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Abstract

Partial-label learning (PLL) generally focuses on
inducing a noise-tolerant multi-class classifier by
training on overly-annotated samples, each of
which is annotated with a set of labels, but only
one is the valid label. A basic promise of exist-
ing PLL solutions is that there are sufficient partial-
label (PL) samples for training. However, it is more
common than not to have just few PL samples at
hand when dealing with new tasks. Furthermore,
existing few-shot learning algorithms assume pre-
cise labels of the support set; as such, irrelevant
labels may seriously mislead the meta-learner and
thus lead to a compromised performance. How to
enable PLL under a few-shot learning setting is an
important problem, but not yet well studied. In
this paper, we introduce an approach called FsPLL
(Few-shot PLL). FsPLL first performs adaptive dis-
tance metric learning by an embedding network and
rectifying prototypes on the tasks previously en-
countered. Next, it calculates the prototype of each
class of a new task in the embedding network. An
unseen example can then be classified via its dis-
tance to each prototype. Experimental results on
widely-used few-shot datasets demonstrate that our
FsPLL can achieve a superior performance than the
state-of-the-art methods, and it needs fewer sam-
ples for quickly adapting to new tasks.

1 Introduction

In partial label learning (PLL) [Cour et al., 2011], each
‘partial-label’ (PL) training sample is annotated with a set
of candidate labels, among which only one is the ground-
truth label. The aim of PLL is to induce a noise-tolerant
multi-class classifier from such PL samples. PLL is cur-
rently one of the most prevalent weakly-supervised learning
paradigms, which include inaccurate supervision, where the
given labels do not always correspond to the ground-truth;
incomplete supervision, where only a subset of the training
data is labeled; and inexact supervision, where the training
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data have only coarse-grained labels [Zhou, 2018]. This pa-
per focuses on the first paradigm, where the given labels of
the training data do not always represent the ground-truth.
This learning problem arises in diverse domains, where a
large number of inaccurately annotated samples can be eas-
ily collected, and it is very difficult (or impossible) to iden-
tify the true labels from the given ones [Zheng et al., 2017,
Tu et al., 2020].

Let X € R? denotes the d-dimensional instance feature
space and Y = {0, 1}! denotes the label space with [ dis-
tinct labels. The aim of PLL is to learn a noise-robust multi-
class classification model f : X — ) with the PL dataset
D = {(x;,y:)|1 < i < n}, where x; € X is the fea-
ture vector of the i-th instance, y; is the multi-hot label vec-
tor of candidate labels ()); C ))) of the i-th instance, and
z; € Y; is the unknown ground-truth label of this instance.
The key challenge to address the PLL problem is to recover
the ground-truth label concealed within the candidate label
set for every training instance. Existing PLL methods can
be roughly categorized into averaging-based disambiguation
and identification-based disambiguation. The former class of
methods typically equally treats each candidate label during
the process of model induction, and performs label predic-
tion by averaging the modeling outputs [Cour et al., 2011;
Gong et al., 2017]. The second category of methods models
the ground-truth label of the training instance as a latent vari-
able, and estimates it via an iterative refining procedure [Yu
and Zhang, 2017; Yu et al., 2018; Chai et al., 2020].

These PLL approaches rely on the assumption that suffi-
cient labeled/unlabeled training data which are relevant to the
task are available. They don’t perform well in a few-shot
scenario, where each class has only few training samples, an-
notated with inaccurate labels. Although Few-Shot Learning
(FSL) has been extensively applied in diverse domains [Snell
et al., 2017; Finn et al., 2017; Wang et al., 2020], the ex-
isting FSL methods typically assume that the labels of the
few-shot support samples are noise free. Unfortunately, the
violation of this assumption seriously compromise the perfor-
mance of the few-shot classifier, as shown in our experiments.
To the best of our knowledge, how to make FSL effective with
few-shot PL samples, is an open and under-studied problem.
To bridge this gap, we propose a Few-shot PLL approach
(FsPLL), which is based on the prototypical network [Snell
et al., 2017] and on the local manifold [Belkin et al., 2006]
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Figure 1: The overall schematic framework of FsPLL. FsPLL learns
an embedding network (fy) and rectifies label confidence matrix
{Q"}{_, to perform adaptive distance metric learning based on PL
samples previous encountered (D5, ,;,,). Next, it updates label con-
fidence matrix Q and rectifies prototypes w.r.t. the new task (Diest)
in the embedding space. An unseen example can then be classified
via its distance to prototypes. The ‘circle with 1’ in the embedding
space is the contaminated prototype (no rectification) of ‘goose’.

in feature space, which states that instances that have similar
feature vectors are more likely to share a same ground-truth
label. More specifically, FSPLL first aims at iterative rectify-
ing the ground-truth class prototypes of support PL samples
and learning an embedding network, where, based on previ-
ous tasks, every sample is closer to its ground-truth prototype,
and further apart from its non-ground-truth prototypes. Next,
it calculates the prototype of each class of the new task by em-
bedding network and prototype rectification. Then, an unseen
example can be classified via its distance to each prototype.
The whole framework of FsPLL is illustrated in Fig. 1.

The main contributions of our work are as follows:
(1) We focus on a practical and general PLL setting, where
the training samples of the target task are few-shot. We
also tackle the problem of noisy labels of few-shot support
samples, which can seriously mislead the meta-learner when
adapting to the target task. Both issues are not addressed by
existing PLL solutions and few-shot/meta learning methods.
(i) We introduce a prototype rectification strategy with pro-
totypical embedding network to learn the underlying ground-
truth prototypes of support and query PL samples, which is
less impacted by irrelevant labels and can more credibly adapt
to new tasks.
(iii) Extensive experiments on benchmark few-shot datasets
show that our FSPLL outperforms the state-of-the-art PLL
approaches [Zhang er al., 2016; Wu and Zhang, 2018; Feng
and An, 2019; Wang er al., 2019] and baseline FSL methods
[Snell et al., 2017; Finn et al., 2017]. The overlook of irrele-
vant labels of few-shot PL samples indeed seriously compro-
mises the performance of FSL methods, and our FsPLL can
greatly remedy this problem.

2 Related Work
2.1 Partial Label Learning

PLL is different from learning from noisy labels [Natarajan et
al., 2013], where training samples are incorrectly annotated
with the wrong label; it is also different from semi-supervised

3449

learning [Belkin et al., 2006], where some training samples
are completely unlabeled but can be leveraged for training;
and also different from weak-label learning [Sun et al., 2010;
Dong et al., 2018], where the labels of training samples are
incomplete. The current efforts for PLL can be roughly
grouped into two categories: the averaging-based and the
identification-based disambiguation.

The averaging-based disambiguation technique gener-
ally induces the classifier model by treating all can-
didate labels equally.  Following this protocol, some
instances-based methods [Hiillermeier and Beringer, 2006;
Gong et al., 2017] classify the ground-truth y of an un-
seen instance x by averaging the candidate labels of its
neighbors, ie., y = argmaxycy ineN(x)H(y €S),
where S; denotes the candidate label set of the i-th in-
stance and N (x) denotes the set of neighbors of instance
x, while other parametric methods [Cour et al, 2011;
Zhang et al., 2016] aim at inducing a parametric model
f# by maximizing the gap between the average model-
ing output of the candidate labels and that of the non-
candidate ones, ie., max(3;"; (157 X es, F(%iy:0) —

ﬁ deg F(x;,7;0))) where S; denotes the set of non-

candidate labels. As to the identification-based disambigua-
tion technique [Feng and An, 2019; Yan and Guo, 2020],
the ground-truth labels of the training instances are seen
as latent variables and to be optimized by an iterative re-
fining procedure. Following this paradigm, some meth-
ods train the model based on the maximum likelihood cri-
terion [Jin and Ghahramani, 2002] or the maximum mar-
gin criterion [Nguyen and Caruana, 2008]. Recently, some
teams mine the topological information [Zhang et al., 2016;
Feng and An, 2018] in the instance feature space to help the
optimization of label confidence.

Nevertheless, although these methods can disambiguate la-
bels and induce a noise-tolerance classifier by different tech-
niques, they can hardly work in a more universal scenario,
in which the PL samples we collected are few-shot, which
break the premise of many-shot training samples per label
for inducing a PLL classifier. In fact, existing PLL methods
still work in a close label set fashion. But in practice, we
may often come into new scenarios, where we can only col-
lect few-shot PL samples and each target label is annotated
to several samples. To enable PLL in this general setting, we
propose FsPLL to learn noise-robust class prototypes by an
embedding network and by rectifying prototypes therein.

2.2 Few-shot Learning

FSL [Li et al., 2006] is an example of meta-learning [Huis-
man et al., 20201, where a learner is trained on several related
tasks during the meta-training phase, so that it can general-
ize well to unseen (but related) tasks using just few samples
with supervision during the meta-testing phase. Existing FSL
solutions mainly focus on supervised learning problems, and
usually one may term as N-way K -shot classification, where
N stands for the number of classes and K means the num-
ber of training samples per class, so each task contains K N
samples. Given limited support samples for training, unreli-
able empirical risk minimization is the core issue of FSL, and
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existing solutions for FSL can be grouped from the perspec-
tive of data, model and algorithm [Wang et al., 2020]. Data
augmentation-based FSL methods aim to acquire more su-
pervised training samples by generating more samples from
original few-shot samples, weakly-labeled/unlabeled data or
similar datasets [Douze et al., 2018], and thus to reduce the
uncertainty of empirical risk minimization. Model-based FSL
methods typically manage to shrink the ambient hypothesis
space into a smaller one by extracting prior knowledge in the
meta-training phase [Snell er al., 2017; Ren er al., 2018], so
empirical risk minimization becomes more reliable and over-
fitting issue is reduced. Algorithm-based FSL approaches use
prior knowledge to guide the seek of optimal model param-
eters by providing a good initialized parameter or directly
learning an optimizer for new tasks [Finn et al., 2017].
Unfortunately, most FSL methods ideally assume the sup-
port samples in meta-testing set is with accurate supervision,
namely, these samples are precisely annotated with labels.
But these support samples are PL ones with irrelevant labels,
which mislead the adaption of FSL methods toward the target
task (as shown in Fig. 1) and cause a compromised perfor-
mance. To address this problem, our FsPLL performs the op-
timization of embedding network and prototype rectification
therein in an iterative manner. In this way, the learnt embed-
ding network and prototypes are less impacted by irrelevant
labels of PL samples, and can credibly adapt to new tasks.

3 The Proposed Methodology

Suppose we are given a small support/training set of n PL
samples D = {(x;,y:)|1 < ¢ < n} and its corresponding
label space and feature space are ) = {0,1} and X € RY,
respectively. The goal of FsPLL is to induce a multi-class
classifier f : X — ), which can precisely predict the ground-
truth label of an unseen instance x under this few-shot clas-
sification scenario. Different from existing PLL methods,
FsPLL should and can utilize the knowledge previously ac-
quired from meta-training phase to quickly adapt to the new
classification task D in the meta-testing phase. In the meta-
training phase, FSPLL learns an embedding network (meta-
knowledge) to project PL samples more nearby with their
ground-truth prototypes and apart from their non ground-truth
prototypes by iteratively rectifying these prototypes in this
embedding space. In the meta-testing phase, it rectifies the
prototypes of support PL. samples using the embedding net-
work and then classifies new samples by their distance to rec-
tified prototypes in the embedding space. In this paper, we
take Prototypical Network (PN) [Snell ez al., 2017] as the
base of our embedding network. The framework overview of
FsPLL is given in Fig. 1. The following subsections elaborate
on the two phases.

3.1 Meta-training Phase

The meta-training phase mainly aims to extract prior knowl-
edge from multiple relevant tasks for the target task. Sup-
pose we are given T' > 1 few-shot datasets (tasks) de-
noted as D! ... (1 < t < T). For each dataset
D}, gin = X5, XL, Y}, where XL = (xf,x5,...,x}, ) €

S
R denotes the data matrix of support samples, Xfl

, X
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i Xp,) € R%*"a denotes data matrix of query
samples, Y' = (y},y4,---,yL) € R™*" is the corre-
sponding label matrix of support samples, and n, + ng, < n.
Y., = 1 means the c-th label is a candidate label of the i-th
sample; Y., = 0 otherwise. Let Q' € R!*" denotes the
underlying label confidence matrix of support samples and it
is initialized as Y, where QZ; indicates the confidence of the
c-th label as the ground-truth label of the ¢-th sample.

From these datasets, we aim at learning an embedding net-
work, i.e., fo : R? — R™, by which we can obtain the
representation of every label in the embedding space and
can be more robust to irrelevant labels of support samples
therein. Suppose P! = (p!,pb,...,p!) € R™*!is the pro-
totype/representation matrix of [ class labels of the ¢-th task,
where p?, denotes the prototype of the c-th label in the embed-
ding space. PN [Snell ef al., 2017] computes the prototype by
p = ZEre 009 while Semi-PN [Ren ef al., 2018], a
variant of PN ,_%urtcfler uses unlabeled examples to improve the

prototype learning. They both simply take all PL samples an-
notated with the c-th label to induce the prototype, ignoring
that some PL samples actually not annotated with this label.
Therefore, PN and Semi-PN give contaminated prototypes.
For example, prototype of goose (‘circle with 1”) in Fig. 1
is misled by irrelevant labels, which consequently compro-
mises the classification performance, especially when support
PL samples with excessive irrelevant labels. To address this
issue, FsPLL performs prototype rectification and label con-
fidence update in an iterative way to seek noise-robust em-
bedding network and prototypes in the embedding space, as
shown in Fig. 1. FsPLL defines each prototype based on the
confidence weighted mean of corresponding support samples
in the embedding space as follows:

_ iy QL % fo(x})
2 Ql
Unlike prototypes optimized by PN, FsPLL rectifies the pro-
totypes using iterative updated label confident matrix Q?, and
thus explicitly accounts for the irrelevant labels of samples.
It is expected for a sample to be closer to its ground-truth
prototype in the embedding space; this would enable a con-
fident label prediction in this space. Given this, we use a
softmax to update the label confidence matrix Q! as follows:

(i§7)~(t27...

t

P. )

exp(—d(fo(x!),pt)) et
o ST et G vy Y =1 o)
0, otherwise

where d(fp(x!), pl) quantifies the Euclidean distance be-
tween sample x! and prototype p’, in the embedding space.
The labels of a PL sample can be disambiguated by referring
to labels of its neighborhood samples [Wang ef al., 2019].
We observe that PN and Eq. (1) disregard the neighborhood
support samples when computing the prototype. Unlike these
PLL methods that disambiguate in the original feature space
or linearly projected subspace, FsPLL further updates the la-
bel confidence matrix in the embedding space as follows:

Y Q

x} €N (x})

t

ct

t
cj?

- b
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where Ny (x!) includes the k-nearest samples of x!, and the
neighborhood is determined by Euclidean distance in the em-
bedding space. A trade-offs the confidence from the sample
itself and those from neighborhood samples. In this way, Fs-
PLL utilizes local manifold of samples to rectify prototypes.
Based on the rectified prototypes and embedding network
fo, we can predict the label of a query sample with a softmax
over its distances to all prototypes in the embedding space as:

exp(—d(fo(X%),pL))
S exp(—d(fo(xL), pt))’

where zj is the unknown ground-truth label of the j-th query
sample. To make the representation of every query sample in
the embedding space closer to its ground-truth prototype and
apart from its non ground-truth prototypes, FSPLL minimizes
the negative log-probability of the most likely label of a query

example as follows:

pg(z§ =c| 5{5) =

“

3(0,%0) =~ log( max po(t=c| %) ©)

By minimizing the above equation, FsPLL can obtain the rec-
tified prototypes P* and the corresponding embedding net-
work parameterized by fy for task D!, ;,,. We want to remark
that the [-th labels for different tasks is not always the same.

The meta-training phase involves a lot of different tasks,
each of which is composed of support/query samples. To en-
able a good generalization ability, it attempts to gain the op-
timal mode parameter 8* by minimizing the average negative
log-probability of the most likely labels of all query samples
over T tasks as follows:

* . T 1 g ~t
0 = argrrlo}nztzln—qzizlJ(H,xi). (6)

To this end, FSPLL obtains an embedding network fp« that is
robust to irrelevant labels of PL samples across 7T tasks. Via
this network, a PL sample in the embedding space is made
closer to its ground-truth prototype than to other prototypes,
and the generalization and fast adaption ability are pursued
among 1" different tasks.

3.2 Meta-testing Phase

In the meta-testing phase, we are only given a small set of
PL samples, which compose the target task with support and
query samples. These support samples are overly-annotated
with irrelevant labels, while query samples are without label
information. We want to highlight that the labels of these PL
samples are disjoint with the labels used in the meta-training
phase. In other words, the PL samples are few-shot ones.
Here, FsPLL aims to use the meta-knowledge (embedding
network fy«) acquired in the meta-training phase to precisely
annotate the query samples based on the inaccurately super-
vised few-shot support examples.

Formally, FsPLL aims to quickly generalize to a new task
Diest = {Xs, Xy, Y}, where X, € R, X, € R*"a
and Y € R'*™s denote the data matrices of support exam-
ples, of query examples, and of labels of query examples,
respectively. Alike the meta-training phase, FsPLL first com-
putes the prototypes P € R™*! of this new task in the em-
bedding space using the confidence-weighted mean of sup-
port samples X and label confidence matrix Q as in Eq. (1).
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Then the label confidence matrix Q of the support samples is
updated based on a softmax over their distances to prototypes
as in Eq. (2) and local manifold as in Eq. (3). FsPLL repeats
the above two steps to rectify the prototypes and update label
confidence matrix for adapting to the target task. Note, the
embedding network fy~ is fixed during the above repetitive
optimization.

Given a query sample x;, FsPLL classifies its label z; using
its distance to rectified prototypes P € R™*/ as follows:

z; = argmqaxpg*(zi =qlx) (¢g=1,---,1). (D

4 Experiments
4.1 Experimental Setup

Datasets. We conduct experiments on two benchmark
FSL datasets (Omniglot [Lake et al., 2011] and minilma-
geNet [Vinyals et al., 2016]). Following the canonical proto-
col adopted by previous PLL methods [Wang er al., 2019;
Zhang et al., 2016], we generate the semi-synthetic PL
datasets on Omniglot and minilmageNet by two controlling
parameters p and r. p controls the proportion of PL samples,
and r controls the number of irrelevant labels of a PL sample,
which are randomly selected from the label space of corre-
sponding task. Each D!, . consisted of N3 = 30 classes
were randomly sampled from 4800/80 train classes of Om-
niglot/minilmageNet without replacement. As to the meta-
testing set, we randomly selected another N> classes from
1692/20 test classes without replacement. For each selected
class, K1 = 5 (K3) samples were randomly chosen from
20/600 samples without replacement for the meta-training
(meta-testing) support samples, and the remaining/15 sam-
ples per class were randomly chosen as the query samples.

Compared Methods. We compare FsPLL against four
recent PLL methods (PL-LEAF [Zhang er al., 2016],
PALOC [Wu and Zhang, 2018], SURE [Feng and An, 2019],
PL-AGGD [Wang et al., 2019]), two representative FSL
methods (MAML [Finn et al., 2017], PN [Snell et al., 2017]),
and FsPLL-nM (a variant of FsPLL) which disregards the lo-
cal manifold of training samples but updates the label con-
fidence matrix via Eq. (2) for prototype rectification.Each
compared method is configured with the suggested parame-
ters according to the corresponding literature. As to our Fs-
PLL, the trade-off parameter A is fixed as 0.5 (0 for FsPLL-
nM), the number of nearest neighbors £ = K5 — 1, the num-
ber of iterations for prototype rectification in each epoch is
fixed to 10. In addition, we use the Adam [Kingma and Ba,
2015] optimizer, the learning rate is fixed as 0.001 and cut
into half per 20 epochs. For fair comparison purposes, FSPLL
also uses the embedding network proposed by [Vinyals er al.,
2016], which is also used by compared FSL methods. For
Omniglot, the size of prototypes is m = 64; while for mini-
ImageNet, m = 1600. For non-FSL PLL methods, they also
used the image features extracted by [Vinyals et al., 2016].
They only use the samples in meta-testing set for training and
validation. We randomly generate Dy,.q;,, (I' = 100) as the
meta-training tasks in each round, and report average results
on D;.4 in 100 rounds for reducing the randomness.
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Ny =5 Ny =10 Ny =20 Ny =30

Ky =5 K> =10 Ko =5 K> =10 Ky =5 K> =10 Ky =5 K> =10

r=1
FsPLL .892+.083 .895+.051 | .789+.045 .823+.067 | .712+.034 .757+.056 | .665+.015 .701+.046
FsPLL-nM | .852+.092 .886+.072 | .776+.070 .816+.062 | .695+.053 .745+.047 | .643+.008 .693+.042
PN S579+.104 .636+.105 | 435+£.070 .485+.071 | .317+.043 .360+.044 | .255+.032 .291+.034
MAML 673+.079 .647+.097 | .592+.067 .642+.053 | 514+.061 .544+.032 | 421+.018 .475+.065
PL-AGGD | .664+.118 .777+.103 | .576%+.086 .714+.076 | .450+.053 .649+.063 | .459+.043 .601+.057
PALOC .616+.116  .726+.111 | .528+.075 .651+.078 | .447+.058 .568+.058 | .392+.047 .513+.049
SURE .629+.125  .782+.106 | .574+.082 .721+.074 | .506+.060 .657+.056 | .465+.041 .604+.046
PL-LEAF | .629+.117 .768+.107 | .568+.087 .712+.070 | .495+.060 .630+.060 | .452+.043 .592+.054
FsPLL™ 995+.029  .997+.009 | .990+.020 .993+.012 | .986=.009 .990+.010 | .981+.009 .986+.008
PNT 965+.046  .985+.030 | .956+.037 .981+.021 | .939+.027 .968+.020 | .924+.025 .958+.018
MAML™T .858+.016 .902+.036 | .849+.026 .877+.014 | .774+.019 .831+.023 | .638+.035 .795+.189

r=2
FsPLL 673+.098 .742+.073 | .712+.068 .756+.063 | .654+.049 .689+.063 | .598+.063 .602+.038
FsPLL-nM | .616+.171 .706%.136 | .566+.100 .665+.087 | .494+.065 .584+.056 | .442+.053 .527+.048
PN A476+.121  .559+.114 | 378+.073 .442+.074 | 270+.044 321+.047 | 213+.032 .258+.033
MAML A498+.101  .553+.098 | 458+.078 .549+.093 | 427+.037 .472+.075 | .397+.043 .437+.036
PL-AGGD | .496+.131 .668+.129 | .490+.086 .664+.082 | .451+.055 .578+.061 | .416+.053 .545+.054
PALOC A73+.117  .611+.125 | 456+.083 .591+.086 | .385+.056 .525+.057 | .402+.049 .524+.061
SURE A488+.133 .665+.132 | .496+.091 .670+.082 | .450+.064 .593+.057 | 413+x.046 .561+.051
PL-LEAF | .484+.134 .650%.125 | .489+.086 .645+.083 | .436+.059 .586%.060 | .398+.045 .525+.058
FsPLLT 975+£.076 .997+.009 | .991+.010 .994+.010 | .986=.009 .989+.012 | .980+.009 .985+.007
PNT 825+.117  .926+.076 | .871+.064 .945+.041 | .850+.047 .926+.032 | .826+.040 .908+.030
MAML™ .675+£.076  .798+.056 | .783+.024 .760+.076 | .668+.023 .727+.025 | .619+£.026 .679+.450

Table 1: Classification accuracy (meanzstd) of comparison methods on Omniglot. {FsPLL, PN, MAML}* separately use precise labels of
meta-training samples. N2 (K>): the number of support classes (training samples per class). The best performance in each setting is boldface.
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Figure 2: Accuracy of each compared method vs. K2 (number of support samples per class in the meta-testing set) on minilmageNet (r = 1).

4.2 Result Analysis

Results on Omniglot. Table 1 reports the accuracy of each
compared method on Omniglot as p is fixed to 1, r is fixed to
1 or2, Ny is fixed to 5, 10, 20 or 30, K> is fixed to 5 or 10.
Due to the page limit, the results of » = 3 are not reported,
while similar trends can be observed also. From this Table,
we have the following observations:

(i) FsPLL significantly outperforms other compared meth-
ods across all the settings, which proves the effectiveness of
FsPLL on few-shot PL samples. The performance margin
between FsPLL and non-FSL methods are more prominent
w.r.t. a small K5, since these non-FSL methods build on
the promise of many-shot PL samples for training. Although
PN and MAML additionally use many tasks with support PL
samples for the few-shot setting, they often lose to many-shot

PLL methods. That is because they are both heavily mis-
led by irrelevant labels of support samples. In contrast, our
FsPLL is much less impacted by irrelevant labels of support
samples, it reduces the negative impact of irrelevant labels by
iteratively rectifying the prototypes and embedding network.
By virtue of precise labels of meta-train samples, PN+ and
MAML™ outperform many-shot PLL methods, but they still
lose to FsPLL™ by a large margin. These observations con-
firm that the noisy labels of PL samples heavily mislead the
adaption of meta-learner toward the target task.

(i) Prototype rectification can greatly reduce the negative im-
pact of irrelevant labels of PL samples. This is supported
by the performance margin between FsPLL (FsPLL™) and
PN (PNT). They both perform distance metric learning in
the embedding space to learn prototypes and classify samples
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therein, but FsPLL additionally rectifies the prototypes in the
embedding space by explicitly modeling irrelevant labels and
mining local manifold.

(iii) Local manifold helps prototype rectification, this is veri-
fied by the clear margin between FsPLL and FsPLL-nM, es-
pecially when the number of irrelevant labels is large.

(iv) As Ny steps from 5 to 30 under a fixed Ko, the perfor-
mance of each compared method gradually decreases. This is
due to the increased class labels and task complexity. The ran-
dom guess accuracy decrease from 1/5 to 1/30. Even though,
FsPLL (FsPLL™) always maintains a better performance than
PN (PNT) and MAML (MAML™). On the other hand, as the
increase of K5 under a fixed Ny, each compared method has
an improved performance, since more support samples can be
used for training. We see non-FSL PLL methods frequently
outperform FSL methods (PN and MAML) when K5 = 10.
This fact again proves the vulnerability of FSL methods on
few-shot PL samples.

(v) As the increase of r, all methods have a reduced perfor-
mance, since support samples have more irrelevant labels,
which seriously compromise the performance of many-shot
PLL and FSL methods. This fact signifies the importance to
account for PL samples. All compared methods have a rela-
tively large standard deviation, that is due to noisy labels were
randomly injected, and more noisy labels cause an even larger
fluctuation. We applied signed-rank test to check the statisti-
cal significance between FsPLL/FsPLL" and other compared
methods, all p-values are small than 0.001.

Results on minilmageNet. We also conduct experiments
on minilmageNet with the following control setting: r €
{1,2,3} withp = 1, N5 € {5,10,15,20} and K> € [5,50].
We enlarge the range of K> to check how FsPLL works in
many-shot setting. Due to page limit, we only report the re-
sults of compared methods when r = 1, while similar trends
can be observed with other settings. As shown in Fig. 2, Fs-
PLL again outperforms state-of-the-art FSL and many-shot
PLL methods under different K5 shots, and the conclusions
are similar as those on Omniglot. With the increase of Ko, all
methods show an increased performance, and FsPLL still has
a higher accuracy than other methods when K3 > 20, which
proves the effectiveness of FsPLL in many-shot settings.

4.3 Further Analysis

Impact of PL samples on FSL methods. We conduct addi-
tional experiments to further investigate the impact of noisy
support set of meta-training and meta-testing and if FSPLL
could be applied to the standard few-shot classification cases,
where each sample is precisely labeled. For this investiga-
tion, we introduce another variant FsPLL*+, which uses pre-
cise labels of support samples in the meta-training and meta-
testing stages. For comparison, we introduce PN** for PN.
So FsPLLT+/PN*+ gives the upper bound performance of
FsPLL/PN. Fig. 3 shows the performance of FsPLL and PN
and their variants under the setting of No = 10, Ky = 5
and » = 2 on Omniglot. In the figure, FSPLL/PN uses PL
samples both in the meta-training and meta-testing stages;
while FSPLLT/PN™ uses precise labels of support samples in
the meta-training stage, and PL samples in the meta-testing
stage. FsPLL significantly outperforms PN whenever there
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Accuracy

Figure 3: The performance of PN and FsPLL in three different set-
tings on Omniglot. FsPLL*" and PN*™ use precise labels of meta-
training and meta-testing samples, give the upper bound accuracy.
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Figure 4: Accuracy of FsPLL on minilmageNet under different input
values of k and of A, here No = 10 and K> = 10. (a) Accuracy
varies with k (A = 0.5); (b) Accuracy varies with A (k = K2 — 1).

are support PL samples with irrelevant labels. They can have
a comparable performance with precise labels of all support
samples. FsPLL improves the accuracy of PN by 88%, and
FsPLL™ improves this of PNt by 13%. More importantly,
FsPLL" has a similar accuracy with FsPLL™". These results
not only confirm the negative impact of noisy PL samples on
FSL methods, but also prove the effectiveness of FSPLL on
handling noisy labels of PL samples and FsPLL can also be
applied to the standard few-shot classification cases.

Parameter analysis. We study the parameter sensitivity of
FsPLL w.r.t. A and & (see Eq. (3)), which uses the local man-
ifold to update the label confidence matrix, and consequently
rectify the prototype and embedding network fy. As shown
in Fig. 4(a) and Fig. 4(b), FsPLL first manifests a gradually
increased accuracy until kK ~ K5 — 1 (A ~ 0.5). This trend
shows the benefit of local manifold for updating the label con-
fidence matrix and rectifying the prototypes.However, the ac-
curacy starts to decrease as k and A further increase. That
is due to the over-weight (large ) of local manifold and the
inclusion of unreliable neighbors (large k) from other classes.

5 Conclusion

This paper studies the problem of few-shot learning with
noisy support samples and proves noisy labels of support
samples can greatly compromise the performance. We in-
troduce a Few-shot Partial Label Learning approach (FsPLL)
to address this problem. FsPLL learns an embedding network
and rectifies prototypes to reduce the impact of noisy labels.
Extensive experimental results prove the effectiveness of Fs-
PLL in both few-shot and many-shot settings.
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