uncertainty and stability of BNNs. Specifical-
ly, to understand the c-sign better, we introduce the flipping
rate, which denotes the proportion of reversed binary param-
eters. Flipping rate reflects the uncertainty of binary neural
networks in a more intuitive way that a lower flipping rate
corresponds to a more certain BNNs. In Fig. 5, we illustrate
the comparison of sign and c-sign on flipping rate on CIFAR-

100 dataset. During the training process, our c-sign can ef-
fectively reduce the uncertainty of BNNs and, consequently,
the training of BNNs are more stable, leading to a decreasing
flipping rate and a better BNN.

5 Conclusions
In this paper, we have proposed and described Uncertainty-
aware Binary Neural Networks (UaBNN), which firstly takes
the uncertainty of BNNs into consideration, resulting in a u-
nified uncertain-aware framework. The uncertainty in BNNs
is a novelty index used to measure the training stability of
BNN. Comprehensive studies on the uncertainty have been
conducted. Extensive experiments on CIFAR and ImageNet
demonstrate that UaBNN achieves effective enhancement on
multiple BNNs methods for WRNs and ResNet18. In our
future work, we will use our method to improve BNN mod-
els for other applications, such as visual object detection and
tracking.

Acknowledgements
This study was supported by Grant NO.2019JZZY011101
from the Key Research and Development Program of Shan-
dong Province to Dianmin Sun. This work was supported in
part by the National Natural Science Foundation of China un-
der Grant 62076016 and 61876015.

References
[Bengio et al., 2013] Yoshua Bengio, Nicholas Léonard, and

Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432, 2013.

[Bulat and Tzimiropoulos, 2019] Adrian Bulat and Georgios
Tzimiropoulos. Xnor-net++: Improved binary neural net-
works. arXiv preprint arXiv:1909.13863, 2019.

[Courbariaux et al., 2016] Matthieu Courbariaux, Itay
Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Binarized neural networks: Training deep neural

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3446



networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher,
Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 248–255,
2009.

[Gu et al., 2019a] Jiaxin Gu, Ce Li, Baochang Zhang, Jun-
gong Han, Xianbin Cao, Jianzhuang Liu, and David Doer-
mann. Projection convolutional neural networks for 1-bit
cnns via discrete back propagation. In AAAI Conference
on Artificial Intelligence, 2019.

[Gu et al., 2019b] Jiaxin Gu, Junhe Zhao, Xiaolong Jiang,
Baochang Zhang, Jianzhuang Liu, Guodong Guo, and
Rongrong Ji. Bayesian optimized 1-bit cnns. In IEEE In-
ternational Conference on Computer Vision, pages 4909–
4917, 2019.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE conference on Computer Vision and Pat-
tern Recognition, pages 770–778, 2016.

[Helwegen et al., 2019] Koen Helwegen, James Widdi-
combe, Lukas Geiger, Zechun Liu, Kwang-Ting Cheng,
and Roeland Nusselder. Latent weights do not exist: Re-
thinking binarized neural network optimization. In Ad-
vances in Neural Information Processing Systems, pages
7533–7544, 2019.

[Hu et al., 2018] Jie Hu, Li Shen, and Gang Sun. Squeeze-
and-excitation networks. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 7132–7141,
2018.

[Krizhevsky and others, 2009] Alex Krizhevsky et al. Learn-
ing multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[Lin et al., 2017] Xiaofan Lin, Cong Zhao, and Wei Pan.
Towards accurate binary convolutional neural network.
In Advances in Neural Information Processing Systems,
pages 345–353, 2017.

[Lin et al., 2020] Mingbao Lin, Rongrong Ji, Zihan Xu,
Baochang Zhang, Yan Wang, Yongjian Wu, Feiyue Huang,
and Chia-Wen Lin. Rotated binary neural network. Ad-
vances in Neural Information Processing Systems, 33,
2020.

[Liu et al., 2018] Zechun Liu, Baoyuan Wu, Wenhan Luo,
Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved
representational capability and advanced training algorith-
m. In European Conference on Computer Vision, pages
747–763. Springer, 2018.

[Liu et al., 2020] Zechun Liu, Zhiqiang Shen, Marios Sav-
vides, and Kwang-Ting Cheng. Reactnet: Towards precise
binary neural network with generalized activation func-
tions. In European Conference on Computer Vision, pages
143–159. Springer, 2020.

[Martinez et al., 2019] Brais Martinez, Jing Yang, Adrian
Bulat, and Georgios Tzimiropoulos. Training binary neu-
ral networks with real-to-binary convolutions. In Interna-
tional Conference on Learning Representations, 2019.

[Qin et al., 2020] Haotong Qin, Ruihao Gong, Xianglong Li-
u, Mingzhu Shen, Ziran Wei, Fengwei Yu, and Jingkuan
Song. Forward and backward information retention for
accurate binary neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 2250–
2259, 2020.

[Rastegari et al., 2016] Mohammad Rastegari, Vicente Or-
donez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-
genet classification using binary convolutional neural net-
works. In European Conference on Computer Vision,
pages 525–542. Springer, 2016.

[Wan et al., 2018] Diwen Wan, Fumin Shen, Li Liu, Fan
Zhu, Jie Qin, Ling Shao, and Heng Tao Shen. Tbn: Con-
volutional neural network with ternary inputs and binary
weights. In European Conference on Computer Vision,
pages 315–332, 2018.

[Wang et al., 2020] Ziwei Wang, Ziyi Wu, Jiwen Lu, and Jie
Zhou. Bidet: An efficient binarized object detector. In
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2049–2058, 2020.

[Zagoruyko and Komodakis, 2016] Sergey Zagoruyko and
Nikos Komodakis. Wide residual networks. In British
Machine Vision Conference. British Machine Vision As-
sociation, 2016.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3447


	Introduction
	Related Work
	Method
	Preliminary
	Uncertainty in BNN
	Uncertainty aware Binary Neural Networks

	Experiments
	Datasets and Implementation Details
	Results
	Analysis

	Conclusions

