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Abstract

State-of-the-art image synthesis methods are
mostly based on generative adversarial networks
and require large dataset and extensive training.
Although the model-inversion-oriented branch of
methods eliminate the training requirement, the
quality of the resulting image tends to be lim-
ited due to the lack of sufficient natural and class-
specific information. In this paper, we introduce
a novel strategy for high fidelity image synthesis
with a single pretrained classification network. The
strategy includes a class-conditional natural regu-
larization design and a corresponding metadata col-
lecting procedure for different scenarios. We show
that our method can synthesize high quality natu-
ral images that closely follow the features of one
or more given seed images. Moreover, our method
achieves surprisingly decent results in the task of
sketch-based image synthesis without training. Fi-
nally, our method further improves the performance
in terms of accuracy and efficiency in the data-free
knowledge distillation task.

1 Introduction

Synthesizing realistic images has been a long standing chal-
lenge in computer vision. Most recently, the great poten-
tial of the generative adversarial network (GAN) [Goodfel-
low et al., 2014] has made it possible to generate high-
quality image in various applications. It allows for generat-
ing hyper-realistic natural images [Brock et al., 2018], mak-
ing fake content more realistic and imperceptible to human,
and letting non-artists create realistic images based on hand-
drawn sketches [Chen and Hays, 2018; Isola et al., 2017].
In addition, image synthesis techniques have also been ap-
plied in data-free model compression for edge device deploy-
ment [Lopes et al., 2017; Chen et al., 2019] using knowledge
distillation method [Hinton et al., 2015], as well as in data
augmentation especially in medical imaging [Frid-Adar et al.,
2018].

However, two major constraints have restricted most state-
of-the-art methods for image synthesis. On the one hand,
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a training dataset with millions [Deng et al., 2009] or even
more images are usually required, while many datasets fac-
ing hurdles to release due to privacy or security concerns. On
the other hand, the training process requires large-scale com-
puting power alongside all-round experience and knowledge
from experts.

At the same time, as it is well known that a pretrained clas-
sification model, e.g. ResNet50 [He er al., 2016], contains
rich information of the training set, there have been a branch
of methods proposed with the idea of synthesizing images
by inverting a classifier. Nonetheless, most of such methods
are model-compression-oriented and thus the generated im-
ages are more like “fooling samples” that are unrecognizable
to human. With the aim of image synthesizing, Santurkar et
al. [2019] developed a toolbox using single robust classifier
and achieved better results in several tasks, but the quality of
the synthesized images is still far from real. Yin et al. [2020]
further improved the inversion method with the help of some
metadata stored in the batch normalization (BN) layers of
the pretrained model and made the synthesized image quality
reach a higher level. But there is still room for improvement
on the fidelity of the generated images, as it tends to cause
background-inconsistent problems due to the lack of class-
specific information.

In this work, we propose a novel strategy for high qual-
ity image synthesis by using a single pretrained classifica-
tion network with class-conditional metadata from particular
target images that we call the seeds. To be specific, based
on the idea of model inversion, we introduce an extra class-
conditional natural regularization design in general form to
improve the fidelity of the generated images. Then we pro-
pose a corresponding metadata-collecting procedure applica-
ble to different practical scenarios. The proposed strategy
brings several benefits: 1. By introducing more class-specific
information, it further improves the fidelity of the synthesis
images (shown in Figure 1) to be comparable to that of the
GAN-based methods which require training process. 2. It en-
ables the application in some particular scenarios, e.g. people
want to synthesize similar images from specific seed sam-
ples, due to copyright concerns. 3. The regularization term in
general form adds more freedom to design and optimization.
Then we show the qualitative and quantitative analysis of
the generated images using the proposed method. To further
demonstrate the usefulness and effectiveness of our method,
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Figure 1: High fidelity synthesis samples from various classes using the proposed method. Best viewed in color.

we show the results in some other applications. Firstly, we
show that we can synthesize natural images from hand-drawn
sketches and the results closely follow the key features of
the sketches. Then, we show the performance improvement
in terms of student accuracy and efficiency in the data-free
knowledge distillation task.

Our main contributions are summarized as follows:

o We demonstrate the importance of the class-conditional
information in the image synthesis process. We intro-
duce a novel strategy for high fidelity image synthesis,
including a class-conditional natural regularization de-
sign (Sec. 3.2) and its corresponding metadata collecting
procedure for different scenarios (Sec. 3.3).

e We improve the fidelity of the synthesis image to the
level comparable to that of the state-of-the-art GAN-
based methods which require training processes, espe-
cially in the get-from-seed scenario (Sec. 4.1).

e We demonstrate the surprising performance of the pro-
posed method in the sketch-based image synthesis
(SBIS) task. (Sec. 4.2).

e We improve upon prior work on data-free knowledge
distillation and achieve better convergence while using
fewer synthesized images (Sec. 4.3).

2 Related Works

2.1 Image Synthesis

Most state-of-the-art works in image synthesis are rooted in
generative adversarial network (GAN) framework [Goodfel-
low e al., 2014; Brock et al., 2018]. Though the quality of
the generated images is impressive, all these GAN methods
require training with the access to the target dataset. Another
line of work attempts to tackle the image synthesis task by in-
verting a pretrained network. Mahendran and Vedaldi [2015]
introduced a method to inverse CNN representations with the
idea of optimizing an objective function with gradient de-
scent. Then a popular application DeepDream has been pro-
posed for generating artistic effects on input images or draw-
ing “dreamed” images from random noise. Although helpful
for further understanding the neural nets, the resulting images
are far from realistic due to the lack of statistics of the orig-
inal training set. A recent method Deeplnversion [Yin e al.,
2020] further crafts a natural regularization term by exploit-
ing the average statistics which stored in the BN layers of the
pretrained model. The quality of the synthesized images has
been greatly improved, but still with limitations due to the
lack of important class-specific information.

Sketch-Based Image Synthesis (SBIS). Synthesizing an
object or a scene based on hand-drawn sketch has always
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been a hot branch. Early sketch-based image synthesis meth-
ods are mainly based on image retrieval to composite im-
ages from a given sketch. With the rising of deep neural
networks, GAN-based methods has become the mainstream
for this task. Isola er al. [2017] proposed a general-purpose
solution to this kind of image-to-image translation problems.
SketchyGAN [Chen and Hays, 2018] introduced a novel net-
work block that is suitable for both generator and discrimina-
tor. SketchyCOCO [Gao et al., 2020] proposed an attribute
vector bridged GAN to generate images from object-level
sketches without using freehand sketches as the training data.
All the GAN-based approaches shown above perform well in
the task but have the same shortcoming that they require spe-
cific dataset and a training process.

2.2 Knowledge Distillation (KD)

There has been a long line of work and development on trans-
ferring knowledge from one model to another. Under the
name of knowledge distillation (KD), Hinton et al. [2015] has
defined the idea of training a compact student network to imi-
tate the actions of a feacher network. Recently, various meth-
ods have been proposed to improve KD [Xu er al., 2018; Park
etal.,2019; Romero et al., 2015]. However, all these methods
cannot be effectively implemented without the original train-
ing dataset. Therefore, a few studies have been done focusing
on data-free knowledge distillation. Lopes er al. [2017] lever-
aged auxiliary metadata with the original dataset to recon-
struct images. Chen et al. [2019] implemented GAN-based
method by regarding the pretrained network as a fixed dis-
criminator. Such methods show good performance in the KD
task, whereas the generated images are not recognizable to
human due to the lack of natural information.

3 Method
3.1 Background

The fundamental problem is to reconstruct input images
from a given representation. The inverting process [Ma-
hendran and Vedaldi, 2015] is aimed to find the optimal
x € RIXWXC that minimizes the objective function:

z* = argmin L(®(x), Do) + Rprior(x), (1)
TERHXWXC

where L(-) is the classification loss (cross entropy) that
matches the image representation ®(x) to the target .
Rprior(2) is a natural image prior regularization term:

7?fplrioyr($) = aTVRTV (33) + alznlz (‘T)7 (2)
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where the total variance Rv () encourages the piece-wise
consistency of images, the I norm R, (x) contains the recon-
structed images to a natural range, and aTy, o, are the scal-
ing factors respectively. The Deeplnversion [Yin et al., 2020]
method further improves the fidelity of the synthesized im-
ages by extending the regularization with an additional term
that leverages the statistics stored in the BN layers of the
given model:

Roi(z) =) [[Mean(zr) — ull2+
l

) 3)
> IIVar(zr) = of ||z,

l

where Mean(x;) and Var(x;) are batch-wise mean and vari-
ance of the [-th convolutional layer, and y; and 012 are the
corrsponding running means and running variances stored in
the BN layers of the pretrained network. The || - ||2 operator
denotes the [ norm calculation.

The method cleverly uses the metadata which stored in the
pretrained model, however, such delicate design is difficult
to implement in some actual scenarios, e.g., an inference-
optimized model merges the BN layer with its preceding
convolution layer and thus the statistics required can be
hardly extracted. Moreover, the method tends to cause a
background-inconsistent problem in the synthesized images
since the statistics used are global and not encoded with ade-
quate class-specific information.

3.2 Class-Conditional Regularization

In order to introduce more class-specific information and
improve the fidelity of the synthesis, we propose a class-
conditional regularization term in a general form:

Rec(@ly) = > MFi(zy, s(x)]y), @
l

where y refers to the target class, a k-dimensional one-hot
vector, of the dataset on which the classifier ®(x) is trained.
s(x;) is the corresponding class-conditional statistics as a
function of each feature map x; involved in the design. Fj
is the similarity function for each layer in a general form and
A; is its corresponding weight.

With a scaling factor acc, the proposed regularization
term forces the synthesized image to follow the class-specific
feature distribution instead of a global average. Thus, the
whole regularization term is a class-dependent function:

R(x|y) = Rprior(x) + accRec(z|y), Q)

P

5= argmin L(®(z),Po =y) +R(zly). (6)

wERHXWXC

Furthermore, we can freely design the F; for better opti-
mization. In this work we use a specific design similar to the
Deeplnversion method for better comparison:

Fy = |[Mean(z|y) — fuyll2 + || Var(z|y) — 67,12, ()
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where the s(z;) is expanded to class-conditional batch-wise
mean and varaiance estimates f1; , and &ﬁy and we use equal
weights for Fj in all layers.

As we will show, with the aid of more class-specific infor-
mation, the proposed method effectively improves the fidelity
of the synthesized images.

3.3 Metadata Collecting Procedure

Now that we are able to freely design the class-conditional
regularization term, we need the corresponding class-specific
metadata for the algorithm to work. The whole metadata-
fetching process can be done either during or after the train-
ing process of the given model.

In the former case, the metadata can be collected during
training with the original dataset following the regularization
design and can be released with the pretrained model as valu-
able extra information. In this way, it makes the image syn-
thesizing process strictly data-free, and we call it Scenario A.

In the latter case, it fits closer to a specific scenario that
we call get-from-seed, possibly due to copyright concern, that
people want to synthesize images particularly similar to the
given one or a set of seed images. In this mode the metadata
should be collected from such seed(s) which can be obtained
arbitrarily, e.g., through the internet, as long as their inference
results match the target class y. If there is a set of seed im-
ages we call it Scenario B; if there is only one seed image we
call it Scenario C. Accordingly, we further propose a class-
conditional metadata collecting procedure which is straight-
forward and applicable in all scenarios described above. The
first step is to determine the data source. In Scenario A the
source is the original training dataset, while in Scenario B
and C the source is the retrieve “seed” images. The second
step is to extract metadata s(x;|y) throughout the inference
process. The proposed regularization design is referenced to
determine the metadata structure and to pinpoint the locations
for the extraction. If there are multiple inputs, we simply take
the average. Finally the collected metadata will be passed to
the image synthesis update cycle as parameters to regularize
the loss function. The whole procedure for Scenario B and C
is depicted in Figure 2.

inference

Retrieve “seeds” with given y Q Update iteratively

= Ccross entropy

Loss

gradient forward
Fixed model

The regularization

.- design Rcc(x|y) -~
Reference

Fixed model

t Class-conditional
metadata s (x;|y)
The same pretrained
Extract metadata classification network
through inference

Figure 2: The metadata collecting procedure designed specifically
for the proposed class-conditional regularization, the figure shows
the steps specifically for the get-from-seed scenarios.
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Figure 3: The synthesized images using the proposed method in different scenarios described in Sec. 3.3. Scenario A (a): original pretrained
ResNet50 with metadata from the original training dataset; Scenario B (b): BN-fused ResNet50 with metadata from 50 seed images for each
class; Scenario C (c): BN-fused ResNet50 with metadata from only one seed image.

4 [Experiments

4.1 Evaluation on ImageNet

We perform experiments with pretrained networks based on
the large-scale ImageNet dataset [Deng et al., 2009] from
1000 classes. In order to thoroughly demonstrate the perfor-
mance and effectiveness of the proposed strategy, we study in
all three different scenarios described in Sec. 3.3.

Implementation Details

For the network, we use the publicly available pretrained
ResNet50 from PyTorch as the base network. The Top-1
accuracy of the network is 76.13%. In Scenario A we just
use this network directly. In Scenario B and C, we use an
inference-optimized version of the network by applying the
static quantization technique which fuses the BN layers into
their preceding layers respectively.

For the metadata, in Scenario A we use the original Ima-
geNet training set as the source. In Scenario B we use 50 seed
images (retrieved online, inference-checked) for each class to
extract metadata, and in Scenario C we use only one such
seed image. All the metadata collecting processes follow the
procedures described in Sec. 3.3.

For other parameters in all experiments, we use an Adam
optimizer with a learning rate of 0.25 and set apy = 1.0 X
e 4, o, = 1.0x e~ ®, acc = 0.01. We run the image synthe-
sis with a batch size of 200 using NVIDIA V100 GPU with
automatic-mixed precision (AMP) [Wang er al., 2019] for ac-
celeration. For each batch, we apply 20k iterations to acquire
results with good quality. In addition, we synthesize another
set of images by using Deeplnversion method following the
settings described in [Yin er al., 2020] for comparison.

Analysis of the Synthesized Images

Figure 3 shows the resulting images in different scenarios.
First, we find the generated images are with high fidelity in
Scenario A (Figure 3 (a)). This shows the effectiveness and
improvement in image quality of our method in such a sim-
ulated data-free scenario, as the metadata is considered to
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be released along with the pretrained network (similar to the
statistics stored in BN layers that used in the Deeplnversion
method). Additionally, we find that the generated images in
Scenario B (Figure 3 (b)) achieve the same quality as that in
Scenario A. This demonstrates that for any neural network we

Balloon

Indigo Bunting

Pufferfish

=
-

Figure 4: More results in the one-seed mode. Each gray block con-
tains the synthesized samples (the right three columns) from differ-
ent seed images (the leftmost column) of the same class. Note that
the synthesized images closely follow the features of their corre-
sponding seed, but with good diversity.
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Deep Inversion

Figure 5: Comparison between the results from DeeplInversion (left)
and our method (right). The images are generated with a batch size
of 200 with the same target class. The background problem can be
mitigated (but not eliminated) by diversifying the target classes in a
batch.

are able to synthesize high quality natural images by applying
the proposed method. Finally, we find the results in the “one
seed” mode, Scenario C (Figure 3 (c)), are with significantly
better image quality.

The One-Seed Mode. In order to further analyze the results
in the one-seed mode (Scenario C), we show more results we
get from what we sow in Figure 4 and a detailed comparison
between different seeds and their corresponding synthesized
samples. It can be clearly observed that the synthesized im-
ages closely follow the characteristics of their seed, but with
good diversity. When we sow different seeds (even from the
same class), we get different results accordingly. For exam-
ple, the synthesized daisies follow the features of their seeds
in color, texture and posture, and even inherit the details such
as the dew on the petals.

The Background Problem. When applying the Deeplnver-
sion method, the synthesized images tend to have unreason-
able elements in the background, shown in Figure 5 (left).
The most likely explanation is that the natural regularization
term in Deeplnversion is global and class-independent, which
means that the non-decisive background cannot be properly
reflected due to the lack of class-specific information. The
problem can be mitigated (but not eliminated) by diversify-
ing the target classes in a batch, specifically, by using non-
repeat random target classes in a batch. But still we can ob-
serve the problem (in their original work) that the synthesized
dog, eagle and bug have similar types of inconsistent green
background. Our method has essentially solved this problem
with the class-conditional design. As we can see in Figure 5
(right), or even in Figure 3 and 4, all the synthesized images
using our method are with reasonable backgrounds (e.g. the
water habitat that flamingos should live in) and with overall
visual consistency for each sample.

Inception Score (IS). The Inception Score (IS) [Salimans
et al., 2016] is a popular metric for evaluating the quality of

Method Resolution GAN Inception Score
Real Image 299 229.49
BigGAN [20138] 256 v 202.6
Ours 224 107.13
Deeplnversion [2020] 224 60.6
WGAN-GP [2017] 128 v 11.6
DeepDream 224 6.2

Table 1: Inception Score (IS) for synthesized images using various
methods on ImageNet. Note that we use Scenario A for our method
to generate samples.
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DeepDream DeeplInversion Ours
Models Ace. (%) Ace. (%) Acc. (%)
ResNet50 100.0 100.0 100.0
ResNet18 28.0 94.4 98.9
MobileNet-V2 13.9 90.9 95.7
VGGl1 6.7 80.1 92.3
Inception-V3 27.6 92.7 93.3
ResNet152 - - 99.4
Wide_Resnet50_2 - - 99.1
SqueezeNet1_0 - - 93.4
VGG19_BN - - 97.5

Table 2: Classification accuracy of the ResNet50 synthesized im-
ages on a series of other models. All models are trained on Ima-
geNet. The results on DeepDream and Deeplnversion methods are
from [Yin er al., 2020]. For our method, Scenario A is adopted for
image synthesis.

the synthesized images. This metric is designed to correlate
well with human scoring of the realism of synthesized images
(the higher the better). The IS uses a pretrained Inception-
V3 network and calculates a statistic of the network’s outputs
when applied to images. Table 1 shows the IS of the im-
ages synthesized with the proposed method. We find that our
method improves over Deeplnversion in terms of IS by a large
margin. Of course we still have to pay attention to the fact that
the generated images with our method (or Deeplnversion) are
essentially adversarial examples and thus are more likely to
produce higher confident predictions for IS.

Generalization Ability. The optimization and improve-
ment of our method has also brought better performance on
generalization. It can be found in Table 2 that our method sur-
passes the Deeplnversion method in the generalization test on
a series of models.

4.2 Sketch-Based Image Synthesis (SBIS)

As we have achieved satisfactory results in the above-
mentioned get-from-seed scenarios, another idea comes to
our minds: as the synthesized images closely follow the seed
images, why not try exploring whether the synthesized im-
ages can follow some specific input (can also be considered
as “seed” from another angle) such as a hand-drawn sketch?
In this section we study the performance of our method on
the task of sketch-based image synthesis (SBIS).

Implementation Details

For the sketch data, we use the Sketchy Database [Sangk-
loy et al., 2017] as a source. The database spans 125 cate-
gories with a total of more than 75,000 sketches of 12,500
objects. It’s also characterized by providing original pho-
tos paired with the sketches. We align the categories in the
Sketchy database with the ImageNet dataset and select 120
classes with a maximum of 200 sketches per class as the in-
put for the SBIS task. All the sketches are with the size of
256 x 256. For the pretrained model, we use the BN-fused
version of the PyTorch official pretrained ResNet50 network.
We use a 200 max batch size for each class. Other settings in
this experiment are the same as that in Scenario B, Sec. 4.1.
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(b)

Figure 6: Sketch-based image synthesis samples: (a) shows the re-
sults from different sketches. In each column the top image is the
original image that the sketch is based on, the middle is the sketch,
and the bottom is the synthesized image using our method. Both
original and sketch images are from the Sketchy database. (b) shows
the intermediate step results in the synthesis process. The leftmost
is the input sketch and the rightmost is the final result.

Results and Analysis

A set of images synthesized from sketches with the proposed
method are shown in Figure 6. Remarkably, we find that our
method is able to achieve satisfactory performance in this task
as well, and some detailed analysis are shown as follows:

Naturalness. The synthesized images looks realistic and
natural. Moreover, the details in color, texture and back-
ground can be naturally synthesized that follow the origi-
nal features of the corresponding class. For example, the
goldfinch is with yellow body, black head and wings, and
it stands on a tree branch; the agaric is red and it lives in
the grass; and the black swan is with the correct color and it
swims in the water, etc.

Faithfulness. The synthesized images closely follow the
input sketch in terms of key features such as shape and pose.
It can be clearly found in some examples: the posture of the
bird (especially the head and the beak), the structure of the
church and the direction in which the hotdog is placed, etc.
Furthermore, in Figure 6 (b), steps in the synthesis process
explains why the results are highly consistent with the input
sketch.

To the best of our knowledge, most start-of-the-art meth-
ods for this task are GAN-based which require training pro-
cesses. The results in this section demonstrates that the pro-
posed method also performs well in this task, only with a
pretrained classification model. The proposed method may
provide a direction worth exploring in this sketch-based im-
age synthesis (SBIS) task.

4.3 Data-Free Knowledge Distillation

Knowledge distillation (KD) task refers to the process of
transferring information of a pretrained “teacher” model to
a randomly initialized “student” model through training with
the help of the original training dataset based on which the
teacher was trained. To verify the effectiveness of our method
in this task, in this section we use our method to generate data
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Data Original DAFL [2019]  DeepInversion [2020] +Ours
Amount &ML Top-1 Ace. (%) Top-1 Acc. (%) Top-1 Ace. (%)

10K 85.44 - 55.94 67.02

50K 95.34 - 86.55 89.77

200K - - 91.56 92.93

Best 95.34 92,20+ 91.56 92.93

Table 3: Knowledge distillation student performance using dif-
ferent amount of synthesized/original images on CIFAR-10. The
teacher/student networks are ResNet34/ResNet18 respectively. The
“Original” refers to the results using the original training set (50K
images). *:The DAFL student accuracy is from [Chen et al., 2019]
and its corresponding teacher accuracy is 95.58%.

as the training set and then analyze the performance in the KD
task.

Implementation Details

We first train a ResNet34 network from scratch on CIFAR-
10 dataset with 95.67% accuracy as the teacher. For all the
image synthesis jobs in this task, we use an Adam optimizer
with a learning rate of 0.05. We generate images in batches of
200 with 2000 iterations per batch, with optimized parameters
ary =2.5-107% acc = 1.0, (ay = 1.0 in Deeplnversion).
As for the metadata used in our method, we simply use the
original training set as the source.

For the KD process, first we randomly initialize a
ResNetl18 network as the student. Then, to evaluate and
compare the efficiency in the KD task, we apply our method
and Deeplnversion separately to generate 10k, 50k, and 200k
datasets as the substitutes of the original training set. For all
cases, we apply a standard KD training for 200 epochs, with
temperature 7=5, an SGD optimizer with a learning rate of
0.1 and a batch size of 128.

Analysis

From Table 3, we find that, without any limitation on the
data amount, the best KD student accuracy with our method
reaches 92.93% (with 200K synthesized images), surpassing
both Deeplnversion [2020] and DAFL [2019]. Moreover,
by comparing the performance on the 10K, 50K and 200K
datasets, we find that our method achieves better KD accu-
racy with fewer generated images. Finally, with our method,
we can design any types of class-conditional natural regular-
ization term without any restriction (like the BN requirement
in Deeplnversion) and thus a wider range of networks can be
supported.

5 Conclusions

In this paper, we have proposed a novel strategy for natural
image synthesis based on a single pretrained classifier with
class-conditional information, which is either provided along
with the pretrained model release or directly extracted from
some given “seed” images. Experiments have shown that the
proposed strategy, especially in the get-from-seed scenario,
is able to improve the fidelity of the synthesized images to a
level comparable to the state-of-the-art GAN-based methods.
Moreover, the performance in tasks of SBIS and KD have
further demonstrated the applicability and effectiveness of the
proposed strategy.
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